15 Problems in Spectroscopy 2010 (1)

Embed Size (px)

Citation preview

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    1/59

    1

    Fifteen Problems in

    Spectroscopy

    Sren Brgger Christensen

    Department of Medicinal Chemistry

    Faculty of Pharmaceutical Sciences

    University of Copenhagen

    2010

    8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.100.96

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    2/59

    2

    2009 The University of Copenhagen. All rights reserved. No part of this material may be reproduced

    without prior written permission of the publisher.

    Preface

    The following fifteen problems are a continuation of Ten Problem in Spectroscopy, which was used

    as supplementary exercises for a course in spectroscopy at FARMA. The intention is to offer somepossibilities for students to work with problems in spectroscopy either individually or in groups.

    The present edition differs from the first edition by adding five problems (Problem 1-5, Part 1) withcompounds, the structures of which can be solved solely by taking advantage of the IR,

    1H NMR and

    molecular weight as revealed from the mass spectrum. The13

    C NMR spectrum and DEPT135 spectrum arealso given. If the signal in the

    13C NMR spectrum is assigned a 0 the signal wil l disappear in the DEPT

    spectrum, a + indicates that the signal will have a positive intensity and a - indicates a negative intensity.The

    13C NMR spectra can be used as a possibility for interpreting such spectra when the students feel

    confident with this spectroscopical technique.

    In some of the problems two1H NMR spectra are recorded: one spectrum of the compound

    dissolved in a deuterated solvent and one spectrum after addition deuterium oxide (D2O). By comparison ofthe spectra you will observe that one or more signals have disappeared from the latter spectrum. In this case

    advantage is taken of the possibility of exchanging protons attached to oxygen, nitrogen or sulfur atoms withdeuterium by shaking the solution with deuterium oxide. Consequently it can be concluded that thedisappeared signal originates in a proton attached to either an oxygen, a nitrogen, or a sulfur atom.

    In worked Problem 1 an example is given on a strategy for structure elucidation.

    The problems 6-15 (Part 2) present molecules with more complex structures. Such problems aresolved using all the information available from MS,

    1H NMR, and

    13C NMR spectra. Worked Problem 2

    presents a strategy for dealing with this kind of problems.

    It is always difficult to predict the challenge of problems, especially for someone who knows theanswers. That is why the problems appear at random. I would, however, assume the problems 11, 12, and13 might appear a minor challenge than other problems in Part 2.

    In the problems 6 and 7 you will notice that the1H NMR spectrum is recorded at 300 MHz as well as

    at 600 MHz. These spectra illustrate how a complex NMR pattern simplifies at higher field. In problem 6 aCOSY spectrum helps interpreting the contiguity of the molecule.

    The following spectra are spectra recorded of real compound, meaning that you will experience thefalse signal that might appear e.g. in an IR spectrum, if the potassium bromide used for preparing the disc ishumid.

    Before looking up the solution I suggest that you draw the expected molecule in a drawing programthat enables you to predict the spectra (e.g. ChemBioDraw) and ask the program to predict the

    1H and

    13C

    NMR spectra.

    The solutions to the problems are given the last page as the CAS numbers of the compounds.

    Finally I wish you fun when solving the problems.

    Acknowledgement: Nils T. Nyberg has recorded the 600 MHz spectra, Birgitte Simonsen the IR spectra,and Dorthe M. Skytte has performed careful prove reading and given creative inputs.

    Copenhagen, October 2009

    S. Brgger Christensen

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    3/59

    3

    IndexPreface ........................................................................................................................................................... 2

    Part 1 ............................................................................................................................................................. 4

    Worked Problem 14

    Elucidation of configuration using molecular weight, IR and1H NMR spectra ............................................. 6

    Problem 1 .................................................................................................................................................. 8

    Problem 2 ................................................................................................................................................ 10

    Problem 3 ................................................................................................................................................ 12

    Problem 4 ................................................................................................................................................ 15

    Problem 5 ................................................................................................................................................ 17

    Part 2: Problems 6 15 ................................................................................................................................... 20

    Elucidation of the configuration of organic compounds using EIMS, IR,1H NMR and

    13C NMR spectra 20

    Mass spectrometry for Analysis of Elemental Composition of Organic Compounds.............................. 21

    Worked Problem 2....................................................................................................................................... 22

    Elucidation of configuration: ........................................................................................................................... 24

    Problem 6 ................................................................................................................................................ 27

    Problem 7 ................................................................................................................................................ 31

    Problem 8 ................................................................................................................................................ 35

    Problem 9 ................................................................................................................................................ 38

    Problem 10 .............................................................................................................................................. 41

    Problem 11 .............................................................................................................................................. 45

    Problem 12 .............................................................................................................................................. 47

    Problem 13 .............................................................................................................................................. 50

    Problem 14 .............................................................................................................................................. 53

    Problem 15 .............................................................................................................................................. 56

    Solutions to the problems (CAS numbers): ............................................................................................. 59

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    4/59

    4

    Part 1

    Worked Problem 1

    EIMS (75eV)

    10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1000

    50

    100

    15

    26

    27

    29 39

    41

    42

    43

    4458

    71

    86

    87

    O

    IR (Liquid sandwich)

    MS+

    = 86

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    5/59

    5

    Worked problem 1

    1H NMR (300 MHz, CDCl3)

    2.5 2.0 1.5 1.0Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.071.953.102.00

    13C NMR (75 MHz, CDCl3)

    200 180 160 140 120 100 80 60 40 20Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntensity

    +-

    0

    +

    208.9

    1

    45.6

    5

    29.8

    7

    17.3

    213.7

    2

    -

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    6/59

    6

    Elucidation of the configuration of an organic compound using molecular

    weight, IR and1H NMR spectra

    The structures of the compounds, in which the spectra given in problems 1 to 5 originate, can be

    elucidated solely by interpreting the IR and 1H NMR spectra and taking advantage of the molecular

    weight as stated on the EIMS spectrum. The EIMS and13

    C NMR spectra are also given. The latterspectra might be interpreted at a later stage.

    Molecular weight

    The molecular weight is stated to be 86 g/mol.

    Functional groups

    The IR spectrum reveals a strong absorbance just below 3000 cm-1 indicating the presence of

    hydrogen atoms attached to sp3 hybridized carbon atoms. In addition the spectrum reveals a

    strong absorbance at 1720 cm-1 indicating the presence of a ketone group. Besides these bands

    the spectrum reveals no strong absorbance above 1500 cm-1.

    Building blocks1H NMR spectrum

    The building blocks of the molecule can be interpreted from the 1H NMR spectrum revealing the

    presence of two methyl groups (2 CH3, 2.10 and 0.90 ppm, integral 3H for each) and two

    methylene groups (2 CH2, 2.40 and 1.60 ppm, integral 2H for each). A combination of the atoms

    present in the groups affords a weight of 215 + 214 = 58. Since the molecular weight was 86 the

    weight of the remaining building block must be 28, corresponding to a C=O group. This latter group

    already was expected from the IR spectrum revealing that the compound was a ketone.

    The contiguity of the molecule

    The contiguity of the molecule is revealed from the multiplicities (coupling patterns) of the signals in

    the 1H NMR spectrum as listed in the below Table 1.

    Intensity Multiplicity J Interpretation

    2.40 2 t 6.9 Hz CH2-CH2-CO

    2.10 3 s 6.9 Hz CH3-CO

    1.60 2 sextet 6.9 Hz CH3-CH2-CH2

    0.90 3 t 6.9 Hz CH3-CH2

    Table 1: Systematic representation of the signals in the 1H NMR spectrum.

    The coupling constants, J, are measured on the spectrum as illustrated below:

    1. The distance between 1.0 and 2.0 on the X-axis measured with a ruler is 56 mm.

    2. Since the spectrum is recorded at 300 MHz 1 ppm equals 300 Hz. From point 1 it appears

    that 56 mm is the distance between 1 and 2 ppm on the X-axis and therefore 56 mm also is

    the distance of 300 Hz on the X-axis. Division 300/56 reveals that 1 mm equals 5.3 Hz.

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    7/59

    7

    3. The distances between the peaks of the triplet at 2.4 ppm measured with a ruler is 1.3 mm

    corresponding to 1.35.3 = 6.9 Hz.

    The signal at 2.40 is a triplet (J6.9 Hz) integrating for two protons. The -value indicates that the

    signal is next to the C=O group and the multiplicity indicates that the signal is also next to a CH2-

    group.

    The signal at 2.10 is a singlet integrating for three protons. The -value indicates that the signal is

    next to a C=O group: CH3-(C=O)-.

    The signal at 1.60 is a sextet (J6.9 Hz) integrating for two protons, indicating that the signal is

    only weakly affected by elctronegative groups and 5 neighboring protons are affecting the signal.

    The neighboring groups have to be a methyl and a methylene group.

    The signal at 0.90 is a triplet (J6.9 Hz) integrating for three protons, indicating a methyl group

    affected by a neighboring methylene group.

    All this information is given in the table.

    Based on this knowledge the molecule has to be: CH3-(C=O)-CH2-CH2-CH3.

    Prediction of spectrum

    Figure 1 reveals the spectrum predicted by ChemBioDraw (Draw the compound in the drawing

    program, mark the compound, go into structure, and choose predict 1H-NMR shifts):

    Figure 1:1H NMR spectrum predicted by ChemBioDraw. As often is the case with simple molecules the

    prediction is very good.

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    8/59

    8

    Problems 1-5

    Problem 1

    EIMS (75 eV)

    10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1000

    50

    100

    26

    27

    28

    29

    30 39 41 4356

    57

    58

    86

    87

    O

    IR (Liquid sandwich, the peak at 1600 cm -1 is an internal reference)

    MS+

    = 86

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    9/59

    9

    Problem 1

    1H NMR (300 MHz, CDCl3)

    3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.002.06

    13C NMR (75 MHz, CDCl3)

    220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +

    -

    0

    211.9

    5

    35.4

    5

    7.94

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    10/59

    10

    Problem 2

    EIMS (75 eV)

    10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 780

    50

    100

    18

    27

    28

    29

    30

    31

    41

    42

    43

    45

    46 55 57

    59

    73

    HO

    IR (Liquid sandwich, the peak at 1600 cm -1 is an internal reference)

    MS+

    = 74

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    11/59

    11

    Problem 2

    1H NMR (300 MHz, CDCl3)

    4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.933.032.021.201.00

    1H NMR (300 MHz, CDCl3 added D2O)

    3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.953.162.081.00

    3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    NormalizedIntensity

    1.00

    1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.933.032.02

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    12/59

    12

    Problem 2

    13C NMR (75 MHz, CDCl3)

    85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +

    +

    -

    +

    69.4

    2

    32.0

    12

    2.8

    9

    10.0

    3

    Problem 3

    EIMS (75 eV)

    10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 780

    50

    100

    15 26

    27

    28

    29

    30

    31

    33

    38

    39

    40

    41

    42

    43

    4450 53

    5557

    5973

    74

    OH

    MS+

    = 74

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    13/59

    13

    Problem 3

    IR (Liquid sandwich)

    1H NMR (300 MHz, CDCl3)

    4.0 3.5 3.0 2.5 2.0 1.5 1.0

    Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.181.001.132.15

    2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55i l i

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Normalized

    Intensity

    1.00

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    14/59

    14

    Problem 3

    1H NMR (300 MHz, CDCl3 added D2O)

    3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    5.950.932.00

    13C NMR (75 MHz, CDCl3)

    85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +

    +

    -

    69.6

    4

    30.8

    1

    18.9

    1

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    15/59

    15

    Problem 4

    EIMS (75 eV)

    10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 780

    50

    100

    14

    15

    19

    26

    27

    28

    29

    31

    32

    33

    38

    39

    41

    42

    43

    45

    55

    56

    5773

    OH

    IR spectrum (Liquid sandwich, the peak at 1600 cm-1 is an internal reference)

    MS+

    = 74

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    16/59

    16

    Problem 4

    1H NMR (300 MHz, CDCl3)

    4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.002.062.061.082.07

    1H NMR (300 MHz, CDCl3 added D2O)

    4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.002.041.922.03

    1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15

    0

    0.05

    0.10

    0.15

    0.20

    NormalizedIntensity

    2.062.06

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    17/59

    17

    Problem 4

    13C NMR (75 MHz, CDCl3)

    85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5Chemical Shift (ppm)

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +--

    -

    62.6

    0

    34.8

    2

    18.9

    4

    13.9

    1

    Problem 5

    EIMS (75 eV)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 2300

    50

    100

    29

    39 4550

    65 76 93 105 121

    132

    149

    177

    222

    O

    O

    O

    O

    MS+

    = 222

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    18/59

    18

    Problem 5

    IR (Liquid sandwich)

    1H NMR (300 MHz, CDCl3)

    7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.002.050.99

    0.93

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    19/59

    19

    Problem 5

    13C NMR (75 MHz, CDCl3)

    170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntensity +

    -

    +

    +

    0

    167.4

    1

    132.0

    7

    130.7

    9

    128.6

    9

    61.6

    0

    14.1

    7

    0

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    20/59

    20

    Part 2: Problems 6 15

    Elucidation of the configuration of an organic compound using EIMS, IR, 1H

    NMR and13C NMR spectra

    On the following pages you will find the EIMS, IR, 1H NMR, and 13CNMR spectra of ten organiccompounds. The challenge is to elucidate the configurations of the compounds. A possible strategyis firstly to interpret the MS to deduce the molecular weight. Inspection of the pattern at M+,(M+1)+, and (M+2)+ or the similar pattern at dominant peaks in the mass spectrum can be used forestimating the elemental composition of the molecule (cf. the following paragraph on massspectrometry). The functional group(s) in the molecule might be deduced from the IR spectrumand, if the functional group contains a carbon atom, from the 13C NMR spectrum. The DEPT-135combined with the 13C NMR spectrum reveals the number of quaternary carbon atoms, the numberof methine, methylene and methyl groups in the molecule. The DEPT-135 spectrum is indicated inthe 13C NMR spectra by annotation of 0 if the signal disappears, + if the signal has a positiveintensity, and - if the signal has a negative intensity in the DEPT-135 spectrum. Use theintegration curves in the 1H NMR spectrum to confirm the number of hydrogen atoms in themolecule. By adding the weight of the revealed groups an estimate of the molecular weight can bemade. If the estimated weight corresponds to the weight as revealed from the MS the buildingblocks involved in the molecule are known. Finally the contiguity of the molecule to give the finalconfiguration can be obtained by interpreting the coupling pattern of the signals in the 1H NMRspectrum.

    In Worked Problem 2 you will find an example of structure elucidation using the mentionedstrategy. In the following paragraph you will find see how the signals in the mass spectra with m/zvalues a few units higher than the value of the molecular weight might be used for estimation of themolecular formula.

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    21/59

    21

    Mass spectrometry for Analysis of Elemental Composition of Organic

    Compounds

    Almost all elements are a mixture of more isotopes. In general the major isotope possesses thesmallest atomic mass (an exception is borine). The molecular mass is defined as the mass of the

    molecule containing the lightest isotopes. A mass spectrum thus will display a peak for themolecular ion plus a number of peaks with larger values for m/z. The pattern of these peaks willdepend on the elemental composition of the molecule and might thus be helpful for estimating themolecular formula. The most common elements in organic molecules are listed in Table 1:

    Table 2: Isotopes of common elements in organic compounds:

    Element

    A A+1 A+2

    Type of elementAtomic weight % Atomic weight % Atomic weight %H 1 100 2 0.015 A

    C 12 100 13 1.1 A+1

    N 14 100 15 0.37 A+1

    O 16 100 17 0.04 18 0.20 A+2

    F 19 100 A

    Si 28 100 29 5.1 30 3.4 A+2P 31 100 A

    S 32 100 33 0.79 34 4.4 A+2

    Cl 35 100 37 32.0 A+2

    Br 79 100 81 97.3 A+2

    I 127 100 A

    The elements might be grouped into three types of elements: Type A, Type A+1, and Type A+2. Ifthe intensity of the peak two units higher than the molecular ion is less than three per cent of thatof the molecular ion it may be concluded that none of the elements Si, S, Cl or Br is present. Somecharacteristic patterns for molecules containing chlorine and bromine molecules are given in (Table2).

    Table 3: Abundance of isotope peaks in chlorine and bromine containing ions.

    A A+2 A+4 A+6

    Cl 100 32

    Cl2 100 64 10

    Br 100 97

    Cl3 100 96 31 3

    BrCl 77 100 24

    BrCl2 62 100 45 6

    Br2 51 100 49

    Some drawing software like ChemDraw shows the pattern above the molecular peak in theanalysis window (in ChemBioDraw mark the molecule, choose the View drop down menu, choose

    Analysis Window).

    The number of carbon atoms in the molecule can be calculated according to the below equation:

    in which 1.1 is the percentage of naturally occurring 13C, n is the number of carbon atoms in themolecule, I(M+1) is the intensity of the peak at (M+1), I(M) is the intensity of the molecular peak.

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    22/59

    22

    Worked Problem 2

    EIMS (75 ev)

    10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 780

    50

    100

    15

    26

    27

    28

    29

    31

    37

    38

    39

    40

    41

    43 49

    51

    52

    53

    54

    6365

    67

    68

    IR (Liquid sandwich)

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    23/59

    23

    1H NMR Spectrum (300 MHz, CDCl3)

    2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.162.121.002.06

    13C NMR Spectrum (75 MHz, CDCl3)

    85 80 75 70 65 60 55 50 45 40 35 30 25 20 15Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedInt

    ensity

    +-

    -+

    0

    84.4

    6

    68.1

    5

    22.0

    0

    20.4

    413.4

    2

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    24/59

    24

    Elucidation of configuration of worked problem 2:

    Molecular weight

    EIMS indicates a molecular weight of 68

    Building blocks13C NMR and DEPT-135 shows

    1 quaternary C

    2 CH2

    1 CH and 1 CH3, or 2 CH, or 2 CH3.

    The chemical shifts of the signals indicate 1 CH and 1 CH3. This is confirmed by inspection of the1H NMR spectrum in which one signal integrates for 1H and one signal for 3H.

    Addition of the weights of these building blocks gives 12 + 214 + 13 + 15 = 68. All the buildingblocks of the molecule have been found.

    Molecular formula: C5H8 DBE: (10+2-8) = 2

    Functional groups

    IR spectrum:

    A strong band at 3311 cm-1 and 2117 cm-1 shows the presence of a terminal triple bond. Noadditional functional groups appear to be present.

    The presence of a triple bond is confirmed by signals at 84 and 68 ppm in the 13C NMR spectrum.

    The contiguity of the molecule1H NMR spectrum

    The contiguity of the molecule is revealed from the coupling patterns of the signals of the protonsin the molecule (Table 4).

    Intensity Multiplicity J Interpretation

    2.15 2 dt 3 and 7 Hz H- - CH2-CH2

    1.93 1 t 3 Hz H- - CH2

    1.55 2 sextet 7 Hz CH2-CH2-CH3

    0.90 3 t 7 Hz CH3-CH2

    Table 4: Systematic representation of the signals in the 1H NMR spectrum.

    The small size of the coupling constant (3 Hz) of the signals at 2.15 ppm and 1.93 ppm indicatethat this is a long range coupling (larger than 3-bonds coupling, indicated by using two hyphensbetween the H and the C in the Table). All the other coupling constants (7 Hz) are as expected forvicinal couplings (3-bonds couplings).

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    25/59

    25

    The coupling constants are measured as described in Worked Problem 1

    The splitting pattern of the terminal CH3 (t) reveals that it must be bound to a CH2 group: CH3-CH2-.

    The splitting pattern of the CH2 group bound to the CH3 (sextet) reveals that it must be bound to anadditional CH2: CH3-CH2-CH2-.

    Remaining building blocks are C and CH. Since the IR and 13C NMR spectrum indicated a terminaltriple bond we can conclude that these two carbons must be a CC-H group yielding the molecule:

    CH3-CH2-CH2-CC-H.

    The presence of a coupling constant of 3 Hz in only in the two signals at 2.15 and 1.93 proves thatthe protons, in which these signals origin, must couple with each other.

    The coupling pattern of the CH2-group next to the triple bond can be explained by the couplingdiagram (Figure 2):

    2.35 2.30 2.25 2.20 2.15 2.10Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.06

    Figure 2: Coupling diagram of the CH2 group next to the triple bond.

    Prediction of the spectra

    If the molecule is drawn in ChemBioDraw and the program is prompted to predict the 1H NMRspectrum (mark the molecule, choose the drop down menu at Structure and ask for the predictionof 1H NMR) the below spectrum is predicted (Figure 3):

    Figure 3: 1H NMR spectrum predicted by ChemBioDraw for 1-pentyne.

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    26/59

    26

    Notice that the signal originating in the CC-H is predicted to appear at 2.7 ppm but actuallyappears at 1.93 ppm. The other signals are reasonably well predicted. Notice also the goodprediction of the coupling patterns.

    The predicted 13C NMR spectrum is shown below (Figure 4):

    Figure 4: 13C NMR of 1-pentyne predicted by ChemBioDraw.

    Interpretation of the spectra (Figure 5):1H NMR 13C NMR

    Figure 5: Interpretation of the NMR spectra

    Interpretation of the MS

    In the MS spectrum the peak at m/z53 must origin form M+-15, the peak at m/z67 must originform M+-1, and the peak at m/z40 equals the loss of an ethylene molecule, which could be causedby at McLafferty rearrangement (Figure 6):

    m/z= 68 m/z= 40

    Figure 6: Possible McLafferty fragmentation of 1-pentyne.

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    27/59

    27

    Problem 6

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 2400

    50

    100

    27

    41

    55

    60

    69

    73 83

    87

    97

    101 115

    125

    135

    143

    163

    179 193 205 223

    HO

    Br

    O

    IR (KBr)

    MS+

    = 222

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    28/59

    28

    Problem 6

    1H NMR Spectrum (300 MHz, CDCl3)

    12 11 10 9 8 7 6 5 4 3 2 1Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    8.042.032.042.000.68

    3.5 3.0 2.5 2.0 1.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    8.042.032.042.00

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    29/59

    29

    Problem 6

    13C NMR Spectrum (75 MHz, CDCl3)

    180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    180.30

    77.4

    2

    77.0

    0

    76.5

    8

    33.9

    9

    33.8

    832.6

    7

    28.8

    1

    28.3

    7

    27.9

    2

    24.5

    0

    The signal at 180 will disappear in a DEPT-135 experiment and all the other peaks will obtain a

    negative intensity.

    1H NMR spectrum (600 MHz, CDCl3)

    12 11 10 9 8 7 6 5 4 3 2 1Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    4.022.012.082.000.80

    The signal at 11 ppm disappears after addition of D2O.

    36 34 32 30 28 26 24 22 20Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    33.9

    9

    33.8

    8 32.6

    7

    28.8

    1

    28.37

    27.92

    24.5

    0

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    30/59

    30

    Problem 6

    1H NMR (600 MHz, CDCl3)

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.082.00

    2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    4.022.022.072.01

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    31/59

    31

    Problem 7

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 1900

    50

    100

    15

    29

    39

    41 45

    51

    53 63

    65

    68

    74

    79

    81

    92

    96

    107

    122

    137

    149

    153

    167

    182

    OHO

    O

    O

    IR (KBr)

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    32/59

    32

    Problem 7

    1H NMR Spectrum (300 MHz, CDCl3)

    12 11 10 9 8 7 6 5 4Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    N

    ormalizedIntensity

    3.182.151.000.69

    7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.100.96

    11.5 11.0 10.5 10.0 9.5 9.0ChemicalShift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedInt

    ensity

    After addition of D2O

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    33/59

    33

    13C NMR Spectrum (75 MHz, CDCl3)

    168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntensity

    +

    +

    +0

    +

    0

    0

    0

    165.3

    3

    151.8

    9

    148.0

    0

    124.8

    21

    23.7

    0

    121.9

    9

    117.3

    3

    62.1

    9

    56.1

    7

    +

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    34/59

    34

    Problem 7

    1H NMR spectrum (600 MHz, CDCl3)

    8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.272.030.90

    7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05

    Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Normalized

    Intensity

    2.030.90

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    35/59

    35

    Problem 8

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 1800

    50

    100

    1529

    31

    39

    41

    43

    51

    55

    63

    65

    69

    76

    90

    95

    104

    107

    112

    122 133

    148

    166

    O

    O O

    IR (KBr)

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    36/59

    36

    Problem 8

    1H NMR Spectrum (300 MHz, CDCl3)

    10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.892.141.060.90

    7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedI

    ntensity

    2.141.06

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    37/59

    37

    Problem 8

    13C NMR (75 MHz, CDCl3)

    190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +

    +

    0

    +

    0

    +

    189.1

    7

    161.9

    6

    135.7

    7

    114.1

    4

    103.7

    2

    77.4

    3

    77.0

    0

    76.5

    8

    56.0

    4

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    38/59

    38

    Problem 9

    EIMS (75 ev)

    40 50 60 70 80 90 100 110 120 130 140 1500

    50

    100

    4251

    5563

    66 69

    81

    109

    138

    HO

    OH

    O

    IR (KBr)

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    39/59

    39

    Problem 9

    1H NMR Spectrum (300 MHz, CD3OD)

    10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    0.981.10

    7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    0.982.08

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    40/59

    40

    Problem 9

    13C NMR (75 MHz, CD3OD)

    192 184 176 168 160 152 144 136 128 120 112 104 96 88Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +

    +

    0

    0

    +

    194.0

    6

    160.4

    2

    140.0

    3

    109.8

    2

    108.7

    6

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    41/59

    41

    Problem 10

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 1800

    50

    100

    1527

    39

    41

    51

    53

    55

    63

    65

    75

    77

    81

    91

    94

    103

    115

    121

    131

    137

    149

    164

    OH

    O

    IR (liquid sandwich)

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    42/59

    42

    Problem 10

    1H NMR Spectrum (300 MHz, CDCl3)

    7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    NormalizedIntensity

    2.183.172.050.900.952.001.02

    7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.001.02

    6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0ChemicalShift (ppm)

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    NormalizedIntensity

    After addition of D2O

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    43/59

    43

    Problem 10

    1H NMR Spectrum (300 MHz, CDCl3)

    6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8Chemical Shift (ppm)

    0

    0.05

    0.10

    0.15

    NormalizedIntensity

    2.050.900.95

    4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.183.17

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    44/59

    44

    Problem 10

    13C NMR (75 MHz, CDCl3)

    152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32Chemical Shift (ppm)

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    -

    +

    +

    +

    +

    0

    +

    0

    0

    146.2

    3 143.6

    9

    137.6

    6

    131.7

    5

    121.0

    2

    115.4

    01

    14.1

    1

    110.9

    6

    77.4

    2

    77.0

    0

    76.5

    8

    55.8

    3

    39.9

    2

    COSY spectrum (300 MHz, CDCl3)

    7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0F2 Chemical Shift (ppm)

    3

    4

    5

    6

    7

    F1ChemicalShift(ppm)

    -

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    45/59

    45

    Problem 11

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 2100

    50

    100

    28

    30

    38

    50

    63

    75

    8092

    117 129

    143

    155

    171

    185

    201

    N

    O O

    Br

    IR (KBr)

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    46/59

    46

    Problem 11

    1H NMR (CDCl3, 300 MHz)

    8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.002.01

    13C NMR (CDCl3, 75 MHz)

    165 160 155 150 145 140 135 130 125 120 115 110 105Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    +

    0

    +

    0

    14

    6.8

    0

    132.4

    6

    129.8

    4

    124.8

    6

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    47/59

    47

    Problem 12

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 1300

    50

    100

    15 27

    29

    41

    43

    55

    58

    71

    8199 114

    O

    IR (Liquid sandwich)

    MS+

    = 114

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    48/59

    48

    Problem 12

    1H NMR (CDCl3, 300 MHz)

    2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.003.062.962.07

    2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    3.062.962.07

    1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.003.06

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    49/59

    49

    Problem 12

    13C NMR (CDCl3, 75 MHz)

    220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntensity

    +

    +

    +

    -

    -

    0

    209.2

    5

    41.8

    5

    32.6

    6

    27.7

    0

    22.3

    8

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    50/59

    50

    Problem 13

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 1100

    50

    100

    15

    27

    28

    29

    31

    41

    43

    44

    45

    52

    54

    55

    56

    57

    59

    60 70

    84

    98

    O

    N

    IR (Liquid sandwich)

    M+

    = 99

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    51/59

    51

    Problem 13

    1H NMR (CDCl3, 300 MHz)

    3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.802.004.02

    3.5 3.0 2.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.004.02

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    52/59

    52

    Problem 13

    1H NMR (CDCl3, 300 MHz)

    2.5 2.0 1.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.802.00

    13C NMR (CDCl3, 75 MHz)

    120 112 104 96 88 80 72 64 56 48 40 32 24 16Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntens

    ity

    +

    --

    -

    0

    118.1

    9

    67.0

    5

    65.3

    1

    19.3

    0

    15.3

    6

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    53/59

    53

    Problem 14

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 1400

    50

    100

    1518

    28

    30

    39

    41

    44

    46 57 70

    74

    86

    NH2

    OH

    O

    IR (KBr)

    M+

    = 131

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    54/59

    54

    Problem 14

    1H NMR (D2O, 300 MHz)

    5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.003.180.98

    M e C N

    3.5 3.0 2.5 2.0Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    0.98

    MeCN

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    55/59

    55

    Problem 14

    1H NMR (D2O, 300 MHz)

    2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.003.18

    M e C N

    13C NMR (D2O, 75 MHz)

    180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntensity

    +

    +

    -+

    0

    175.5

    4

    53.5

    9 40.0

    2

    24.4

    0

    22.2

    8

    21.1

    2

    +

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    56/59

    56

    Problem 15

    EIMS (75 ev)

    10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 2700

    50

    100

    18

    29

    41

    57

    73

    87

    101

    111

    129

    143

    147

    156

    185

    O

    O

    O

    O

    IR (Liquid sandwich)

    M+

    = 258

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    57/59

    57

    Problem 15

    1H NMR (CDCl3, 300 MHz)

    4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    6.002.170.972.132.07

    4.0 3.5 3.0 2.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    NormalizedIntensity

    2.132.07

    2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5Chemical Shift (ppm)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Norm

    alizedIntensity

    6.002.170.97

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    58/59

    58

    Problem 15

    13C NMR (CDCl3, 75 MHz)

    170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10Chemical Shift (ppm)

    0

    0.25

    0.50

    0.75

    1.00

    NormalizedIntensity

    +

    -

    +

    --

    0

    173.2

    2

    70.4

    8

    34.0

    2

    27.7

    62

    4.5

    5

    19.1

    7

  • 8/6/2019 15 Problems in Spectroscopy 2010 (1)

    59/59

    Solutions to the problems (CAS numbers):

    Problem 1 96-22-0

    Problem 2 78-92-2

    Problem 3 78-83-1

    Problem 4 71-36-3

    Problem 5 84-66-2

    Problem 6 17696-11-6

    Problem 7 1521-38-6

    Problem 8 3392-97-0

    Problem 9 26153-38-8

    Problem 10 97-53-0

    Problem 11 586-78-7

    Problem 12 110-12-3

    Problem 13 2141-62-0

    Problem 14 61-90-5

    Problem 15 141-04-8