solucionario riley Dynamics.pdf

Embed Size (px)

Citation preview

  • 8/21/2019 solucionario riley Dynamics.pdf

    1/253

    10 February 2005

    Dear Recipient,

    You are privileged to obtain a partial collection of answers for MEG 207 Dynamics. Thisdocument was compiled from PDF files collected during Fall of 2002 and Spring 2003. I havecomplied them into one document with Bookmarks to aid you in quickly finding the solutions youneed. Unfortunately this isn’t a complete compilation of all of the answers, but comprehensiveenough to help complement your studies.

    Engineering Mechanics, Dynamics, Second Edition.ISBN: 0-471-05339-2

    Happy Studies! 

  • 8/21/2019 solucionario riley Dynamics.pdf

    2/253

    Chapter 13

  • 8/21/2019 solucionario riley Dynamics.pdf

    3/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    4/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    5/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    6/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    7/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    8/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    9/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    10/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    11/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    12/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    13/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    14/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    15/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    16/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    17/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    18/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    19/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    20/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    21/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    22/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    23/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    24/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    25/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    26/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    27/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    28/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    29/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    30/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    31/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    32/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    33/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    34/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    35/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    36/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    37/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    38/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    39/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    40/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    41/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    42/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    43/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    44/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    45/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    46/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    47/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    48/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    49/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    50/253

    Chapter 14

  • 8/21/2019 solucionario riley Dynamics.pdf

    51/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    52/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    53/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    54/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    55/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    56/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    57/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    58/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    59/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    60/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    61/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    62/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    63/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    64/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    65/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    66/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    67/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    68/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    69/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    70/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    71/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    72/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    73/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    74/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    75/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    76/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    77/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    78/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    79/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    80/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    81/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    82/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    83/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    84/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    85/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    86/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    87/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    88/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    89/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    90/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    91/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    92/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    93/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    94/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    95/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    96/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    97/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    98/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    99/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    100/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    101/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    102/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    103/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    104/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    105/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    106/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    107/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    108/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    109/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    110/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    111/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    112/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    113/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    114/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    115/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    116/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    117/253

    Chapter 15

  • 8/21/2019 solucionario riley Dynamics.pdf

    118/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    119/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    120/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    121/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    122/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    123/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    124/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    125/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    126/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    127/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    128/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    129/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    130/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    131/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    132/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    133/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    134/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    135/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    136/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    137/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    138/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    139/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    140/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    141/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    142/253

    Chapter 16

  • 8/21/2019 solucionario riley Dynamics.pdf

    143/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    144/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    145/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    146/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    147/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    148/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    149/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    150/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    151/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    152/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    153/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    154/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    155/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    156/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    157/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    158/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    159/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    160/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    161/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    162/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    163/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    164/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    165/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    166/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    167/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    168/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    169/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    170/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    171/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    172/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    173/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    174/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    175/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    176/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    177/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    178/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    179/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    180/253

    Chapter 17

  • 8/21/2019 solucionario riley Dynamics.pdf

    181/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    182/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    183/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    184/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    185/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    186/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    187/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    188/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    189/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    190/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    191/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    192/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    193/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    194/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    195/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    196/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    197/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    198/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    199/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    200/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    201/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    202/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    203/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    204/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    205/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    206/253

    Old Exams

  • 8/21/2019 solucionario riley Dynamics.pdf

    207/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    208/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    209/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    210/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    211/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    212/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    213/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    214/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    215/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    216/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    217/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    218/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    219/253 

    Name:___________________Last First 

    UNLV, DEPARTMENT OF MECHANICAL ENGINEERING

    MEG 207, SPRING 2002, FIRST TEST 

    Closed Book, one page of handwritten notes allowed. Enter the answer for each questioninto the space provided. Enter SI units in all answer spaces with brackets ( ).

    1. (15 points) A vehicle traveling at 108 km/h suddenly decelerates at a rate of 3 m/s2

    .a) Determine the time needed for the vehicle to come to rest.b) Determine the distance traveled between the beginning of braking, and the full stop.

     Answers: a) Tstop = 10 ( s units)

    b) dStop = 150 ( m units)

    2. (20 points) A ball of mass m is thrown horizontally from a bridge 30 m above ground.

    It touches ground at distance d = 15 m. Determine the ball's initial velocity. No friction.

     Answer v0 = 6.065 ( m/s )

    A (x0,y0)

    B

    v0 g

    horiz. distance

     d = 15 m

    h = 30 m

    x

    y

    1(a)   v0 1081000

    3600⋅:= in m/s   a 3−:=

    v t( ) v0 a t⋅+ General equation. Solving for t when v=0

    gives: t v0

    a−:=  and t 10=

    1 (b) v*dv = a*dx or a distance⋅1

    20 v0−( )

    2⋅

    distancev0

    2−

    2 a⋅:=   distance 150=

    Problem 2 d 15:=   h 30:=  Angle is zero.

    Horizontal: d = v0*t. Vertical: y(t) = y0 -1/2*g*t^2. At point B, y = 0.

      g 9.81:=

    Given

    d v0 t⋅

    0 h 0.5 g⋅   t2

    ⋅−

    res Find t v0,( ):=   res2.473

    6.065

     

     

     

     =

  • 8/21/2019 solucionario riley Dynamics.pdf

    220/253 

    3. (20 points) Pin P moves at constant speed of 3 m/s ina counterclockwise sense around the circular slot withradius r = 2 m. Determine (a) the angular velocity of P.

    (b) the total acceleration vector ( Use polar coordinates:er  and eθ directions) of pin P when θ = 30 degrees.(c) the magnitude and angle of the resultant accelerationvector in Cartesian x-y coordinates.

    (b) no radial or angular accel. In neg. er  direction we

    have r*ω2

     = - 2*2.25 m/s2

     

    (c) Resultant Acceleration is purely inward, thus:ax = -4.5*cos 30

    o

    and ay = -4.5*sin 30o

     

     Answer

    ω  = v/r = 3/2 = 1.5 rad/s

    a = -4.5 e 0 eθ m/s2) 

    a  = 4.5 m/s2 at -150 de rees  (ma nitude and an le in x- coordinates)

    4. (25 points) Wind-driven rain is falling

    with a speed of 30 m/s at an angle of 200 to the vertical as shown at left.

    Determine the angle ψ  at which the rainis seen by passengers inside the bus. Thebus is traveling at 72 km/h.

     V rain = V Bus + V Rain/bus  V bus = 20m/s

    x-and y-components of V Rain/bus:

    v R/B,x = -V bu ---V R*sin(20deg) = -30.2 m/s

    v R/B,y =---V R*cos(20deg) = -28.19 m/s  V Rain/bus 

    = tan-1

     (29.19/30.2) = 43 deg.

     An le seen b movin assen ers = 43 de . ( )

    θθθθ

     R  =  2 m

    P

    x

    y

    v = 72 km/h

    yy

    20 0

        R   a      i   n

    ψ ψψ ψ 

    4.5

    ψ 

  • 8/21/2019 solucionario riley Dynamics.pdf

    221/253 

    5. (20 points)  In the pulley system shown at left, the cable is attached at C. Mass Bmoves to the left at vB = 3 m/s, and acceleratesalso to the left at aB = 0.5 m/s

    2

    . Using the x-y

    frame with origin at C, determine:(a) the velocity of A(b) the acceleration of A

    L = 2xB(t) +(Y0 --- yA(t))

    Differentiation gives:2 vB = vA

    and

    2 aB = aA

     Answer

    v A  = 6 m/s  ( )

    a A  = 1 m/s2  ( )

    A

    Bx

    y

    C

  • 8/21/2019 solucionario riley Dynamics.pdf

    222/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    223/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    224/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    225/253

    Na m e:___________________La st F ir st

    U NLV, D E P AR TMENT OF MEC H ANIC AL ENG INEE R ING

    MEG 207, Spring 2002, Third Test

    Closed B ook, one pa ge of ha ndw ritten n otes a llowed. E nter t he a nswer for each question

    into the space provided. Ent er SI units in  all answer spaces with brackets ( ).

    1. (25 points)   The thin, uniform rod (Length L, mass m,   I n er t i a : I  G    = m L2 

     / 12 .) rotates

    about fixed point A as it is released from rest in the horizontal position shown. At the

    instant immediately following the release, determine

    (a ) th e a ngula r a ccelerat ion of th e rod.

    (b) the a ccelera tion, a B , of th e point B .

    Sum of moments a bout A:

    mg *L/2 = I A*α

    I A   = I G   + m*(L/2)2 = (1/12+ 1/4)*m L 2 == m L

    2

    /3

    I n ser t in g in t o t h e fir st eq ua t ion

    gives:

    mg *L/2 = mL2

    /3 *α

    after simplification and regrouping we get:

    αRod  = 3g/(2L)

    Part (b):

    A is center of rotation. Thus a B = L*α = 3g/2

    Answe r s: a ) αRod  = 3g/(2L)

    b) a B   = - 3g/2 in ---j-di re cti on

    i

    J

    Unit vectors

    B

    L

    g

    A

    m

  • 8/21/2019 solucionario riley Dynamics.pdf

    226/253

    2. (30 points) A uniform plat e of steel of length L = 1 m a nd m a ss m = 200 kg is placedo nt o a t r u c k b e d a s sho wn. The p la t e c a nno t sl ide a t p o int A, b u t c a n r o t a t e a b o u t A.

    Determine the maximum allowable acceleration of the truck so that the plate does not

    rotate.

    B x   At ma x. a ccel, cont a ct force B x = 0.

    From free-body diagram:

    Ax  = m *a xAy   = m *g

    Ax*L /2*sin (α) --- Ay*L /2*cos (α) = I g*α = 0

    Inserting the top two equations into the third :

    Ax   Ay

    m*a x = m*g* cos(α)/sin(α)

    a ma x = g* cot(α) = 5.664 m /s2

    Answer  aTruck,max   = 5.664 ( m /s2

    Unit s)

    3. (20 points) The s prin g (k = 1200 N/m) is in it ia llycompressed by 2 m. The 3-kg block shown is not

    attached to the spring. After release from rest , the

    block tr a vels along th e rough surfa ce (µk  = 0.2).

    Determine t he position x final  a t w hich th e block comes

    to rest.

    Forces doing work:

    Spring: F srping   ds

    Friction F frict   ds

    T1 + U 1-2 = T2   w i t h T1 = T2   = 0. Thus U 1-2 = ½ *k*(2meters)2

    ---µk*m*g*x = 0

    x = 2*1200/(0.2*3kg&9.81m /s2

    ) = 407.7 m

    An sw er x final  = 407.7 ( m U nit s)

    i

    J

           L

    60  0

    Truck

    B

    Aa

    truck

    Mass = 3 kg

    gk = 1.2 kN/m

    2 meters

    Spring is compressedat time of release

    µk

    = 0.2

    x

    Uncompressedspring position

    m g

  • 8/21/2019 solucionario riley Dynamics.pdf

    227/253

    4. (25 Points) A parcel of ma ss m is relea sed at a n initia l velocity v 0  = a s shown.(a ) D e t er m ine t he m inim u m velocit y a t B (im m edia t e ly b efor e r ea c hing t he u pp er

    conveyor) so tha t the pa rcel does not drop at B .

    (b) Determine the minimum velocity v 0   at point A so that the parcel reaches point B at

    th e minimum velocity computed in part (a ).

    G iven: Radius r , ma ss m, g. No friction. Neglect the pa ckage t hickness!

    (Use Energy method)

    Answer (a)

    v2/r

    g

    P a r t (b )

    T1 + U 1-2 = T2   w i t h T1 = ½ *m *v02

    a n d T2   = ½ *m*g*r

    O n ly g r a v it y d oes w o rk : m g d s

    Thus

    ½ *m*v02

    - 2r*m*g = ½ *m*g*r

    After simplification, we get:

    v02 = 5gr

    An s w er : (a ) v B,min   = (gr)1/2

    (b ) v0,min   = (5gr)1/2

    v0

    g

    r

    CB

    A

    m

    In order not to falloff a t B , g r a vit y

    must be offset by the

    centripetal

    acceleration:

    v2

    /r = g

    or

    v2

    ,min   = g*r

  • 8/21/2019 solucionario riley Dynamics.pdf

    228/253

    Na m e:_____KE Y ________L a st F ir st

    UNIVERSITY OF NEVADA, LAS VEGAS

    D EP AR TMENTOF MEC H ANIC AL ENGINEER ING

    MEG 207, Spring 2002,   Final ExaminationClosed Book, tw o pages of han dw ritten notes al low ed. Enter t he an swer for each question into the

    space provided. Enter correct dimensional SI units where applicable.

    1. (10 points)   A point ma ss of 10 kg is tossed horizont a lly from 30 m a bove ground. Themass land s on th e ground a t a distan ce of 40 m from a point on the ground directly below 

    the tossing point. Determine the initial velocity of the

    mass.

    v0*t = x1 = 40 (1)

    y 1 = 0 = y 0 ----½ *g*t2

    (2)

    fr om (1): t = sq rt (2/g* y 0) = 2.47 s

    inserting into (1) gives: v0 = 40/t = 16.17 m/s

    Answ er: v 0 = 16.17 m/s

    2. (15 points) A point mass m is suspended from two wires AB an d CD. D etermine thetension in the other wire CD   (a) before AB is cut

    (b) immediately after AB is cut.

    (a ) La w of sines: A/sin (40o

    ) = mg /sin(120o

    )

    Thus: A = 0.742*mg

    (b) After AB is cut: Reaction B disa ppea rs. U sing pola r coordina tes:

    Summing in radial dir: A-mg*cos(20o

    ) = m*r_ddot = 0, thus A = mg*cos(20o

    ) = 0.94*mg

    (a ) Tension in Ca ble CD before cut = 0.742*mg

    (b) Tension in Cable CD after cut = 0.94*mg

    mg

    A

    B   A, eR

    mg   eθθθθ

  • 8/21/2019 solucionario riley Dynamics.pdf

    229/253

    3. (20 points)   A collar with ma ss 5 kg slides in th e vertica l plane a long t he curved rodshow n. It is a tta ched to a n elastic spring w ith un deformed length of 150 mm, and k = 600

    N/m. The collar is released from rest at A.

    Determine the collar's speed at B.

    T1 + V1 = T2 + V2 T1 = 0

    ½ k (x -x0)2

    + mgh = ½ mv22

    + ½ k(x2-x0)2

    0.1meters   mg*0.2   0.05 met ers

    inserting the da ta a nd solving for v2 gives:

    v22

    = k(0.12 ---- 0.052) + 2mg*0.2

    v22

    = 0.9 + 3.924 = 4.824 m2

    /s2

    vB   = 2.196 ( m/s unit s)

    4. (15 points) The 12-kg mass B is dropped with a horizontal velocity v 0 = 2.5 m/s ont o th e30-kg luggage cart (µk   = 0.5), which is initially at rest and can roll freely. Determine the

    velocity of the luggage cart after mass B has reached

    the sa me velocity a s th e car t.

    An approximate solution can be found using the energy

    principle. This neglects the energy loss due to friction

    a s th e package slides on the cart.

    T1 + V1 = T2 + V2 T1 = ½ mBv12

    U se dat um line at A. there is no cha nge in potential: V1 = V2 = 0

    So we get: T1 = ½ mBv12

    = ½ (mB  + m cart)*v22

    v22

    = (12*6.25)/42 = 1.78 m2

    /s2

    Answ er (a ) v = 1.336 ( m/s unit s)

    g

  • 8/21/2019 solucionario riley Dynamics.pdf

    230/253

    5. (20 points) Center B of t he double pulley ha s a velocity of 0.6 m/s, a nd a n a ccelera tionof 2.4 m/s

    2

    , both directed downwa rd. R= 2m, r = 0.8 m. Determine the total acceration

    vector of point D.Point C is an instantaneous center.

    ω = vB/r = -0.75 ra d/s clockw ise

    α = a B/r = -3 r a d/s2

    clockwise

    a D  = (0 ---- 2.8* ω2)∗i + 2.8*α*j

    a D = ---- 1.575∗i -8.4*j

    a D   = ---- 1.575∗i -8.4*j   ( m/s unit s)

    6. (20 points) The uniform rod AB with mass m an d length L is relased from rest at ana ng le of Θ0   a s shown. Assu m ing t ha t no sliding occu r s, det er m ine (a ) t he a ng u la r

    acceleration of the rod just after release. (b) the normal reaction and friction force at point

    A just a fter release.

    Pure rotation about A.

    Summing moments about A:

    -1/2*L *sin (θ0)*mg = I B*α where IB = mL2 /3

    thus α = -3/2*g /L* sin (θ0)

    (B ) Rea ctions a t A:

    Forces in x-dir: F = m*a x = m*1/2*L*cos(θ0)*α

    Forces i n y-dir : N ---- mg = -m*1/2*L*sin (θ0)*α

    or N = m g[1- ¾ * sin2

    (θ0) ]

    ÿRod = α = -3/2*g /L* sin (θ0)

    N = m g[1- ¾ * sin2

    (θ0) ] F = ¾ *mg* cos(θ0)* sin(θ0)

    i

    J

           L

    g

    A

    Bθθθθ0000

    mg

    ½ *L *α

  • 8/21/2019 solucionario riley Dynamics.pdf

    231/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    232/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    233/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    234/253

     Note: Exam results are up significantly in comparison to exam 2.

    Name:_____KEY________Last First

    UNLV, DEPARTMENT OF MECHANICAL ENGINEERING

    MEG 207, Spring 2003, Third Test

    Closed Book, one page of handwritten notes allowed. Enter the answer for each question into the space

    provided. Enter SI units in all answer spaces with brackets ( ).

    1. (25 points)  A disk(mass m= 2kg, r= 0.1m Inertia: I G = mr 2 /2.) is rigidly attached to massless rod AB

    (Length R = 0.5m) and released from rest in the horizontal position. At the instant immediately following

    the release, determine

    (a) the angular acceleration of the rod.

    (b) the acceleration, aB, of the point B.

    ANSWER

    Newton: Sum of moments about A: using L = R. m B   = m a ss a t B

    mB *g*R= I A*α

    I A = I G  + m B*(R)2 = (0.01/2+ 0.25)* mB = 0.255*m B

    Inserting into th e first equa tion gives:

    mBg*R = 0.255*mB  *α

    after simplification and regrouping we get:

    αRod   = R*g /(0.255) = 0.5*9.81/0.255 = 19.2 ra d/s2

    Part (b):

    A is center of rotation. Thus a B = R*α = 0.5∗α = 9.62 m/s2

    Answers: a) αRod =   19.2 ra d/s2

    b) aB   = R*α = 0.5∗α = 9.62 m/s2

    g

    A   (fixed)

    B V B 

       r = 0 .   1

     m

    R=0.5m

  • 8/21/2019 solucionario riley Dynamics.pdf

    235/253

    2. (25 points)  A uniform rectangular crate of height = 0.5 m, width 0.2m and mass m = 200 kg is placed

    onto a truck bed as shown. The crate cannot slide at point B, but can rotate about B. Determine the

    maximum allowable acceleration of the truck so that the crate does not rotate.

    [

    N = mg

    Moments about G: 0.25*FB - 0.1*mcrate*g = 0 (1)

    Forces on crate in x-direction: FB  = mcrate*atruck    (2)

    Insert (2) into (1): 0.25* mcrate*atruck  = 0.1*mcrate*g

    atruck  = g/2.5

    Answer aTruck,max = 3.924 ( m/s2

    Units)

    F Bi

    J

    Crateg

    Ba

    truck

    0.2m

         0 .     5    m

    N

    m g

  • 8/21/2019 solucionario riley Dynamics.pdf

    236/253

    3. (30 points) The spring (k = 1500 N/m) is initially uncompressed. The 3-kg block shown is released from

    rest 4m above the spring and falls onto the spring. Using the energy method, determine

    (a) the velocity at which the block hits the spring at y = 0 m.

    (b) the amount of maximum spring

    compression, δ, caused by the

    impacting block.

    Answer

    T2 – T1   = - INT( [-mg]*dy = ½*m*v22

    T1 = 0 v22

    = 2gy =8g =78.48 m2 /s

    2

    (c)

    T3 – T2  = ½*k*δ

    2

    + m*g*δ

     

    (d) T3 = 0

    T2 =½*m*v22

    = ½*3*kg*78.48 m

    2

     /s

    2

    = ½*1500* δ

    2

    + m*g*δ

     

    We now solve for δ

    (substitute d = δ a t r i gh t )  T2 750 d

    2⋅   3 9.81⋅   d⋅+

    Answer vimpact (y=0) = 8.86 ( m/s Units)

     

    δmax. compression = 0.377 ( m Units)

    k = 1.5 kN/m

    y

            3        k      g

         4    m

    g

    δδδδSpring is initiallyuncompressed

  • 8/21/2019 solucionario riley Dynamics.pdf

    237/253

    4. (20 Points) A point mass pendulum (mass m, Length L) is released from rest at an initial angle θ0 = 450

    as shown.

    (a) Determine the maximum velocity of the pendulum

    (b) Determine the pendulum tension at θ = 0.

    Given: Length L , mass m, g. No friction. (Use Energy method)

    (a)

    T2 – T1  = ½*m*v22

    = mgL(1- cos(θ0)

    T1 = 0 (release from rest)

    v22

    = 2g L(1- cos(θ0)

    (b) Max. tension Force exists at (2): Sum of forces in radial dir. (inward towards center B):

    T –mg = m* v22 /L

    T = m(g+ v22 /L)

    Answer: (a) vmax = [ 2g L(1- cos(θ0)]1/2

    (b) Max.Tension Force at θ = 0 = m(g+ v22 /L)

     m

    gRope length L

    B

    fixed

    θ0 = 450

    θ = 0θ = 0θ = 0θ = 0

    1

    2

    v2=vmax

    h =L(1- cos(θθθθ0)

  • 8/21/2019 solucionario riley Dynamics.pdf

    238/253

    Name:________KEY______Last First

    UNIVERSITY OF NEVADA, LAS VEGAS

    DEPARTMENT OF MECHANICAL ENGINEERING

    MEG 207, SPRING 2003, Final Examination

    Closed Book, three pages of handwritten notes allowed. Enter the answer for each question into the space provided.Enter correct dimensional SI units where applicable.

    1.   (15 points)  A player throws a ball horizontally from point A at an elevation 2m above ground.The ball lands on the flat ground at point B, at a distance of 20 m from the origin.

    Determine(a) the initial velocity at which the ball was thrown

    (b) the time elapsed between points A and B

    B

    g

    horiz. distance

    d = 20 m

    yo

     = 2 m

    y

    A (x0,y

    0)

    vo

    x

    The only acceleration is g in –j-direction. vo = vo*i. After integrating twice in i-direction:

    xB = 20 = vo*t + 0 (xo = 0) (1)

    After integrating in j-direction: yB = 0 = 0 – ½*g*t2

    + 2 (yo = 2) (2)

    From (2): t2

    = 4/g   ÿ inserting into (1) gives: vo = 20/t = 20*(g/4)1/2

    = 31.3 m/s

    Answer:   vo = 31.3 m/s

    t = 0.64 s

  • 8/21/2019 solucionario riley Dynamics.pdf

    239/253

    2.   (15 points)  A constant force F = 50 N is applied to massm=10 kg, which is initially at rest with the attached

    spring (k = 200 N/m) unstretched. Determine(a) the maximum velocity of the mass.

    (b) the maximum stretch of the spring.

    (a) T2 – T1  = F*x - ½*k* x2

    = ½*m*v22

    F x⋅1

    2k ⋅   x

    2⋅−

    1

    2m⋅   v x( )( )

    2⋅

    The maximum velocity occurs

    when the derivative of the velocity is zero:F k x⋅−   m v x( )⋅

    xv x( )

    d

    d⋅

    = 0, x = F/k = 50/200 = 0.25,

    thus v2

    max = 1.25 (m/s)2

    (b) Both start and final velocities must be zero: T2 – T1  = F*x - ½*k* x2

    = 0

    Two solutions: x1 = 0 (start point) x2 : 2F - k* x = 0

    x2 = 2F/k = ½ meters

    (a) vmax   = 1.12 m/s(b) xmax   = 0.5 m

    3. (20 points)   Knowing that vΑ= 5 m/s is constant to the left,determine for the instant shown :

    (a) the angular velocity of rodBC

    (b) the angular acceleration of rod AB.

    (a) Vector equation:VB = VA + VB/A

    Thus: RB/C*ωBC*j = -vA*i + RB/A*ωAB*(-sin30o

    i + -cos30o j) Components:

    i: vA = RB/A*ωAB*sin30oÿ ωωωωAB = vA /(RB/A*sin30

    o) = - 5/(10*0.5) = -1 rad/s

     j: RB/C*ωBC = RB/A*ωAB *cos30oÿ ωωωωBC = -RB/A*ωAB cos30

    o /RB/C = +10*0.866/4 = 2.165 rad/s;

    (b) aA = 0. only centripetal and angular accel terms exist. Vector eq. AB = AA + AB/A-RB/C*ωBC

    2*i + RB/C*αBC j = RB/A*ωAB

    2*(-sin30

    o j + cos30

    oi) + RB/A*αAB*(-sin30

    oi - cos30

    o j)

     j: RB/C*αBC = -RB/A*ωAB2

    *sin30o

    - RB/A*αAB* cos30o

    i: -RB/C*ωBC2

    = RB/A*ωAB2

    * cos30o

    - RB/A*αAB*sin30o

     

    αAB = -(RB/C*ωBC2

    + RB/A*ωAB2

    * cos30o

    )/(RB/A*sin30o) = - (4*4.69 + 10*1*0.866)/5 = - 5.48 rad/s

    2

    ωBC = 2.165 rad/s

     αAB = - 5.48 rad/s2

    cw

    i

    J

    Unit vectors   vA = 5 m/s

    B10 m

    4 m

    30 o

    A

    CV

    B/A

    Mass =

    10 kg

    k = 200 N/m

    Spring is unstretched at time of release 

    no friction

    F= 50 N

    unstretched

    spring position

    x

    g

  • 8/21/2019 solucionario riley Dynamics.pdf

    240/253

    4. (15 points)  The frictionless system of masses A (40 kg) and B (10 kg) is released from rest.Determine: (a) the acceleration of mass A.

    (b) the tension in the cable

    Mass A moves in i-direction, and B in j-directiononly.

    Mass A moves in I-direction, and B in j-direction only.

    Newton: A:   xmT F   A x   ÿÿ==ÿ   Constraint eq.: x = -yB:   xm ymgmT F   B B B y   ÿÿÿÿ −==−=ÿ   *

     Ba

     B

    mm

    gm x

    +=ÿÿ   = 98.1/50 = 1.962 m/s

    2

    (b) Using first eq.: T = 40kg*1.962 m/s2

    = 78.5 N

    (a) aA   = 1.962 m/s2

    (b) T   = 78.5 N

    5. (15 points)  Gear D is stationary. Gear C has radius r C  = 100 mm. Bar AB has a length of 200

    mm. As Bar AB rotates counterclockwise at ωAB = 5 rad/s, determine

    (a) The angular velocity of gear C(b) The total acceleration vector (in Cartesian i-j

    coordinates) of point P on gear C. Point P islocated 100 mm below B, normal to the line AB.

    i

    J

    Unit vectors(a) The Contact of gear D with gear B is an inst. Center. We have: vB = 200*ωΑB = 100*ωCω

    C = 2*5 = 10 rad/s(b) AP = AB + AP/B   aP = - 200*52*i + 100*10

    2*j

      ωC = 10 rad/s

    Vector aP = - 5   i   + 10 j   m/s2

    Am = 40 kg

    Bm = 10 kg

    g

    i

    J

    Unit vectors

    P

    Ctr

  • 8/21/2019 solucionario riley Dynamics.pdf

    241/253

    6. (20 points)  The uniform rod AB with mass m is released from rest at an angle of 60 degrees asshown. Assuming that no sliding occurs, determine (a) the angular acceleration of the rod just after

    release. (b) the normal reaction and friction force at point B. Moment of Inertia for the rod, at centerof mass: IG = mL

    2 /12.

    We have a pure rotation about

    fixed point B.

    Parallel axis Theorem: IB   = IG+ m(L/2)

    2=mL

    2(1/12+1/4) =

    mL2 /3

    Newton about B:

    αα     *3

    *2

    1*

    2

    2 Lm

     I mg L

     M  B B

    ==−=ÿ

    α = -3g/(4L) (oriented in k-direction normal to the i-j plane)

    (b) Reactions: Newton in x- and y- directions:

    16 / 34

    g L

     y −=−=   α  ÿÿ   )0(433.0*866.0*2

    >+=−=   ct Crossprodug L

     x   α  ÿÿ

     ymmg N F  y   ÿÿ=−=ÿ   N = m(g – 3g/16) = 13mg/16

    433.0*mg xmF F  x ===ÿ   ÿÿ

     α

    L/2

    0.866*L

    L/4

    αRod = 3g/(4L)

    Ν = 13mg/16 F = 0.433*mg

    i

    J

        L

    g

    B

    60   0

    A

    mg

  • 8/21/2019 solucionario riley Dynamics.pdf

    242/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    243/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    244/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    245/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    246/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    247/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    248/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    249/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    250/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    251/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    252/253

  • 8/21/2019 solucionario riley Dynamics.pdf

    253/253