73
Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Embed Size (px)

Citation preview

Page 1: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Small Galaxy Groups Clustering

and the Evolution of Galaxy Clustering

Leopoldo InfantePontificia Universidad Católica de Chile

Bonn, June 2005

Page 2: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Talk Outline

Introduction

The Two-point Correlation Function

Clustering of Small Groups of Galaxies – SDSS results

Evolution of Clustering – MUSYC results

Conclusions

Page 3: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Rich Clusters

Groups

Galaxies

Page 4: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

How do we characterizeclustering?

Correlation Functionsand/or

Power Spectrum

Page 5: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Random Distribution

1-Point

2-Point

N-Point

Clustered Distribution

2-Point

r

dV1

dV2

Page 6: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Continuous Distribution

Fourier Transform

Since P depends only on k

Page 7: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

2-Dimensions - Angles

Estimators

In Practice

AA BB

Page 8: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

r0 vs dc

On the one hand, The Two point Correlation Function is an statistical tool that tells us how strongly clustered structures are. Amplitud (A), or Correlation length (r0)

On the other, we need to characterize the structure in a statistical way Number density (nc) Inter-system distance (dc)

Page 9: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

The co-moving Correlation Length

Page 10: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Proper Correlation length

Proper Correlation distance

Clustering evolutionindex

Assumed Power Law 3-D Correlation Function

Assumed Power Law Angular Correlation Function

Page 11: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

To go from r

Must do a 2D 3D de-projection Limber in 1953 developed the inversion

tool Two pieces of information are required:

A Cosmological ModelThe Redshift Distribution of the Sample dN

dz

Page 12: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Proper Correlation Length and Limber’s inversion

12

1 3

00 2

0

( ) (1 )dN

H z x z dzdz

r A CdN

dzdz

3

0 0( ) (1 ) (1 )H z z

1

( )

dx

dz H z

Page 13: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

With z information

• Redshift space correlation functions– Given sky position (x,y) and redshift z,

one measures s

• Sky projection, p, and line of sight, , correlation functions– Given an angle, , and a redshift,

z, one measures rp,

Problem; choose upper integration limit

Page 14: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Inter-system distance, dc

Page 15: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

systemsc

Nn

V

1/31

cd n

Mean separation of objects

Space density of galaxy systems

As richer systems are rarer, dc scales with richness or mass

of the system

Proper Volume

Page 16: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

CLUSTERING Measurements from Galaxy

Catalogsand

Predictions from Simulations

Page 17: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Galaxy Clustering: Two examples

APM angular clusteringSDSS spatial clustering

Page 18: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

APM

Page 19: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 20: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Sloan Digital Sky SurveySloan Digital Sky Survey

•2.5m Telescope•Two Surveys

•Photometric•Spectroscopic

•Expect•1 million galaxies with spectra•108 galaxies with 5 colorsCurrent resultsCurrent results

DR2 2500 deg.2

200,000 galaxies, r<17.7Median z 0.1

Page 21: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

SDSS DR2

Page 22: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 23: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Zehavi et al., 2004

Page 24: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Clustering of Galaxy Clusters

Richer clusters are more strongly clustered.

Bahcall & Cen, 92, Bahcall & West, 92

However this has been disputed: • Incompleteness in cluster samples (Abell,

etc.)• APM cluster sample show weaker trend

3

0.40.4o c

c

r dn

Page 25: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Galaxy Groups Clustering

Simulations2dFGG clusteringLCDCS clustering

SDSS DR2 clustering

Page 26: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

N body simulations

• Bahcall & Cen, ‘92, ro dc

• Croft & Efstathiou, ‘94, ro dc but weaker

• Colberg et al., ‘00, (The Virgo Consortium)– 109 particles– Cubes of 3h-1Gpc (CDM)

CDM =0.3 =0.7 h=0.5 =0.17 8=0.9

Page 27: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 28: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

CDMdc = 40, 70, 100, 130 h-1Mpc

Dark matter

Page 29: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 30: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

2dF data, 2PIGG galaxy groups sampleEcke et al., 2004

19,000 galaxies 28,877 groups of at least 2 members<z> = 0.11

Page 31: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Padilla et al., 2004

Galaxies2dFGRS

Groups2PIGG

1/31

cc

dn

2 2ps r

Page 32: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 33: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Las Campanas Distant Cluster Survey

• Drift scan with 1m LCO.• 1073 clusters @ z>0.3• 69 deg.2

• 78o x 1.6o strip of the southern sky (860 x 24:5 h-1 Mpc at z0.5 for m=0.3 CDM).

• Estimated redshifts based upon BCG magnitud redshift relation, with a 15% uncertainty @ z=0.5.

Gonzalez, Zaritsky & Wechler, 2002

Page 34: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Gonzalez, Zaritsky & Wechler, 2002

Page 35: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

1/31

cc

dn

Page 36: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Clustering of

Small Groups of GalaxiesfromSDSS

Page 37: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

• Objective: Understand formation and evolution of structures in the universe, from individual galaxies, to galaxies in groups to clusters of galaxies.

• Main data: SDSS DR1• Secondary data: Spectroscopy to get

redshifts.• Expected results: dN/dz as a function of z,

occupation numbers (HOD) and mass. Derive ro and d=n-1/3 Clustering Properties

Page 38: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Bias

• The galaxy distribution is a bias tracer of the matter distribution.– Galaxy formation only in the highest peaks of density

fluctuations.– However, matter clusters continuously.

• In order to test structure formation models we must understand this bias.

Page 39: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Halo Occupation Distribution, HOD

Bias, the relation between matter and galaxy distribution, for a specific type of galaxy, is defined by: The probability, P(N/M), that a halo of virial mass M

contains N galaxies.

The relation between the halo and galaxy spatial distribution.

The relation between the dark matter and galaxy velocity distribution.

This provides a knowledge of the relation between galaxies and the overall distribution of matter, the Halo Occupation Distribution.

Page 40: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

In practice, how do we measure HOD?

Detect pairs, triplets, quadruplets etc. n2 in

SDSS catalog.

Measure redshifts of a selected sample.

With z and N we obtain dN/dz

Develop mock catalogues to understand the

relation bewteen the HOD and Halo mass

Page 41: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Collaborators:

M. StrausN. PadillaG. GalazN. Bahcall& Sloan consortium

OUR PROJECT: We are carrying out a project to find galaxies in small groups using SDSS data.

Page 42: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

The DataSeeing 1.2” to 2”Area = 1969 deg2

Mags. 18 < r < 20

Page 43: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Selection of Galaxy Systems

Find all galaxies within angular separation between 2”<<15” (~37h-1kpc) and 18 < r < 20

Merge all groups which have members in common.Define a radius group: RG

Define distance from the group o the next galaxy;

RN

Isolation criterion: RG/RN 3

Sample

3980 groups with 3 members pairs 68,129

Mean redshift = 0.22 0.1

Page 44: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Galaxy pairs, examples

Image inspection showsthat less than 3% are spurious

detections

Page 45: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Galaxy groups, examples

Page 46: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Results

A = 13.54 0.07 = 1.76

A = 4.94 0.02 = 1.77

arcsec arcsec

Page 47: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Results

galaxies

tripletspairs

•Triplets are more clustered than pairs•Hint of an excess at small angular scales

Page 48: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Space Clustering Properties

-Limber’s Inversion-– Calculate correlation amplitudes from ()– Measure redshift distributions, dN/dz– De-project () to obtain ro, correlation lengths– Compare ro systems with different HODs

Page 49: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

The ro - d relation

3/11

n

d

Correlation scaleAmplitude of the

correlation function

Mean separationAs richer systems are rarer,

d scales with richness or mass of the system

12

1 3

00 2

0

( ) (1 )dN

H z x z dzdz

r A CdN

dzdz

Page 50: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Rich Abell Clusters:•Bahcall & Soneira 1983•Peacock & West 1992•Postman et al. 1992•Lee &Park 2000

APM Clusters:•Croft et al. 1997•Lee & Park 2000

EDCC Clusters:Nichol et al. 1992

X-ray Clusters:•Bohringer et al. 2001•Abadi et al. 1998•Lee & Park 2000

Groups of Galaxies:•Merchan et al. 2000•Girardi et al. 2000

LCDM (m=0.3, L=0.7, h=0.7)SCDM (m = 1, L=0, h=0.5)Governato et al. 2000Colberg et al. 2000Bahcall et al. 2001

Galaxy Triplets

Page 51: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Results so far...We select galaxies within 1980 deg2, withmagnitudes 18 < r* < 20, from SDSS DR1

data.We select isolated small groups.

We determine the angular correlation function.We find the following:

•Pairs and triplets are ~ 3 times more strongly clustered than galaxies.•Logarithmic slopes are = 1.77 ± 0.04 (galaxies and pairs)() is measured up to 1 deg. scales, ~ 9 h-1Mpc at <z>=0.22. No breaks.•We find ro= 4.2 ± 0.4 h-1Mpc for galaxies and 7.8 ± 0.7 h-1Mpc for pairs•We find d = 3.7 and 10.2 h-1Mpc for galaxies and pairs respectively.•LCDM provides a considerable better match to the data

Follow-up studiesdN/dz and photometric redshifts.

Select groups over > 3000 deg2 area from SDSS

Page 52: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Clustering evolution with redshift.

Results from MUSYC

CollaboratorsN. Padilla, S. Flores, R. Asseff, E.

Gawiser, & d. Christlein

Page 53: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Evolution of the bias factor (Seljak & Warren

2004)

Page 54: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Evolution of the clustering of the dark-matter in a Lambda-CDM

Cosmology

Page 55: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

MUSYC:• Multiwavelength survey by Yale-Chile• 1 deg2, 4 fields (eHDFS, CDF-S, SDSS

1030+05, 1256+01)• AB depths of U,B,V,R=26.5 and K(AB)=22.5 Current analysis - eHDFS• 18<R<24.3• Aditional information on B,V,I, and z• c < 0.8 (SExtractor)• Using BPZ• ~20,000 galaxies with 0.4<z<2• Errors ~ 0.1 in redshift

Page 56: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Real and Mock HDF-S:

• MUSYC

• Hubble Volume

Dark Matter, z=0

Galaxies, z=0

Page 57: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Redshift distributions in real and Semianalytic mock (at z=0)

Page 58: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

A set of homogeneous subsamples of galaxies in the

HDF-S

Page 59: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

The method: getting r0(z)• First step: calculate for

different errors in redshift:

z=0.0 z=0.1

>1

<1

=1

Page 60: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Correlation function in redshift-space is not useful in this analysis:

The projected correlation function can be made stable:

1300

0

2 ,h Mpc

d

Page 61: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

MA

SS

, z=

0G

AL

AX

IES

, z=

0M

AS

S, E

VO

LU

TIO

N

MOCKS

Page 62: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

RESULTS:

• Correlation length• Halo masses• Bias factors

Page 63: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Comparison with VVDS (Le Fevre

et al. 2004) and CNOC2:

This work

6

4

2

0

Page 64: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Conclusions• 15,000 HDF-S, MUSYC galaxies• Photo-zs with an error of z=0.1• Method for estimating evolution of

correlation length, mass of galaxy host haloes and bias factors.

• Mock catalogues -> Calibration• Results compatible with the evolution

of clustering of the mass in a CDM cosmology

• Consistent with results from VVDS and CNOC

Page 65: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

FIN

Page 66: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

SDSS DR1 18 < r < 20

Page 67: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

CNOC2 SurveyCNOC2 Survey

Measures clustering evolution up to z 0.6 for Lateand Early type galaxies.

1.55 deg.2

~ 3000 galaxies 0.1 < z < 0.6

Redshifts for objects with Rc< 21.5Rc band, MR < -20 rp<10h-1Mpc

SEDs are determined from UBVRcIc photometry

Page 68: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

Projected

Correlation Length

Page 69: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 70: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 71: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005
Page 72: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005

dlogN/dm=0.46Turnover at r* 20.8

De-reddened Galaxy Counts

Thin lines are counts on each of the 12 scanlines

Page 73: Small Galaxy Groups Clustering and the Evolution of Galaxy Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Bonn, June 2005