46
SOFTWARE DEFINED RADIO USR SDR WORKSHOP, SEPTEMBER 2017 PROF. MARCELO SEGURA SESSION 2: AM MODULATION, REVIEW OF CONCEPT REAL IMPLEMENTATION 1

SOFTWARE DEFINED RADIOcci.usc.edu/wp-content/uploads/2017/09/CLASS-4-AM-MODULATION.pdf · VSB •It was created to reduce the bandwidth on analog TV channels that use DSB-TC

Embed Size (px)

Citation preview

SOFTWARE DEFINED RADIOUSR SDR WORKSHOP, SEPTEMBER 2017

PROF. MARCELO SEGURA

SESSION 2: AM MODULATION, REVIEW OF CONCEPT

REAL IMPLEMENTATION

1

USC SDR WORKSHOP

AM

• AM is poor efficiency since it use double of bandwidth.

• But is on of the simplest modulation systems, AM-DSB-SC.

DR ING MARCELO SEGURA

2

QUADRATURE AMPLITUDE MODULATION

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

3

BANDWIDTH EFFICIENCY

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

4

DSB-SC

Pros: very simple implementation

Cons: Require coherent demodulator, phase and frequency.

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

5

DSB-SC

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

6

DSB-SC BASE BAND

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

7

DSB-TC

m: modulation index

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

8

DSB-TC

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

9

MODULATION INDEX

Pros: NOT require coherent demodulator

Cons: bad spectral efficiency

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

10

AM-SSB

USC SDR WORKSHOP

QAM

• Advantages of QAM, we have better spectral efficiency.

DR ING MARCELO SEGURA

11

QAM MODULATOR

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

12

QAM DEMODULATOR

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

13

I/Q PERFECT DEMO

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

14

I/Q PERFECT DEMO

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

15

PHASE SHIFT

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

16

PHASE OFFSET

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

17

FREQUENCY OFFSET

WE HAVE TO CORRECT OFFSET BEFORE

START WORKING WITH SDR

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

18

COMPLEX EXPONENTIAL

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

19

COMPLEX EXPONENTIAL

USC SDR WORKSHOP

QAM

DR ING MARCELO SEGURA

20

REAL HARDWARE VS COMPLEX NOTATION

USC SDR WORKSHOP

AM

• The simplest receiver will be a DSB-SC, because we just need to multiply by the carrier.

• This will works ONLY if no phase or frequency offset.

DR ING MARCELO SEGURA

21

THEORETICAL DEMODULATION ON DSB-SC

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

22

REAL COHERENT DEMODULATOR DSB-TC

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

23

REAL COHERENT DEMODULATOR

USC SDR WORKSHOP

AM

• Real demodulator, w/offset

• Perfect demo

• Because is hard to get “perfect tuning” on the carrier, we need a coherent receiver with frequency and

phase recovery to avoid this problems.

DR ING MARCELO SEGURA

24

PERFECT DEMODULATOR

USC SDR WORKSHOP

AM

DR ING MARCELO SEGURA

25

DEMODULATED RECEIVED SPECTRUM

USC SDR WORKSHOP

SSB

DR ING MARCELO SEGURA

26

GENERATION AM-SSB

EASY way is to filter AM-DSB-SC, BUT filter needs very large attenuation and rolloff factor

USC SDR WORKSHOP

SSB

DR ING MARCELO SEGURA

27

SSB TRANSMITTER

USC SDR WORKSHOP

VSB

• It was created to reduce the bandwidth on analog TV channels that use DSB-TC.

• The modulator is DSB-TC, but with a pass-band filter at the output. This filter allows to pass the carrier plus

a portion of the lower band, the vestigial band.

DR ING MARCELO SEGURA

28

VESTIGIAL SIDE BAND (VSB)

USC SDR WORKSHOP

VSB

• Transmitter

DR ING MARCELO SEGURA

29

VSB

USC SDR WORKSHOP

AM

• Classical detector, only works for DSB-TC

DR ING MARCELO SEGURA

30

NON-COHERENT DEMO: ENVELOPE DETECTOR

USC SDR WORKSHOP

AM TRANSMISSION

• USRP hardware support package is required.

• By default only digital up-conversion is done on the FGPA

DR ING MARCELO SEGURA

31

USRP TX

USC SDR WORKSHOP

AM TRANSMISSION

DR ING MARCELO SEGURA

32

USRP MATLAB PARAMETERS

LO Offset

• TX Gain: expressed as scalar. Max 90dB

• RX Gain: 73dB

• Clock Freq: 5Mhz a 56Mhz

• DUC: default 512, correspond to simple rate of 1e8/512=195Khz

• Underrun: “+” not enough samples, “0” no data loss

• Enable burst: no underrun /overrun, fixed number of frames

USC SDR WORKSHOP

AM TRANSMISSION

DR ING MARCELO SEGURA

33

USRP TX AM DSB-SC

Only send real data!!!

USC SDR WORKSHOP

AM TRANSMISSION

DR ING MARCELO SEGURA

34

USRP TX AM DSB-TC

USC SDR WORKSHOP

AM TRANSMISSION

DR ING MARCELO SEGURA

35

AM-SSB

USC SDR WORKSHOP

AM TRANSMISSION

DR ING MARCELO SEGURA

36

AM-SSB

USC SDR WORKSHOP

AM RECEIVER

• Demo Ideal

• PROBLEM: it is probable that we have frequency offset, so the AM will be modulated but a low frequency

near DC. Envelop works if fc>>fi.

DR ING MARCELO SEGURA

37

RECEIVER DSB-TC WITH ENVELOPE DETECTOR

USC SDR WORKSHOP

AM RECEIVER

• SOLUTION: Use an offset intermediate freq.

• Demodulated signal will be on IF area, after that envelope detector can be applied.

DR ING MARCELO SEGURA

38

RX NON-COHERENT

USC SDR WORKSHOP

AM RECEIVER

• We cannot recover DSB-SC signal we envelope detector.

DR ING MARCELO SEGURA

39

RX NON-COHERENT

USC SDR WORKSHOP

AM RECEIVER

• We need a coherent receiver that use a PLL to recover the phase and frequency.

DR ING MARCELO SEGURA

40

RX COHERENT

USC SDR WORKSHOP

FDM

• FDM allows to send multiple signals at the same time, sharing the available spectrum.

• The first application of FDM was on wired telephony, where each user has 3.4Khz of the total bandwidth.

DR ING MARCELO SEGURA

41

FDM INTRO

USC SDR WORKSHOP

FDM

• DSB-TC modulation with real carrier

DR ING MARCELO SEGURA

42

FDM TX

USC SDR WORKSHOP

FDM

• Quadrature modulation, complex carrier.

DR ING MARCELO SEGURA

43

FDM TX

USC SDR WORKSHOP

FDM

DR ING MARCELO SEGURA

44

FDM- TX USRP

USC SDR WORKSHOP

FDM

DR ING MARCELO SEGURA

45

FDM TX USRP

USC SDR WORKSHOP

FDM

Intermediate frequency receiver.

DR ING MARCELO SEGURA

46

FDM RX