253
 10 February 2005 Dear Recipient, You are privileged to obtain a partial collection of answers for MEG 207 Dynamics. This document was compiled from PDF files collected during Fall of 2002 and Spring 2003. I have complied them into one document with Bookmarks to aid you in quickly finding the solutions you need. Unfortunately this isn’t a complete compilation of all of the answers, but comprehensive enough to help complement your studies. Engineering Mechanics, Dynamics, Second Edition. ISBN: 0-471-05339-2 Happy Studies! 

Solucionario Dinamica de Riley

  • Upload
    tiago

  • View
    9.883

  • Download
    2.286

Embed Size (px)

DESCRIPTION

Ejercicios resueltos del libro de RileySolucionario de RileyProblemas resueltos de Riley

Citation preview

  • 5/19/2018 Solucionario Dinamica de Riley

    1/253

    10 February 2005

    Dear Recipient,

    You are privileged to obtain a partial collection of answers for MEG 207 Dynamics. Thisdocument was compiled from PDF files collected during Fall of 2002 and Spring 2003. I havecomplied them into one document with Bookmarks to aid you in quickly finding the solutions youneed. Unfortunately this isnt a complete compilation of all of the answers, but comprehensiveenough to help complement your studies.

    Engineering Mechanics, Dynamics, Second Edition.ISBN: 0-471-05339-2

    Happy Studies!

  • 5/19/2018 Solucionario Dinamica de Riley

    2/253

    Chapter 13

  • 5/19/2018 Solucionario Dinamica de Riley

    3/253

  • 5/19/2018 Solucionario Dinamica de Riley

    4/253

  • 5/19/2018 Solucionario Dinamica de Riley

    5/253

  • 5/19/2018 Solucionario Dinamica de Riley

    6/253

  • 5/19/2018 Solucionario Dinamica de Riley

    7/253

  • 5/19/2018 Solucionario Dinamica de Riley

    8/253

  • 5/19/2018 Solucionario Dinamica de Riley

    9/253

  • 5/19/2018 Solucionario Dinamica de Riley

    10/253

  • 5/19/2018 Solucionario Dinamica de Riley

    11/253

  • 5/19/2018 Solucionario Dinamica de Riley

    12/253

  • 5/19/2018 Solucionario Dinamica de Riley

    13/253

  • 5/19/2018 Solucionario Dinamica de Riley

    14/253

  • 5/19/2018 Solucionario Dinamica de Riley

    15/253

  • 5/19/2018 Solucionario Dinamica de Riley

    16/253

  • 5/19/2018 Solucionario Dinamica de Riley

    17/253

  • 5/19/2018 Solucionario Dinamica de Riley

    18/253

  • 5/19/2018 Solucionario Dinamica de Riley

    19/253

  • 5/19/2018 Solucionario Dinamica de Riley

    20/253

  • 5/19/2018 Solucionario Dinamica de Riley

    21/253

  • 5/19/2018 Solucionario Dinamica de Riley

    22/253

  • 5/19/2018 Solucionario Dinamica de Riley

    23/253

  • 5/19/2018 Solucionario Dinamica de Riley

    24/253

  • 5/19/2018 Solucionario Dinamica de Riley

    25/253

  • 5/19/2018 Solucionario Dinamica de Riley

    26/253

  • 5/19/2018 Solucionario Dinamica de Riley

    27/253

  • 5/19/2018 Solucionario Dinamica de Riley

    28/253

  • 5/19/2018 Solucionario Dinamica de Riley

    29/253

  • 5/19/2018 Solucionario Dinamica de Riley

    30/253

  • 5/19/2018 Solucionario Dinamica de Riley

    31/253

  • 5/19/2018 Solucionario Dinamica de Riley

    32/253

  • 5/19/2018 Solucionario Dinamica de Riley

    33/253

  • 5/19/2018 Solucionario Dinamica de Riley

    34/253

  • 5/19/2018 Solucionario Dinamica de Riley

    35/253

  • 5/19/2018 Solucionario Dinamica de Riley

    36/253

  • 5/19/2018 Solucionario Dinamica de Riley

    37/253

  • 5/19/2018 Solucionario Dinamica de Riley

    38/253

  • 5/19/2018 Solucionario Dinamica de Riley

    39/253

  • 5/19/2018 Solucionario Dinamica de Riley

    40/253

  • 5/19/2018 Solucionario Dinamica de Riley

    41/253

  • 5/19/2018 Solucionario Dinamica de Riley

    42/253

  • 5/19/2018 Solucionario Dinamica de Riley

    43/253

  • 5/19/2018 Solucionario Dinamica de Riley

    44/253

  • 5/19/2018 Solucionario Dinamica de Riley

    45/253

  • 5/19/2018 Solucionario Dinamica de Riley

    46/253

  • 5/19/2018 Solucionario Dinamica de Riley

    47/253

  • 5/19/2018 Solucionario Dinamica de Riley

    48/253

  • 5/19/2018 Solucionario Dinamica de Riley

    49/253

  • 5/19/2018 Solucionario Dinamica de Riley

    50/253

    Chapter 14

  • 5/19/2018 Solucionario Dinamica de Riley

    51/253

  • 5/19/2018 Solucionario Dinamica de Riley

    52/253

  • 5/19/2018 Solucionario Dinamica de Riley

    53/253

  • 5/19/2018 Solucionario Dinamica de Riley

    54/253

  • 5/19/2018 Solucionario Dinamica de Riley

    55/253

  • 5/19/2018 Solucionario Dinamica de Riley

    56/253

  • 5/19/2018 Solucionario Dinamica de Riley

    57/253

  • 5/19/2018 Solucionario Dinamica de Riley

    58/253

  • 5/19/2018 Solucionario Dinamica de Riley

    59/253

  • 5/19/2018 Solucionario Dinamica de Riley

    60/253

  • 5/19/2018 Solucionario Dinamica de Riley

    61/253

  • 5/19/2018 Solucionario Dinamica de Riley

    62/253

  • 5/19/2018 Solucionario Dinamica de Riley

    63/253

  • 5/19/2018 Solucionario Dinamica de Riley

    64/253

  • 5/19/2018 Solucionario Dinamica de Riley

    65/253

  • 5/19/2018 Solucionario Dinamica de Riley

    66/253

  • 5/19/2018 Solucionario Dinamica de Riley

    67/253

  • 5/19/2018 Solucionario Dinamica de Riley

    68/253

  • 5/19/2018 Solucionario Dinamica de Riley

    69/253

  • 5/19/2018 Solucionario Dinamica de Riley

    70/253

  • 5/19/2018 Solucionario Dinamica de Riley

    71/253

  • 5/19/2018 Solucionario Dinamica de Riley

    72/253

  • 5/19/2018 Solucionario Dinamica de Riley

    73/253

  • 5/19/2018 Solucionario Dinamica de Riley

    74/253

  • 5/19/2018 Solucionario Dinamica de Riley

    75/253

  • 5/19/2018 Solucionario Dinamica de Riley

    76/253

  • 5/19/2018 Solucionario Dinamica de Riley

    77/253

  • 5/19/2018 Solucionario Dinamica de Riley

    78/253

  • 5/19/2018 Solucionario Dinamica de Riley

    79/253

  • 5/19/2018 Solucionario Dinamica de Riley

    80/253

  • 5/19/2018 Solucionario Dinamica de Riley

    81/253

  • 5/19/2018 Solucionario Dinamica de Riley

    82/253

  • 5/19/2018 Solucionario Dinamica de Riley

    83/253

  • 5/19/2018 Solucionario Dinamica de Riley

    84/253

  • 5/19/2018 Solucionario Dinamica de Riley

    85/253

  • 5/19/2018 Solucionario Dinamica de Riley

    86/253

  • 5/19/2018 Solucionario Dinamica de Riley

    87/253

  • 5/19/2018 Solucionario Dinamica de Riley

    88/253

  • 5/19/2018 Solucionario Dinamica de Riley

    89/253

  • 5/19/2018 Solucionario Dinamica de Riley

    90/253

  • 5/19/2018 Solucionario Dinamica de Riley

    91/253

  • 5/19/2018 Solucionario Dinamica de Riley

    92/253

  • 5/19/2018 Solucionario Dinamica de Riley

    93/253

  • 5/19/2018 Solucionario Dinamica de Riley

    94/253

  • 5/19/2018 Solucionario Dinamica de Riley

    95/253

  • 5/19/2018 Solucionario Dinamica de Riley

    96/253

  • 5/19/2018 Solucionario Dinamica de Riley

    97/253

  • 5/19/2018 Solucionario Dinamica de Riley

    98/253

  • 5/19/2018 Solucionario Dinamica de Riley

    99/253

  • 5/19/2018 Solucionario Dinamica de Riley

    100/253

  • 5/19/2018 Solucionario Dinamica de Riley

    101/253

  • 5/19/2018 Solucionario Dinamica de Riley

    102/253

  • 5/19/2018 Solucionario Dinamica de Riley

    103/253

  • 5/19/2018 Solucionario Dinamica de Riley

    104/253

  • 5/19/2018 Solucionario Dinamica de Riley

    105/253

  • 5/19/2018 Solucionario Dinamica de Riley

    106/253

  • 5/19/2018 Solucionario Dinamica de Riley

    107/253

  • 5/19/2018 Solucionario Dinamica de Riley

    108/253

  • 5/19/2018 Solucionario Dinamica de Riley

    109/253

  • 5/19/2018 Solucionario Dinamica de Riley

    110/253

  • 5/19/2018 Solucionario Dinamica de Riley

    111/253

  • 5/19/2018 Solucionario Dinamica de Riley

    112/253

  • 5/19/2018 Solucionario Dinamica de Riley

    113/253

  • 5/19/2018 Solucionario Dinamica de Riley

    114/253

  • 5/19/2018 Solucionario Dinamica de Riley

    115/253

  • 5/19/2018 Solucionario Dinamica de Riley

    116/253

  • 5/19/2018 Solucionario Dinamica de Riley

    117/253

    Chapter 15

  • 5/19/2018 Solucionario Dinamica de Riley

    118/253

  • 5/19/2018 Solucionario Dinamica de Riley

    119/253

  • 5/19/2018 Solucionario Dinamica de Riley

    120/253

  • 5/19/2018 Solucionario Dinamica de Riley

    121/253

  • 5/19/2018 Solucionario Dinamica de Riley

    122/253

  • 5/19/2018 Solucionario Dinamica de Riley

    123/253

  • 5/19/2018 Solucionario Dinamica de Riley

    124/253

  • 5/19/2018 Solucionario Dinamica de Riley

    125/253

  • 5/19/2018 Solucionario Dinamica de Riley

    126/253

  • 5/19/2018 Solucionario Dinamica de Riley

    127/253

  • 5/19/2018 Solucionario Dinamica de Riley

    128/253

  • 5/19/2018 Solucionario Dinamica de Riley

    129/253

  • 5/19/2018 Solucionario Dinamica de Riley

    130/253

  • 5/19/2018 Solucionario Dinamica de Riley

    131/253

  • 5/19/2018 Solucionario Dinamica de Riley

    132/253

  • 5/19/2018 Solucionario Dinamica de Riley

    133/253

  • 5/19/2018 Solucionario Dinamica de Riley

    134/253

  • 5/19/2018 Solucionario Dinamica de Riley

    135/253

  • 5/19/2018 Solucionario Dinamica de Riley

    136/253

  • 5/19/2018 Solucionario Dinamica de Riley

    137/253

  • 5/19/2018 Solucionario Dinamica de Riley

    138/253

  • 5/19/2018 Solucionario Dinamica de Riley

    139/253

  • 5/19/2018 Solucionario Dinamica de Riley

    140/253

  • 5/19/2018 Solucionario Dinamica de Riley

    141/253

  • 5/19/2018 Solucionario Dinamica de Riley

    142/253

    Chapter 16

  • 5/19/2018 Solucionario Dinamica de Riley

    143/253

  • 5/19/2018 Solucionario Dinamica de Riley

    144/253

  • 5/19/2018 Solucionario Dinamica de Riley

    145/253

  • 5/19/2018 Solucionario Dinamica de Riley

    146/253

  • 5/19/2018 Solucionario Dinamica de Riley

    147/253

  • 5/19/2018 Solucionario Dinamica de Riley

    148/253

  • 5/19/2018 Solucionario Dinamica de Riley

    149/253

  • 5/19/2018 Solucionario Dinamica de Riley

    150/253

  • 5/19/2018 Solucionario Dinamica de Riley

    151/253

  • 5/19/2018 Solucionario Dinamica de Riley

    152/253

  • 5/19/2018 Solucionario Dinamica de Riley

    153/253

  • 5/19/2018 Solucionario Dinamica de Riley

    154/253

  • 5/19/2018 Solucionario Dinamica de Riley

    155/253

  • 5/19/2018 Solucionario Dinamica de Riley

    156/253

  • 5/19/2018 Solucionario Dinamica de Riley

    157/253

  • 5/19/2018 Solucionario Dinamica de Riley

    158/253

  • 5/19/2018 Solucionario Dinamica de Riley

    159/253

  • 5/19/2018 Solucionario Dinamica de Riley

    160/253

  • 5/19/2018 Solucionario Dinamica de Riley

    161/253

  • 5/19/2018 Solucionario Dinamica de Riley

    162/253

  • 5/19/2018 Solucionario Dinamica de Riley

    163/253

  • 5/19/2018 Solucionario Dinamica de Riley

    164/253

  • 5/19/2018 Solucionario Dinamica de Riley

    165/253

  • 5/19/2018 Solucionario Dinamica de Riley

    166/253

  • 5/19/2018 Solucionario Dinamica de Riley

    167/253

  • 5/19/2018 Solucionario Dinamica de Riley

    168/253

  • 5/19/2018 Solucionario Dinamica de Riley

    169/253

  • 5/19/2018 Solucionario Dinamica de Riley

    170/253

  • 5/19/2018 Solucionario Dinamica de Riley

    171/253

  • 5/19/2018 Solucionario Dinamica de Riley

    172/253

  • 5/19/2018 Solucionario Dinamica de Riley

    173/253

  • 5/19/2018 Solucionario Dinamica de Riley

    174/253

  • 5/19/2018 Solucionario Dinamica de Riley

    175/253

  • 5/19/2018 Solucionario Dinamica de Riley

    176/253

  • 5/19/2018 Solucionario Dinamica de Riley

    177/253

  • 5/19/2018 Solucionario Dinamica de Riley

    178/253

  • 5/19/2018 Solucionario Dinamica de Riley

    179/253

  • 5/19/2018 Solucionario Dinamica de Riley

    180/253

    Chapter 17

  • 5/19/2018 Solucionario Dinamica de Riley

    181/253

  • 5/19/2018 Solucionario Dinamica de Riley

    182/253

  • 5/19/2018 Solucionario Dinamica de Riley

    183/253

  • 5/19/2018 Solucionario Dinamica de Riley

    184/253

  • 5/19/2018 Solucionario Dinamica de Riley

    185/253

  • 5/19/2018 Solucionario Dinamica de Riley

    186/253

  • 5/19/2018 Solucionario Dinamica de Riley

    187/253

  • 5/19/2018 Solucionario Dinamica de Riley

    188/253

  • 5/19/2018 Solucionario Dinamica de Riley

    189/253

  • 5/19/2018 Solucionario Dinamica de Riley

    190/253

  • 5/19/2018 Solucionario Dinamica de Riley

    191/253

  • 5/19/2018 Solucionario Dinamica de Riley

    192/253

  • 5/19/2018 Solucionario Dinamica de Riley

    193/253

  • 5/19/2018 Solucionario Dinamica de Riley

    194/253

  • 5/19/2018 Solucionario Dinamica de Riley

    195/253

  • 5/19/2018 Solucionario Dinamica de Riley

    196/253

  • 5/19/2018 Solucionario Dinamica de Riley

    197/253

  • 5/19/2018 Solucionario Dinamica de Riley

    198/253

  • 5/19/2018 Solucionario Dinamica de Riley

    199/253

  • 5/19/2018 Solucionario Dinamica de Riley

    200/253

  • 5/19/2018 Solucionario Dinamica de Riley

    201/253

  • 5/19/2018 Solucionario Dinamica de Riley

    202/253

  • 5/19/2018 Solucionario Dinamica de Riley

    203/253

  • 5/19/2018 Solucionario Dinamica de Riley

    204/253

  • 5/19/2018 Solucionario Dinamica de Riley

    205/253

  • 5/19/2018 Solucionario Dinamica de Riley

    206/253

    Old Exams

  • 5/19/2018 Solucionario Dinamica de Riley

    207/253

  • 5/19/2018 Solucionario Dinamica de Riley

    208/253

  • 5/19/2018 Solucionario Dinamica de Riley

    209/253

  • 5/19/2018 Solucionario Dinamica de Riley

    210/253

  • 5/19/2018 Solucionario Dinamica de Riley

    211/253

  • 5/19/2018 Solucionario Dinamica de Riley

    212/253

  • 5/19/2018 Solucionario Dinamica de Riley

    213/253

  • 5/19/2018 Solucionario Dinamica de Riley

    214/253

  • 5/19/2018 Solucionario Dinamica de Riley

    215/253

  • 5/19/2018 Solucionario Dinamica de Riley

    216/253

  • 5/19/2018 Solucionario Dinamica de Riley

    217/253

  • 5/19/2018 Solucionario Dinamica de Riley

    218/253

  • 5/19/2018 Solucionario Dinamica de Riley

    219/253

    Name:___________________Last First

    UNLV, DEPARTMENT OF MECHANICAL ENGINEERING

    MEG 207, SPRING 2002, FIRST TEST

    Closed Book, one page of handwritten notes allowed. Enter the answer for each questioninto the space provided. Enter SI units inallanswer spaces with brackets ( ).

    1. (15 points)A vehicle traveling at 108 km/h suddenly decelerates at a rate of 3 m/s2

    .a) Determine the time needed for the vehicle to come to rest.b) Determine the distance traveled between the beginning of braking, and the full stop.

    Answers: a) Tstop= 10 ( s units)

    b) dStop= 150 ( m units)

    2. (20 points)A ball of mass m is thrown horizontally from a bridge 30 m above ground.It touches ground at distance d = 15 m. Determine the ball's initial velocity. No friction.

    Answer v0= 6.065 ( m/s )

    A (x0,y0)

    B

    v0 g

    horiz. distance

    d = 15 m

    h = 30 m

    x

    y

    1(a) v0 1081000

    3600:= in m/s a 3:=

    v t( ) v0 a t+ General equation. Solving for t when v=0

    gives: tv0

    a:= and t 10=

    1 (b) v*dv = a*dx or a distance1

    20 v0( )

    2

    distancev0

    2

    2 a:= distance 150=

    Problem 2 d 15:= h 30:= Angle is zero.

    Horizontal: d = v0*t. Vertical: y(t) = y0 -1/2*g*t^2. At point B, y = 0. g 9.81:=

    Given

    d v0 t

    0 h 0.5 g t2

    res Find t v0,( ):= res2.473

    6.065

    =

  • 5/19/2018 Solucionario Dinamica de Riley

    220/253

    3. (20 points)Pin P moves at constant speed of 3 m/s ina counterclockwise sense around the circular slot withradius r = 2 m. Determine (a) the angular velocity of P.

    (b) the total accelerationvector( Use polar coordinates:er and edirections) of pin P when = 30 degrees.(c) the magnitude and angle of the resultant accelerationvector in Cartesianx-y coordinates.

    (b) no radial or angular accel. In neg. er direction we

    have r*2

    = - 2*2.25 m/s2

    (c) Resultant Acceleration is purely inward, thus:ax= -4.5*cos 30

    o

    and ay= -4.5*sin 30o

    Answer

    = v/r = 3/2 = 1.5 rad/s

    a = -4.5 e 0 e m/s2)

    a = 4.5 m/s2at -150 de rees (ma nitude and an le in x- coordinates)

    4. (25 points)Wind-driven rain is fallingwith a speed of 30 m/s at an angle of 200to the vertical as shown at left.

    Determine the angle at which the rainis seen by passengers inside the bus. Thebus is traveling at 72 km/h.

    Vrain= VBus+ VRain/bus Vbus= 20m/s

    x-and y-components of VRain/bus:

    v R/B,x= -Vbu---VR*sin(20deg) = -30.2 m/s

    v R/B,y=---VR*cos(20deg) = -28.19 m/s VRain/bus

    = tan-1

    (29.19/30.2) = 43 deg.

    An le seen b movin assen ers = 43 de . ( )

    R=2m

    P

    x

    y

    v = 72 km/h

    yy

    20 0

    Rain

    4.5

  • 5/19/2018 Solucionario Dinamica de Riley

    221/253

    5. (20 points) In the pulley system shown at left, the cable is attached at C. Mass Bmoves to the left at vB= 3 m/s, and acceleratesalso to the left at aB= 0.5 m/s

    2

    . Using the x-y

    frame with origin at C, determine:(a) the velocity of A(b) the acceleration of A

    L = 2xB(t) +(Y0 --- yA(t))

    Differentiation gives:2 vB = vA

    and

    2 aB = aA

    Answer

    vA= 6 m/s ( )

    aA= 1 m/s2 ( )

    A

    Bx

    y

    C

  • 5/19/2018 Solucionario Dinamica de Riley

    222/253

  • 5/19/2018 Solucionario Dinamica de Riley

    223/253

  • 5/19/2018 Solucionario Dinamica de Riley

    224/253

  • 5/19/2018 Solucionario Dinamica de Riley

    225/253

    Na m e:___________________La st F ir st

    U NLV, D E P AR TMENT OF MEC H ANIC AL ENG INEE R ING

    MEG 207, Spring 2002, Third Test

    Closed B ook, one pa ge of ha ndw ritten n otes a llowed. E nter t he a nswer for each question

    into the space provided. Ent er SI units in all answer spaces with brackets ( ).

    1. (25 points) The thin, uniform rod (Length L, mass m, I n er t i a : I G = m L2

    / 12 .) rotates

    about fixed point A as it is released from rest in the horizontal position shown. At the

    instant immediately following the release, determine

    (a ) th e a ngula r a ccelerat ion of th e rod.

    (b) the a ccelera tion, a B , of th e point B .

    Sum of moments a bout A:

    mg *L/2 = I A*

    I A = I G + m*(L/2)2 = (1/12+ 1/4)*m L 2 == m L

    2

    /3

    I n ser t in g in t o t h e fir st eq ua t ion

    gives:

    mg *L/2 = mL2

    /3 *

    after simplification and regrouping we get:

    Rod = 3g/(2L)

    Part (b):

    A is center of rotation. Thus a B = L* = 3g/2

    Answe r s: a ) Rod = 3g/(2L)

    b) a B = - 3g/2 in ---j-di re cti on

    i

    J

    Unit vectors

    B

    L

    g

    A

    m

  • 5/19/2018 Solucionario Dinamica de Riley

    226/253

    2. (30 points) A uniform plat e of steel of length L = 1 m a nd m a ss m = 200 kg is placedo nt o a t r u c k b e d a s sho wn. The p la t e c a nno t sl ide a t p o int A, b u t c a n r o t a t e a b o u t A.

    Determine the maximum allowable acceleration of the truck so that the plate does not

    rotate.

    B x At ma x. a ccel, cont a ct force B x= 0.

    From free-body diagram:

    Ax = m *a xAy = m *g

    Ax*L /2*sin () --- Ay*L /2*cos () = I g*= 0

    Inserting the top two equations into the third :

    Ax Ay

    m*a x= m*g* cos()/sin()

    a ma x= g* cot() = 5.664 m /s2

    Answer aTruck,max = 5.664 ( m /s2

    Unit s)

    3. (20 points) The s prin g (k = 1200 N/m) is in it ia llycompressed by 2 m. The 3-kg block shown is not

    attached to the spring. After release from rest , theblock tr a vels along th e rough surfa ce (k = 0.2).

    Determine t he position x final a t w hich th e block comes

    to rest.

    Forces doing work:

    Spring: F srping ds

    Friction F frict ds

    T1+ U 1-2 = T2 w i t h T1= T2 = 0. Thus U 1-2 = *k*(2meters)2

    ---k*m*g*x = 0

    x = 2*1200/(0.2*3kg&9.81m /s2

    ) = 407.7 m

    An sw er x final = 407.7 ( m U nit s)

    i

    J

    L

    60 0

    Truck

    B

    Aa

    truck

    Mass = 3 kg

    gk = 1.2 kN/m

    2 meters

    Spring is compressedat time of release

    k

    = 0.2

    x

    Uncompressedspring position

    m g

  • 5/19/2018 Solucionario Dinamica de Riley

    227/253

    4. (25 Points) A parcel of ma ss m is relea sed at a n initia l velocity v 0 = a s shown.(a ) D e t er m ine t he m inim u m velocit y a t B (im m edia t e ly b efor e r ea c hing t he u pp er

    conveyor) so tha t the pa rcel does not drop at B .

    (b) Determine the minimum velocity v 0 at point A so that the parcel reaches point B at

    th e minimum velocity computed in part (a ).

    G iven: Radius r , ma ss m, g. No friction. Neglect the pa ckage t hickness!

    (Use Energy method)

    Answer (a)

    v2/r

    g

    P a r t (b )

    T1+ U 1-2 = T2 w i t h T1= *m *v02

    a n d T2 = *m*g*r

    O n ly g r a v it y d oes w o rk : m g d s

    Thus

    *m*v02

    - 2r*m*g = *m*g*r

    After simplification, we get:

    v02

    = 5gr

    An s w er : (a ) v B,min = (gr)1/2

    (b ) v0,min = (5gr)1/2

    v0

    g

    r

    CB

    A

    m

    In order not to falloff a t B , g r a vit y

    must be offset by the

    centripetal

    acceleration:

    v2

    /r = g

    or

    v2

    ,min = g*r

  • 5/19/2018 Solucionario Dinamica de Riley

    228/253

    Na m e:_____KE Y________L a st F ir st

    UNIVERSITY OF NEVADA, LAS VEGAS

    D EP AR TMENTOF MEC H ANIC AL ENGINEER ING

    MEG 207, Spring 2002, Final ExaminationClosed Book, tw o pages of han dw ritten notes al low ed. Enter t he an swer for each question into the

    space provided. Enter correct dimensional SI units where applicable.

    1. (10 points) A point ma ss of 10 kg is tossed horizont a lly from 30 m a bove ground. Themass land s on th e ground a t a distan ce of 40 m from a point on the ground directly below

    the tossing point. Determine the initial velocity of the

    mass.

    v0*t = x1= 40 (1)

    y 1= 0 = y 0---- *g*t2

    (2)

    fr om (1): t = sq rt (2/g* y 0) = 2.47 s

    inserting into (1) gives: v0= 40/t = 16.17 m/s

    Answ er: v 0= 16.17 m/s

    2. (15 points) A point mass m is suspended from two wires AB an d CD. D etermine the

    tension in the other wire CD (a) before AB is cut(b) immediately after AB is cut.

    (a ) La w of sines: A/sin (40o

    ) = mg /sin(120o

    )

    Thus: A = 0.742*mg

    (b) After AB is cut: Reaction B disa ppea rs. U sing pola r coordina tes:

    Summing in radial dir: A-mg*cos(20o) = m*r_ddot = 0, thus A = mg*cos(20o) = 0.94*mg

    (a ) Tension in Ca ble CD before cut = 0.742*mg

    (b) Tension in Cable CD after cut = 0.94*mg

    mg

    A

    B A, eR

    mg e

  • 5/19/2018 Solucionario Dinamica de Riley

    229/253

    3. (20 points) A collar with ma ss 5 kg slides in th e vertica l plane a long t he curved rodshow n. It is a tta ched to a n elastic spring w ith un deformed length of 150 mm, and k = 600

    N/m. The collar is released from rest at A.

    Determine the collar's speed at B.

    T1 + V1 = T2 + V2 T1 = 0

    k (x -x0)2

    + mgh = mv22

    + k(x2-x0)2

    0.1meters mg*0.2 0.05 met ers

    inserting the da ta a nd solving for v2gives:

    v22

    = k(0.12 ---- 0.052) + 2mg*0.2

    v22

    = 0.9 + 3.924 = 4.824 m2

    /s2

    vB = 2.196 ( m/s unit s)

    4. (15 points) The 12-kg mass B is dropped with a horizontal velocity v 0= 2.5 m/s ont o th e30-kg luggage cart (k = 0.5), which is initially at rest and can roll freely. Determine the

    velocity of the luggage cart after mass B has reached

    the sa me velocity a s th e car t.

    An approximate solution can be found using the energy

    principle. This neglects the energy loss due to friction

    a s th e package slides on the cart.

    T1 + V1 = T2 + V2 T1 = mBv12

    U se dat um line at A. there is no cha nge in potential: V1 = V2 = 0

    So we get: T1 = mBv12

    = (mB + m cart)*v22

    v22

    = (12*6.25)/42 = 1.78 m2

    /s2

    Answ er (a ) v = 1.336 ( m/s unit s)

    g

  • 5/19/2018 Solucionario Dinamica de Riley

    230/253

    5. (20 points) Center B of t he double pulley ha s a velocity of 0.6 m/s, a nd a n a ccelera tionof 2.4 m/s

    2

    , both directed downwa rd. R= 2m, r = 0.8 m. Determine the total acceration

    vector of point D.Point C is an instantaneous center.

    = vB/r = -0.75 ra d/s clockw ise

    = a B/r = -3 r a d/s2

    clockwise

    a D = (0 ---- 2.8*2)i + 2.8**j

    a D= ---- 1.575i -8.4*j

    a D = ---- 1.575i -8.4*j ( m/s unit s)

    6. (20 points) The uniform rod AB with mass m an d length L is relased from rest at ana ng le of 0 a s shown. Assu m ing t ha t no sliding occu r s, det er m ine (a ) t he a ng u la r

    acceleration of the rod just after release. (b) the normal reaction and friction force at point

    A just a fter release.

    Pure rotation about A.

    Summing moments about A:

    -1/2*L *sin (0)*mg = I B* where IB= mL2/3

    thus = -3/2*g /L* sin (0)

    (B ) Rea ctions a t A:

    Forces in x-dir: F = m*a x= m*1/2*L*cos(0)*

    Forces i n y-dir : N ---- mg = -m*1/2*L*sin (0)*

    or N = m g[1- * sin2

    (0) ]

    Rod= = -3/2*g /L* sin (0)

    N = m g[1- * sin2

    (0) ] F = *mg* cos(0)* sin(0)

    i

    J

    L

    g

    A

    B0000

    mg

    *L *

  • 5/19/2018 Solucionario Dinamica de Riley

    231/253

  • 5/19/2018 Solucionario Dinamica de Riley

    232/253

  • 5/19/2018 Solucionario Dinamica de Riley

    233/253

  • 5/19/2018 Solucionario Dinamica de Riley

    234/253

    Note: Exam results are up significantly in comparison to exam 2.

    Name:_____KEY________Last First

    UNLV, DEPARTMENT OF MECHANICAL ENGINEERING

    MEG 207, Spring 2003, Third Test

    Closed Book, one page of handwritten notes allowed. Enter the answer for each question into the spaceprovided. Enter SI units inallanswer spaces with brackets ( ).

    1. (25 points) A disk(mass m= 2kg, r= 0.1mInertia: IG= mr2/2.) is rigidly attached to massless rod AB

    (Length R = 0.5m) and released from rest in the horizontal position. At the instant immediately following

    the release, determine

    (a) the angular acceleration of the rod.

    (b) the acceleration, aB, of the point B.

    ANSWER

    Newton: Sum of moments about A: using L = R. m B = m a ss a t B

    mB *g*R= I A*

    I A= I G + m B*(R)2 = (0.01/2+ 0.25)* mB= 0.255*m B

    Inserting into th e first equa tion gives:

    mBg*R = 0.255*mB *

    after simplification and regrouping we get:

    Rod = R*g /(0.255) = 0.5*9.81/0.255 = 19.2 ra d/s2

    Part (b):

    A is center of rotation. Thus a B= R* = 0.5 = 9.62 m/s2

    Answers: a) Rod= 19.2 ra d/s2

    b) aB =R* = 0.5 = 9.62 m/s2

    g

    A (fixed)

    BV

    B

    r=

    0.1

    m

    R=0.5m

  • 5/19/2018 Solucionario Dinamica de Riley

    235/253

    2. (25 points) A uniform rectangular crate of height = 0.5 m, width 0.2m and mass m = 200 kg is placed

    onto a truck bed as shown. The crate cannot slide at point B, but can rotate about B. Determine the

    maximum allowable acceleration of the truck so that the crate does not rotate.

    [

    N = mg

    Moments about G: 0.25*FB- 0.1*mcrate*g = 0 (1)

    Forces on crate in x-direction: FB = mcrate*atruck (2)

    Insert (2) into (1): 0.25* mcrate*atruck= 0.1*mcrate*g

    atruck= g/2.5

    Answer aTruck,max= 3.924 ( m/s2

    Units)

    F Bi

    J

    Crateg

    Ba

    truck

    0.2m

    0.5m

    N

    m g

  • 5/19/2018 Solucionario Dinamica de Riley

    236/253

    3. (30 points)The spring (k = 1500 N/m) is initially uncompressed. The 3-kg block shown is released from

    rest 4m above the spring and falls onto the spring.Using the energy method, determine

    (a) the velocity at which the block hits the spring at y = 0 m.

    (b) the amount of maximum spring

    compression, , caused by the

    impacting block.

    Answer

    T2 T1 = - INT( [-mg]*dy = *m*v22

    T1= 0 v22

    = 2gy =8g =78.48 m2/s

    2

    (c)

    T3 T2 = *k*

    2

    + m*g*

    (d) T3= 0

    T2=*m*v22

    = *3*kg*78.48 m

    2

    /s

    2

    = *1500*

    2

    + m*g*

    We now solve for

    (substitute d = a t r i gh t ) T2 750 d

    2 3 9.81 d+

    Answer vimpact(y=0) = 8.86 ( m/s Units)

    max. compression= 0.377 ( m Units)

    k = 1.5 kN/m

    y

    3kg

    4m

    g

    Spring is initiallyuncompressed

  • 5/19/2018 Solucionario Dinamica de Riley

    237/253

    4. (20 Points)A point mass pendulum (mass m, Length L) is released from rest at an initial angle 0= 450

    as shown.

    (a) Determine the maximum velocity of the pendulum

    (b) Determine the pendulum tension at = 0.

    Given: Length L , mass m, g. No friction. (Use Energy method)

    (a)

    T2 T1 = *m*v22

    = mgL(1- cos(0)

    T1 = 0 (release from rest)

    v22

    = 2g L(1- cos(0)

    (b) Max. tension Force exists at (2): Sum of forces in radial dir. (inward towards center B):

    T mg = m* v22/L

    T = m(g+ v22/L)

    Answer: (a) vmax= [ 2g L(1- cos(0)]1/2

    (b) Max.Tension Force at = 0 = m(g+ v22/L)

    m

    gRope lengthL

    B

    fixed

    0= 450

    = 0 = 0 = 0 = 0

    1

    2

    v2=vmax

    h =L(1- cos(0)

  • 5/19/2018 Solucionario Dinamica de Riley

    238/253

    Name:________KEY______Last First

    UNIVERSITY OF NEVADA, LAS VEGAS

    DEPARTMENT OF MECHANICAL ENGINEERING

    MEG 207, SPRING 2003,Final Examination

    Closed Book, three pages of handwritten notes allowed. Enter the answer for each question into the space provided.Enter correct dimensional SI units where applicable.

    1. (15 points) A player throws a ball horizontally from point A at an elevation 2m above ground.The ball lands on the flat ground at point B, at a distance of 20 m from the origin.

    Determine(a) the initial velocity at which the ball was thrown

    (b) the time elapsed between points A and B

    B

    g

    horiz. distance

    d = 20 m

    yo

    = 2 m

    y

    A (x0,y

    0)

    vo

    x

    The only acceleration is g in j-direction. vo= vo*i. After integrating twice in i-direction:

    xB= 20 = vo*t + 0 (xo= 0) (1)

    After integrating in j-direction: yB= 0 = 0 *g*t2

    + 2 (yo= 2) (2)

    From (2): t2

    = 4/g inserting into (1) gives: vo= 20/t = 20*(g/4)1/2

    = 31.3 m/s

    Answer: vo= 31.3 m/s

    t = 0.64 s

  • 5/19/2018 Solucionario Dinamica de Riley

    239/253

    2. (15 points) A constant force F = 50 N is applied to massm=10 kg, which is initially at rest with the attached

    spring (k = 200 N/m) unstretched. Determine(a) the maximum velocity of the mass.

    (b) the maximum stretch of the spring.

    (a) T2 T1 = F*x - *k*x2

    = *m*v22

    F x1

    2k x

    2

    1

    2m v x( )( )

    2

    The maximum velocity occurs

    when the derivative of the velocity is zero:F k x m v x( )

    xv x( )

    d

    d

    = 0, x = F/k = 50/200 = 0.25,

    thus v2

    max= 1.25 (m/s)2

    (b) Both start and final velocities must be zero: T2 T1 = F*x - *k*x2

    = 0

    Two solutions: x1= 0 (start point) x2: 2F - k*x = 0

    x2= 2F/k = meters

    (a) vmax = 1.12 m/s(b) xmax = 0.5 m

    3. (20 points) Knowing that v= 5 m/s is constant to the left,determine for the instant shown :

    (a) the angular velocity of rodBC

    (b) the angular acceleration ofrod AB.

    (a) Vector equation:VB= VA+ VB/A

    Thus: RB/C*BC*j = -vA*i + RB/A*AB*(-sin30o

    i + -cos30oj) Components:

    i: vA= RB/A*AB*sin30o AB= vA/(RB/A*sin30

    o) = - 5/(10*0.5) = -1 rad/s

    j: RB/C*BC = RB/A*AB*cos30o BC= -RB/A*ABcos30

    o/RB/C= +10*0.866/4 = 2.165 rad/s;

    (b) aA= 0. only centripetal and angular accel terms exist. Vector eq. AB= AA+ AB/A-RB/C*BC

    2*i + RB/C*BCj = RB/A*AB

    2*(-sin30

    oj + cos30

    oi) + RB/A*AB*(-sin30

    oi - cos30

    oj)

    j: RB/C*BC= -RB/A*AB2

    *sin30o

    - RB/A*AB* cos30o

    i: -RB/C*BC2

    = RB/A*AB2

    * cos30o

    - RB/A*AB*sin30o

    AB = -(RB/C*BC2

    + RB/A*AB2

    * cos30o

    )/(RB/A*sin30o) = - (4*4.69 + 10*1*0.866)/5 = - 5.48 rad/s

    2

    BC= 2.165 rad/s

    AB= - 5.48 rad/s2

    cw

    i

    J

    Unit vectors vA= 5 m/s

    B10 m

    4 m

    30o

    A

    CV

    B/A

    Mass =

    10 kg

    k = 200 N/m

    Spring is unstretchedat time of release

    no friction

    F= 50 N

    unstretched

    spring position

    x

    g

  • 5/19/2018 Solucionario Dinamica de Riley

    240/253

    4. (15 points) The frictionless system of masses A (40 kg) and B (10 kg) is released from rest.Determine: (a) the acceleration of mass A.

    (b) the tension in the cable

    Mass A moves in i-direction, and B in j-directiononly.

    Mass A moves in I-direction, and B in j-direction only.

    Newton: A: xmTF Ax == Constraint eq.: x = -y

    B: xmymgmTF BBBy === *

    Ba

    B

    mm

    gmx

    += = 98.1/50 = 1.962 m/s

    2

    (b) Using first eq.: T = 40kg*1.962 m/s2

    = 78.5 N

    (a) aA = 1.962 m/s2

    (b) T = 78.5 N

    5. (15 points) Gear D is stationary. Gear C has radius r C = 100 mm. Bar AB has a length of 200

    mm. As Bar AB rotates counterclockwise at AB= 5 rad/s, determine

    (a) The angular velocity of gear C(b) The total acceleration vector (in Cartesian i-j

    coordinates) of point P on gear C. Point P islocated 100 mm below B, normal to the line AB.

    i

    J

    Unit vectors(a) The Contact of gear D with gear B is an inst. Center. We have: vB= 200*B= 100*C

    C= 2*5 = 10 rad/s(b) AP= AB+ AP/B aP= - 200*5

    2*i + 100*10

    2*j

    C= 10 rad/s

    Vector aP= - 5 i + 10j m/s2

    Am = 40 kg

    Bm = 10 kg

    g

    i

    J

    Unit vectors

    P

    Ctr

  • 5/19/2018 Solucionario Dinamica de Riley

    241/253

    6. (20 points) The uniform rod AB with mass m is released from rest at an angle of 60 degrees asshown. Assuming that no sliding occurs, determine (a) the angular acceleration of the rod just after

    release. (b) the normal reaction and friction force at point B. Moment of Inertia for the rod, at centerof mass:IG= mL

    2/12.

    We have a pure rotation about

    fixed point B.

    Parallel axis Theorem: IB = IG+ m(L/2)

    2=mL

    2(1/12+1/4) =

    mL2/3

    Newton about B:

    3

    *2

    1*

    2

    2Lm

    ImgL

    MBB

    ===

    = -3g/(4L) (oriented in k-direction normal to the i-j plane)

    (b) Reactions: Newton in x- and y- directions:

    16/34

    gL

    y == )0(433.0*866.0*2

    >+== ctCrossprodugL

    x

    ymmgNFy == N = m(g 3g/16) = 13mg/16

    433.0*mgxmFFx ===

    L/2

    0.866*L

    L/4

    Rod= 3g/(4L)

    = 13mg/16 F = 0.433*mg

    i

    J

    L

    g

    B

    60 0

    A

    mg

  • 5/19/2018 Solucionario Dinamica de Riley

    242/253

  • 5/19/2018 Solucionario Dinamica de Riley

    243/253

  • 5/19/2018 Solucionario Dinamica de Riley

    244/253

  • 5/19/2018 Solucionario Dinamica de Riley

    245/253

  • 5/19/2018 Solucionario Dinamica de Riley

    246/253

  • 5/19/2018 Solucionario Dinamica de Riley

    247/253

  • 5/19/2018 Solucionario Dinamica de Riley

    248/253

  • 5/19/2018 Solucionario Dinamica de Riley

    249/253

  • 5/19/2018 Solucionario Dinamica de Riley

    250/253

  • 5/19/2018 Solucionario Dinamica de Riley

    251/253

  • 5/19/2018 Solucionario Dinamica de Riley

    252/253

  • 5/19/2018 Solucionario Dinamica de Riley

    253/253