15
DOCUMENT SUBMISSION STATUS: AP C 26.01.10 Modify in accordance with CS2-M2-E-00048 MLe ASc TBr B 06.01.10 Modify in accordance with CS2-M2-E-M2-DSL-0600 MLe ASc TBr REV DATE DESCRIPTION DRWN CHKD APPN OWNER OWNER’S CONSULTANT EPC CONTRACTOR EPC CONTRACTOR’S CONSULTANT PROJECT TITLE VUNG ANG 1 THERMAL POWER PLANT 2 x 600MW PACKAGE TITLE CONTRACT No. DRAWING TITLE SINGLELINE DIAGRAM COAL HANDLING SYSTEM - FUNCTION NAME SIGN DATE DRWN M.Leinenbach 07.12.09 CHKD A.Scholz 07.12.09 SUB-CONTRACTOR APPD T.Brüwer DOCUMENT No. VA1-FLS-00100-E-M2-DSL-0600 SCALE REV C VIETNAM OIL AND GAS GROUP (PVN) POYRY ENERGY LTD VIETNAM MACHINERY INSTALLATIONCORPPORATION (LILAMA) WORLEYPARSONS PTE LTD

Single Line Diagram

Embed Size (px)

Citation preview

Page 1: Single Line Diagram

DOCUMENT SUBMISSION STATUS: AP

C 26.01.10 Modify in accordance with CS2-M2-E-00048 MLe ASc TBr B 06.01.10 Modify in accordance with CS2-M2-E-M2-DSL-0600 MLe ASc TBr

REV DATE DESCRIPTION DRWN CHKD APPN

OWNER

OWNER’S CONSULTANT

EPC CONTRACTOR

EPC CONTRACTOR’S CONSULTANT

PROJECT TITLE

VUNG ANG 1 THERMAL POWER PLANT 2 x 600MW PACKAGE TITLE

CONTRACT No.

DRAWING TITLE SINGLELINE DIAGRAM

COAL HANDLING SYSTEM -

FUNCTION NAME SIGN DATE DRWN M.Leinenbach 07.12.09

CHKD A.Scholz 07.12.09

SUB-CONTRACTOR

APPD T.Brüwer

DOCUMENT No. VA1-FLS-00100-E-M2-DSL-0600

SCALE REV C

VIETNAM OIL AND GAS GROUP (PVN) POYRY ENERGY LTD

VIETNAM MACHINERY INSTALLATIONCORPPORATION (LILAMA) WORLEYPARSONS PTE LTD

mal-de
Stempel
Page 2: Single Line Diagram

B

Index / Rev. Mitteilung / Remark Datum / Date Name

Kunde / Client

Firma / Company

Zeichnung / Drawing Angebotsnr. /Offer No.:

Datei / File Blatt / Page:

von / of:

1 2 3 4 5 6 7 8 9 10

A

C

D

E

F

G 2.2040W.T.

BACH

04.09.09Date

Author

appr.

Norm IEC 1

1PVN_Single_Linediag.vsdPVN COAL FIRED POWER PLANT

29.09.09 MLeAdapted installed power

30.11.09 MLeDeleted Substation Storage

26.01.10 MLeAdapted according to

CS-M2-E-00048

VA1-FLS-00100-E-M2-DSL-0600Rev. C

Scope of supplyFLS-Koch

80 A80 A

I=200A*I=80A*I=114A*I=400A*I=95A*I=58A*I=250A*I=80 A*

IR=100 A IR=100 A

00EA

D04

10 k

W

00EA

D03

10 k

W

120m, 16mm²

400m

, 35m

120m, 16mm²

217m, 120mm²

193m, 70mm²

217m, 120mm²

193m, 70mm²

Scope by others

10kV1229 KW

00EAC09250 kWIN=250 A

00EAC01400 kWIN=400 A

00EAA01

690V 3ph, 4 wire, 50Hz, Ikmax= 43 kA

10kV2500kVA, AN

690VUk= 6%Dyn 11

± 2 x 2,5%

AUX.

24V DC

230V 50Hz

00EAC19250 kWIN=250 A

00EAC11400KW

IN=400 A

10kV2500kVA, AN

690VUk= 6%Dyn 11

± 2 x 2,5%

Substation TT2

00EAC1075 kWIN= 80A

00EAC0855 kWIN=58 A

I >

M3 ~

400V 3ph, 4 wire, 50Hz, Ikmax = 15kA

10kV400kVA, AN

400VUk= 4%Dyn 11

± 2 x 2,5%

10kV400kVA, AN

400VUk= 4%Dyn 11

± 2 x 2,5%

AUX.

24V DC

230V 50Hz

00EAC2075 kWIN=80 A

00EAC1855 kWIN=58 A

I >

M3 ~

00EAC0290 kW

IN=95 A

00EAC0337 kWIN=75 A

00EAU0149KW

00EAC06110 kWIN=114A

00EA

D01

110

kVA

00EA

F01

240

kVA

00EAC1290 kWIN=95 A

00EAC1337 kWIN=75 A

00EAC07110 kWIN=114 A

00EA

D02

110

kVA

00EA

F02

240

kVA

Cap

acito

rba

nk

Cap

acito

rba

nk

Cap

acito

rba

nk

10kV1229 KW

|-- Lighting & Socket --| |-- Lighting & Socket --||- all other consumers -||- all other consumers -|

Power Plant10 kV 3Ph 50HzMVA MVB

Auto switch unitAuto switch unit

00EAC05132 kWIN=135 A

00EAC04132 kWIN=135 A

Ligh

ting

Sto

ckpi

le A

100A

Ligh

ting

Sto

ckpi

le B

100A

Ligh

ting

& P

ower

so

cket

s Tr

ansf

er

Tow

ers

100A

Ligh

ting

& P

ower

so

cket

s Tr

ansf

er

Tow

ers

100A

00EAU0249kW

500m

, 70m

50m

, 2 x

95m

320m

, 185

mm

²

60m

, 25m

115m

, 35m

242m

, 35m

190m

, 50m

520m

, 150

mm

²

350m

, 95m

595m

, 95m

390m

, 2 x

95m

500m

, 70m

60m

, 2 x

95m

320m

, 185

mm

²

60m

, 25m

115m

, 35m

242m

, 35m

190m

, 50m

670m

, 2 x

95m

470m

, 120

mm

²

400m

, 2 x

120

mm

²

00EAE0175 kWIN=80 A

605m

, 95m

00EAE0275 kWIN=80 A

00EAA02

400m

, 35m

IR=80 A

M3 ~

IR=250 A

M3 ~

IR=63 A

M3 ~

IR=100 A

M3 ~

IR=400 A

M3 ~

IR=125 A

M3 ~

IR=315 AIR=80 AIR=200 A

M3 ~

IR=160 A

M3 ~

IR=80 A IR=250 A IR=63 A IR=100 A IR=400 A IR=125 A IR=315 AIR=80 AIR=200 A IR=160 A

690V 3ph, 4 wire, 50Hz, Ikmax= 43 kA400V 3ph, 4 wire, 50Hz, Ikmax = 15kA

* = intelligent motor protection relay

I=200A*I=80A*I=114A*I=400A*I=95A*I=58A*I=250A*I=80 A*

M3 ~

M3 ~

M3 ~

M3 ~

M3 ~

M3 ~

M3 ~

M3 ~

Cap

acito

rba

nkNOTE:

Fuses for motor protection aM caracteristicFuses for switchgear protection gL/gG caracteristic

IR=2500 AI > IR=2500 AI >

IR=1600 A

I >

IR=630 AI > IR=630 AI >

IR=400 A

I >

** IKMAX if tie breaker is closed and one transformer supply both busbar, worsed case

Page 3: Single Line Diagram

LV-CB 1.1A.1bCircuit-breakerIn =2.500 A

LV-B 1.1A.1Busbar5 mLDA5623

Transformer 1.1A.1Sn = 2.500 kVAukr = 6 %10/0,69 kV Dyn5

CB 1.1A.1aCircuit-breakerIn = 500 A

C 1.1A.1CapacitorQn =500 kvarUn =690 V

C/L 1.1A.2Cable/Line500 mCu 1(3x70/-/35)

00EAC10MotorIn = 77,6 AUn = 690 V3-pole

3~

C/L 1.1A.3Cable/Line320 mCu 1(3x150/-/70)

00EAC09MotorIn = 250 AUn = 690 V3-pole

3~

C/L 1.1A.4Cable/Line60 mCu 1(3x25/-/25)

00EAC08MotorIn = 56,9 AUn = 690 V3-pole

3~

C/L 1.1A.5Cable/Line60 mCu 2(3x95/-/50)

00EAC01MotorIn = 400 AUn = 690 V3-pole

3~

C/L 1.1A.6Cable/Line115 mCu 1(3x35/-/16)

00EAC02MotorIn = 93,1 AUn = 690 V3-pole

3~

C/L 1.1A.7Cable/Line190 mCu 1(3x50/-/25)

00EAC06MotorIn = 111 AUn = 690 V3-pole

3~

C/L 1.1A.8Cable/Line506 mCu 1(3x70/-/35)

00EAD01Outer zoneIn = 100 AUn = 690 V3-pole

C/L 1.1A.10Cable/Line566 mCu 2(3x95/-/50)

00EAF01Outer zoneIn = 181 AUn = 690 V3-pole

C/L 1.1A.11Cable/Line520 mCu 1(3x150/-/70)

00EAC05MotorIn = 133 AUn = 690 V3-pole

3~

C/L 1.1A.12Cable/Line595 mCu 1(3x95/-/50)

00EAE01MotorIn = 76,6 AUn = 690 V3-pole

3~

LVMD 1.1A

TN-S Un = 690 V

CB

1.1

ABa

Cir

cuit-b

reake

rIn

=2.5

00

A

LV-CB 1.1B.1bCircuit-breakerIn =2.500 A

LV-B 1.1B.1Busbar5 mLDA5623

Transformer 1.1B.1Sn = 2.500 kVAukr = 6 %10/0,69 kV Dyn5

C/L 1.1B.1Cable/Line500 mCu 1(3x70/-/70)

00EAC20MotorIn = 78,4 AUn = 690 V3-pole

3~

C/L 1.1B.2Cable/Line320 mCu 1(3x185/-/95)

00EAC19MotorIn = 250 AUn = 690 V3-pole

3~

C/L 1.1B.3Cable/Line60 mCu 1(3x25/-/25)

00EAC18MotorIn = 56,9 AUn = 690 V3-pole

3~

C/L 1.1B.4Cable/Line115 mCu 1(3x35/-/35)

00EAC12MotorIn = 93,1 AUn = 690 V3-pole

3~

C/L 1.1B.5Cable/Line50 mCu 2(3x95/-/50)

00EAC11MotorIn = 400 AUn = 690 V3-pole

3~

C/L 1.1B.6Cable/Line190 mCu 1(3x50/-/25)

00EAC07MotorIn = 111 AUn = 690 V3-pole

3~

C/L 1.1B.7Cable/Line632 mCu 1(3x120/-/120)

00EAD02Outer zoneIn = 100 AUn = 690 V3-pole

C/L 1.1B.8Cable/Line566 mCu 1(3x70/-/70)

00EAE02MotorIn = 76,7 AUn = 690 V3-pole

3~

C/L 1.1B.9Cable/Line566 mCu 2(3x95/-/50)

00EAF02Outer zoneIn = 181 AUn = 690 V3-pole

C/L 1.1B.10Cable/Line632 mCu 2(3x95/-/50)

00EAC04MotorIn = 133 AUn = 690 V3-pole

3~

CB 1.1B.11aCircuit-breakerIn =500 A

C 1.1B.11CapacitorQn = 500 kvarUn = 690 V

LVMD 1.1B

TN-S Un = 690 V

1

H

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 87

G

F

E

D

C

B

A

H

G

F

E

D

C

B

A

9 10 11 12

Project name:

VA1-FLS-100-E-M2-DSL-0600

Client:

Lilama PVN

Design office:

FLSmidth MVT

Planner:

mal-deLocation:

VietnamCreated on:

12/4/09Changed on:

1/5/10

SIMARIS design 5.0.1102

Page 4: Single Line Diagram

LV-CB 1.1A.1bIR =2.250 A

LV-B 1.1A.1Iz =2.500 Aftot = 1Ib =1.022 A

Transformer 1.1A.1In1 = 144 AIn2 =2.092 AΔu = 0,908 %

CB 1.1A.1aIR = 450 A

C 1.1A.1Qe = 400 kvarcos(φ) = 0,119 (cap.)ΣΔu = 0,0433 %

C/L 1.1A.2Iz =183 Aftot = 0,8Ib = 77,6 A

00EAC10Pmech = 75 kWcos(φ) = 0,87 (ind.)ΣΔu = 2,67 %ΣΔu dyn. = 9,9 %

3~

C/L 1.1A.3Iz = 297 Aftot = 0,8Ib = 250 A

00EAC09Pmech = 250 kWcos(φ) = 0,9 (ind.)ΣΔu = 2,94 %ΣΔu dyn. = 9,79 %

3~

C/L 1.1A.4Iz =95,2 Aftot = 0,8Ib =56,9 A

00EAC08Pmech = 55 kWcos(φ) = 0,87 (ind.)ΣΔu = 0,636 %ΣΔu dyn. = 2,11 %

3~

C/L 1.1A.5Iz = 445 Aftot = 0,8Ib = 400 A

00EAC01Pmech = 400 kWcos(φ) = 0,89 (ind.)ΣΔu = 0,324 %ΣΔu dyn. = 2,95 %

3~

C/L 1.1A.6Iz =118 Aftot = 0,8Ib = 93,1 A

00EAC02Pmech = 90 kWcos(φ) = 0,87 (ind.)ΣΔu = 1,4 %ΣΔu dyn. = 5 %

3~

C/L 1.1A.7Iz =143 Aftot = 0,8Ib =111 A

00EAC06Pmech =110 kWcos(φ) = 0,88 (ind.)ΣΔu = 1,98 %ΣΔu dyn. = 8,88 %

3~

C/L 1.1A.8Iz =183 Aftot = 0,8Ib =100 A

00EAD01P =95,6 kWcos(φ) = 0,8 (ind.)ΣΔu = 3,7 %

C/L 1.1A.10Iz = 445 Aftot = 0,8Ib = 181 A

00EAF01P =193 kWcos(φ) = 0,89 (ind.)ΣΔu = 3,05 %

C/L 1.1A.11Iz = 297 Aftot = 0,8Ib = 133 A

00EAC05Pmech =132 kWcos(φ) = 0,88 (ind.)ΣΔu = 2,55 %ΣΔu dyn. = 10 %

3~

C/L 1.1A.12Iz = 222 Aftot = 0,8Ib = 76,6 A

00EAE01Pmech = 75 kWcos(φ) = 0,89 (ind.)ΣΔu = 0,31 %ΣΔu dyn. = 9,79 %

3~

LVMD 1.1A

Ib =1.022 Acos(φ) = 0,983 (ind.)ΣΔu = 0,0433 %gi = 1

CB

1.1

ABa

IR=

1.1

25

A LV-CB 1.1B.1bIR =2.250 A

LV-B 1.1B.1Iz =2.500 Aftot = 1Ib =1.023 A

Transformer 1.1B.1In1 = 144 AIn2 =2.092 AΔu = 0,909 %

C/L 1.1B.1Iz =183 Aftot = 0,8Ib = 78,4 A

00EAC20Pmech = 75 kWcos(φ) = 0,87 (ind.)ΣΔu = 2,7 %ΣΔu dyn. = 9,44 %

3~

C/L 1.1B.2Iz = 339 Aftot = 0,8Ib = 250 A

00EAC19Pmech = 250 kWcos(φ) = 0,9 (ind.)ΣΔu = 2,52 %ΣΔu dyn. = 9,73 %

3~

C/L 1.1B.3Iz =95,2 Aftot = 0,8Ib =56,9 A

00EAC18Pmech = 55 kWcos(φ) = 0,87 (ind.)ΣΔu = 0,636 %ΣΔu dyn. = 2,11 %

3~

C/L 1.1B.4Iz =118 Aftot = 0,8Ib = 93,1 A

00EAC12Pmech = 90 kWcos(φ) = 0,87 (ind.)ΣΔu = 1,4 %ΣΔu dyn. = 5 %

3~

C/L 1.1B.5Iz = 445 Aftot = 0,8Ib = 400 A

00EAC11Pmech = 400 kWcos(φ) = 0,89 (ind.)ΣΔu = 0,277 %ΣΔu dyn. = 2,46 %

3~

C/L 1.1B.6Iz =143 Aftot = 0,8Ib =111 A

00EAC07Pmech =110 kWcos(φ) = 0,88 (ind.)ΣΔu = 1,98 %ΣΔu dyn. = 7,62 %

3~

C/L 1.1B.7Iz = 258 Aftot = 0,8Ib = 100 A

00EAD02P =95,6 kWcos(φ) = 0,8 (ind.)ΣΔu = 3 %

C/L 1.1B.8Iz =183 Aftot = 0,8Ib = 76,7 A

00EAE02Pmech = 75 kWcos(φ) = 0,88 (ind.)ΣΔu = 0,371 %ΣΔu dyn. = 9,82 %

3~

C/L 1.1B.9Iz = 445 Aftot = 0,8Ib = 181 A

00EAF02P =193 kWcos(φ) = 0,89 (ind.)ΣΔu = 3,05 %

C/L 1.1B.10Iz = 445 Aftot = 0,8Ib = 133 A

00EAC04Pmech =132 kWcos(φ) = 0,88 (ind.)ΣΔu = 2,25 %ΣΔu dyn. = 9,36 %

3~

CB 1.1B.11aIR = 450 A

C 1.1B.11Qe = 400 kvarcos(φ) = 0,119 (cap.)ΣΔu = 0,0433 %

LVMD 1.1B

Ib =1.023 Acos(φ) = 0,983 (ind.)ΣΔu = 0,0433 %gi = 1

1

H

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 87

G

F

E

D

C

B

A

H

G

F

E

D

C

B

A

9 10 11 12

Project name:

VA1-FLS-100-E-M2-DSL-0600

Client:

Lilama PVN

Design office:

FLSmidth MVT

Planner:

mal-deLocation:

VietnamCreated on:

12/4/09Changed on:

1/5/10

SIMARIS design 5.0.1102

Page 5: Single Line Diagram
Page 6: Single Line Diagram

S =1.221,7 kVAP =1.200,8 kWQ = -224,5 kvarIbs =1.022,2 A

S = 402,9 kVAP = 48,0 kWQ =400,0 kvarIbs =337,1 A(L1,L2,L3)

S = 92,7 kVAP = 80,6 kWQ =-45,7 kvarIbs = 69,8 A(L1, L2, L3)

3~

S = 298,7 kVAP = 268,8 kWQ =-130,2 kvarIbs = 224,9 A(L1, L2, L3)

3~

S = 68,0 kVAP = 59,1 kWQ =-33,5 kvarIbs = 51,2 A(L1, L2, L3)

3~

S = 478,1 kVAP = 425,5 kWQ =-218,0 kvarIbs = 160,0 A(L1, L2, L3)

3~

S =111,2 kVAP = 96,8 kWQ = -54,8 kvarIbs = 83,8 A(L1, L2, L3)

3~

S =133,0 kVAP =117,0 kWQ = -63,2 kvarIbs =100,1 A(L1, L2, L3)

3~

S =119,5 kVAP = 95,6 kWQ = -71,7 kvarIbs =100,0 A(L1, L2, L3)

S = 216,9 kVAP = 193,0 kWQ = -98,9 kvarIbs = 181,5 A(L1, L2, L3)

S =158,7 kVAP =139,7 kWQ = -75,4 kvarIbs =119,5 A(L1, L2, L3)

3~

S = 91,6 kVAP = 81,5 kWQ =-41,8 kvarIbs = 7,7 A(L1, L2, L3)

3~

LVMD 1.1A

S =1.221,7 kVAP =1.200,8 kWQ = -224,5 kvarIbs =1.022,2 A

S =1.222,5 kVAP =1.201,5 kWQ = -225,1 kvarIbs =1.022,9 A

S = 93,7 kVAP = 81,5 kWQ =-46,2 kvarIbs = 70,6 A(L1, L2, L3)

3~

S = 298,7 kVAP = 268,8 kWQ =-130,2 kvarIbs = 224,9 A(L1, L2, L3)

3~

S = 68,0 kVAP = 59,1 kWQ =-33,5 kvarIbs = 51,2 A(L1, L2, L3)

3~

S =111,2 kVAP = 96,8 kWQ = -54,8 kvarIbs = 83,8 A(L1, L2, L3)

3~

S = 478,1 kVAP = 425,5 kWQ =-218,0 kvarIbs = 160,0 A(L1, L2, L3)

3~

S =133,0 kVAP =117,0 kWQ = -63,2 kvarIbs =100,1 A(L1, L2, L3)

3~

S =119,5 kVAP = 95,6 kWQ = -71,7 kvarIbs =100,0 A(L1, L2, L3)

S = 91,6 kVAP = 80,6 kWQ =-43,5 kvarIbs = 7,7 A(L1, L2, L3)

3~

S =216,9 kVAP =193,0 kWQ = -98,9 kvarIbs =181,5 A(L1, L2, L3)

S =158,7 kVAP =139,7 kWQ = -75,4 kvarIbs =119,5 A(L1, L2, L3)

3~

S =402,9 kVAP = 48,0 kWQ =400,0 kvarIbs =337,1 A(L1,L2,L3)

LVMD 1.1B

S =1.222,5 kVAP =1.201,5 kWQ = -225,1 kvarIbs =1.022,9 A

1

H

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 87

G

F

E

D

C

B

A

H

G

F

E

D

C

B

A

9 10 11 12

Project name:

VA1-FLS-100-E-M2-DSL-0600

Client:

Lilama PVN

Design office:

FLSmidth MVT

Planner:

mal-deLocation:

VietnamCreated on:

12/4/09Changed on:

1/5/10

SIMARIS design 5.0.1102

Page 7: Single Line Diagram

4.6 Explanation of formulaic symbols

Symbol [unit] Description

η Efficiency

ϕ1ph_n [°] Phase angle at Ik1ph_n min/max

ϕ1ph_pe [°] Phase angle at Ik1ph_pe min/max

ϕ1 min/max [°] Phase angle at Ik1 min/max

ϕ2 [°] Phase angle at Ik2min

ϕ3 [°] Phase angle at Ik3 min/max

ϕ3 min/max [°] Phase angle at Ik3 min/max

ϕmotor [°] Phase angle at Ikmotor

Δu [%] Relative voltage drop between the beginning and end of a line section

ΔU [V] Relative voltage drop between the beginning and end of a line section

Δu_tr [%] Relative voltage drop over the transformer winding

ΔU_tr [V] Absolute voltage drop over the transformer win-ding

∑Δu [%] Summated relative voltage drop up to a given point with/without voltage drop over the transfor-mer winding according to the selected settings

∑ΔU [V] Summated absolute voltage drop up to a given point with/without voltage drop over the transfor-mer winding according to the selected settings

∑Δu dyn. [%] Summated relative voltage drop at the starting motor with/without voltage drop over the transfor-mer winding according to the selected settings

Page 8: Single Line Diagram

∑ΔU dyn. [V] Summated absolute voltage drop at the starting motor with/without voltage drop over the transfor-mer winding according to the selected settings

ai Capacity factor c min/max Minimum/maximum voltage factor in accordance

with IEC 60909-0

cos(ϕ), Power factor F1 The indicated short-circuit current refers to a fault

in the medium-voltage busbar F2 The indicated short-circuit current refers to a fault

at the primary side of the transformer F3 The indicated short-circuit current refers to a fault

at the secondary side of the transformer ftot Reduction factor fn [Hz] Nominal frequency gf Simultaneity factor gi Simultaneity factor I> [A] Phase energizing current of overcurrent module of

DMT relay I> [A] Phase energizing current of high-current module

of DMT relay I2 [A] Conventional fusing current I2t [kA2s] Let-through energy I2t a [kA2s] Let-through energy downstream of the lower

switching device or at the target distribution board / consumer

I2t b [kA2s] Let-through energy upstream of the lower switch-ing device

I2t c [kA2s] Let-through energy downstream of the upper switching device

I2t d [kA2s] Let-through energy at the output distribution board or upstream of the upper switching device

I2t(Ii) [kA2s] Let-through energy of the switching device at the transition to the I-release

I2t(Ikmax) [kA2s] Let-through energy of the switching device in the event of maximum short-circuit current

I2t(Ikmin) [kA2s] Let-through energy of the switching device in the event of minimum short-circuit current

I2t(RCD) [kA2s] Rated let-through energy of RCD I2t(fuse) [kA2s] Let-through energy of fuse

Page 9: Single Line Diagram

I2t(soll) [kA2s] Let-through energy requirement on the connecting line

I2t value Let-through energy of the switching device at Ik-max from the characteristic curve file

I²tmax(base) [kA2s] Permissible I2t value of the fuse base Ia/In Starting current ratio Ib [A] Operating current Ibb [A] Reactive load current Ibel [A] Load current Ibem [A] Rated set-point current of the switching device Ibs [A] Apparent load current Ibw [A] Active load current Îc value [kA] Cut-off current of the switching device at Ikmax

from the characteristic curve file (instantaneous value)

Ic (fuse) [kA] Cut-off current of the fuse Icm [kA] Rated short-circuit making capacity Icmax (base) [kA] Rated short-circuit current of the fuse base Icn [kA] Rated short-circuit breaking capacity acc. to IEC

60898-1 Icu [kA] Rated ultimate short-circuit breaking capacity acc.

to IEC 60947-2 Icu korr a [kA] Requirement on the rated ultimate short-circuit

breaking capacity downstream of the lower switch-ing device or at the target distribution board (con-trolled short-circuit current)

Icu korr b [kA] Requirement on the rated ultimate short-circuit breaking capacity upstream of the lower switching device (controlled short-circuit current)

Icu korr c [kA] Requirement on the rated ultimate short-circuit breaking capacity downstream of the upper switching device (controlled short-circuit current)

Icu korr d [kA] Requirement on the rated ultimate short-circuit breaking capacity at the output distribution board or upstream of the upper switching device (con-trolled short-circuit current)

Icu(fuse) [kA] Rated ultimate short-circuit breaking capacity - fuse

Icu/Icn [kA] required Required short-circuit breaking capacity for the protective device at the mounting location

Icw 1s [kA] Rated short-time withstand current 1s

Page 10: Single Line Diagram

Ie [A] Earth energizing current of the DMT relay Ig [A] Setting value of the release for earth fault detec-

tion Igb [A] Total reactive current Igs [A] Total apparent current Igw [A] Total active current IHHmin [A] Minimum tripping current of the high-voltage high-

rupturing capacity fuse Ii [A] Setting value of instantaneous short-circuit (I)-

release Ik1D [kA] 1-pole continuous short-circuit current Ik1max [kA] Maximum 1-pole short-circuit current Ik1max(F1) [kA] Maximum 1-pole short-circuit current in the event

of a fault in the medium-voltage busbar Ik1maxph_n [kA] Maximum 1-pole short-circuit current phase to

neutral conductor Ik1maxph_pe [kA] Maximum 1-pole short-circuit current phase to pro-

tective conductor Ik1max [kA] Minimum 1-pole short-circuit current Ik1min(F2) [kA] Minimum 1-pole short-circuit current in the event

of a fault at the transformer primary side Ik1min(F3) [kA] Minimum 1-pole short-circuit current in the event

of a fault at the transformer secondary side Ik1minph_n [kA] Minimum 1-pole short-circuit current phase to neu-

tral conductor Ik1minph_pe [kA] Minimum 1-pole short-circuit current phase to pro-

tective conductor Ik2min [A] Minimum 2-pole short-circuit current Ik2min(F2) [kA] Minimum 2-pole short-circuit current in the event

of a fault at the transformer primary side Ik2min(F3) [kA] Minimum 2-pole short-circuit current in the event

of a fault at the transformer secondary side Ik3(F3) [kA] 3-pole short-circuit current in the event of a fault at

the transformer secondary side Ik3D [kA] 3-pole continuous short-circuit current Ik3max [kA] Maximum 3-pole short-circuit current Ik3max(F1) [kA] Maximum 3-pole short-circuit current in the event

of a fault in the medium-voltage busbar Ik3min [kA] Minimum 3-pole short-circuit current

Page 11: Single Line Diagram

Ikmax [A] Maximum short-circuit current of all short-circuit currents

Ikmax a [kA] Maximum short-circuit current downstream of the lower switching device or at the target distribution board (uncontrolled short-circuit current)

Ikmax b [kA] Maximum short-circuit current upstream of the lower switching device (uncontrolled short-circuit current)

Ikmax c [kA] Maximum short-circuit current downstream of the upper switching device (uncontrolled short-circuit current)

Ikmax d [kA] Maximum short-circuit current at the output distri-bution board or upstream of the upper switching device (uncontrolled short-circuit current)

Ikmax/Ikmin Ratio of maximum/minimum short-circuit current Ikmin [A] Minimum short-circuit current of all short-circuit

currents Ikmotor [kA] 3-pole short-circuit current proportion of the motor Ikre Factor of energetic recovery – short-circuit current Imax [A] Maximum rated current of busbar system In [A] Nominal/rated current In (RCD) [mA] Rated current of RCD In (switch) [A] Nominal/rated current of medium-voltage switch-

gear In (fuse) [A] Nominal/rated current of medium-voltage fuse In max [A] Rated device current at 40 °C standard temperatu-

re In zul [A] Permissible switch load according to ambient

temperature In1 [A] Rated current of transformer, primary side In2 [A] Rated current of transformer, secondary side In [A] Rated transformer current at nominal power Ipk [kA] Peak short-circuit current Iq [kA] Conditional rated short-circuit current - motor

starter combination IR [A] Setting value for overload (L)-release Isd [A] Setting value of short-time delayed short-circuit

(S)-release Isel-kurz [A] Calculated selectivity limit value between Ikmin

and Ikmax

Page 12: Single Line Diagram

Isel-über [A] Calculated selectivity limit value in range less than Ikmin

Iz, Izul [A] Permissible load current of a connecting line IΔn [mA] Rated earth-fault current – RCD protection L Phase L1 Phase 1 L2 Phase 2 L3 Phase 3 max Maximum min Minimum MRPD Machine-readable product designation MV Medium voltage N Neutral conductor LV Low voltage P [kW] Active power, electric PE Protective conductor Pk [kW] Short-circuit losses Pmech [kW] Active power, mechanical Pn [kW] Nominal active power P0, Pv [kW] No-load losses, loss power (active) pz Number of poles, switchgear Q [kvar] Reactive power Qe [kvar] Effective reactive capacitor power Qn [kvar] Nominal reactive power R/X Ratio of resistance to reactance R0 [mΩ] Resistance in the zero phase-sequence system R0 min/max [mΩ] Minimum/maximum resistance in the zero phase-

sequence system R0 N [mΩ] Resistance in the zero phase-sequence system

Phase - N R0 PE(N) [mΩ] Resistance in the zero phase-sequence system

Phase - PE(N)

R0ΔU [mΩ] Resistance in the zero phase-sequence system for the voltage drop

R0/R1 Resistance ratio of zero/positive phase-sequence system

Page 13: Single Line Diagram

r0ph-n [mΩ/m] Specific active resistance of the zero phase-sequence system for the phase to neutral conduc-tor loop

r0ph-pe(n) [mΩ/m] Specific active resistance of the zero-phase-sequence system for the phase to protective con-ductor loop

r1 [mΩ/m] Specific active resistance of positive phase-sequence system

r1 [%] Related resistance value in the positive phase-sequence system

R1 [mΩ] Resistance in the positive phase-sequence sys-tem

R1ΔU [mΩ] Resistance in the positive phase-sequence sys-tem for the voltage drop

R1 min/max [mΩ] Minimum/maximum resistance in the positive phase-sequence system

Ra+Rb max [mΩ] Sum of resistances of the earth electrode and possibly wired protective conductor between ex-posed conductive part and earth in the IT or TT network

R0 min/max [mΩ] Minimum/maximum loop resistance S [kVA] Apparent power S2K2 Thermal fault withstand capability of the cable

S [kVA] Nominal apparent power SnT [kVA] Nominal apparent power of transformer t> [s] Delay time for the overcurrent module of DMT re-

lay t>> [s] Delay time for the high-current module of DMT re-

lay ta zul (Ii) [s] Permissible switch disconnection time for the set-

ting value of the I-release, without violating the condition k2S2>I2t

ta zul (Ikmax) [s] Permissible switch disconnection time at maxi-mum short-circuit current, without violating the condition k2S2>I2t

ta zul (Ikmin) [s] Permissible switch disconnection time at minimum short-circuit current, without violating the condition k2S2>I2t

ta zul ABS [s] Permissible disconnection time in compliance with DIN VDE 0100-410 (IEC 60364-4-41)

ta zul beeinfl [s] Controlled permissible switch disconnection time ta(min abs) [s] Switchgear disconnection time for disconnect

condition

Page 14: Single Line Diagram

ta(min kzs) [s] Switchgear disconnection time for short-circuit protection

ta_max [s] Maximum disconnection time of the switchgear to be evaluated

te [s] Delay time of the earth energizing current of the DMT relay

tg [s] Time value of the G-release (absolute) tR [s] Time value of the L-release tsd [s] Time value of the S-release Tu [°C] Ambient device temperature ukr [%] Short-circuit voltage Umax [V] Maximum rated voltage of the busbar system Un [V] Nominal voltage Uprim [kV] Primary voltage Usec [V] Secondary voltage LVSD Low-voltage sub-distribution (system) V Load X0 min/max [mΩ] Minimum/maximum reactance in the zero phase-

sequence system X0 N [mΩ] Reactance of phase-N in the zero phase-

sequence system X0 PE(N) [mΩ] Reactance of phase-PE(N) in the zero phase-

sequence system

X0ΔU [mΩ] Reactance of the zero phase-sequence system for voltage drop, independent of temperature

X0/X1 Reactance ratio of zero/positive phase-sequence system

x0ph-n [mΩ/m] Specific reactive resistance of the zero phase-sequence system for the phase to neutral conduc-tor loop

x0ph-pe(n) [mΩ/m] Specific reactive resistance of the zero-phase-sequence system for the phase to protective con-ductor loop

x1 [mΩ/m] Specific reactive resistance of positive phase-sequence system

X1 [mΩ] Reactance in the positive phase-sequence system X0 min/max [mΩ] Minimum/maximum reactance in the positive

phase-sequence system

X1ΔU [mΩ] Reactance in the positive phase-sequence system for the voltage drop

Page 15: Single Line Diagram

xd“ [%] Subtransient reactance Xs min/max [mΩ] Minimum/maximum loop reactance Z0 [mΩ] Impedance of zero phase-sequence system Z0 min/max [mΩ] Minimum/maximum impedance in the zero phase-

sequence system

Z0ΔU [mΩ] Impedance in the zero phase-sequence system for the voltage drop

Z1 [mΩ] Impedance of positive phase-sequence system Z1 min/max [mΩ] Minimum/maximum impedance in the positive

phase-sequence system

Z1ΔU [mΩ] Impedance in the positive phase-sequence sys-tem for the voltage drop

Zs Loop impedance Zs min/max Minimum/maximum loop resistance