Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

Embed Size (px)

Citation preview

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    1/12

    Foot Plate

    A. GENERAL

    1 Tower Height (m) = 72 m

    2 Soil Class =

    B. LOADINGS, Unfactored

    Vertical load (kN) All VALUES ARE UNFACTORED

    Condition Hx - kN Hy - kN F - kN

    Max Compression = 47.939 46.269 745.950

    Max Tension = -48.016 -48.228 -617.464

    C. MATERIAL PROPERTIES

    1 Soil angle of friction / frustum angle () = 250

    [But this value should be EXACTLY 30 per TIA

    2 Soil density (gs) = 1600 kg/m3 = 15.70 kN/m3 [But this v

    3 Allowable soil bearing cap (all) = 1 kg/cm2

    = 98.10 kN/m2

    4 Concrete density (gc) = 2400 kg/m3

    = 23.54 kN/m3

    5 Surcharge (If any) Sur = 0.1 kg/cm2

    = 9.81 kN/m2

    6 Soil Type = Clean fine sand, silty or clayey fine to medium sand.

    7 Soil angle of friction (Drained condition) (') = 250

    8 Soil angle of friction (Undrained condition) (T) =0

    D. DIMENSIONS

    1 Pad / Footing

    Footing Outer width / Length (BO) = 4.25 m

    Footing Thickness (hp) or (T) = 0.5 m

    2 Overall soil depth, above pad (h) = 2.45 m

    Height of chimney above GL (h1) = 0.4 m

    3 Chimney / Pedestal size/width (bc) = 0.6 m

    4 Min of tower base width (Bb) = 7 m

    5 Total depth (hp+h) = 2.95 m

    5 Checking of free space between soil frustum, at GL

    Add, width, due to soil frustum (Ba) = 1.14 m

    Free space (sf) = -1.61 < 0 use eff frustum angle

    Effective add width, due to soil frustum (Ba') = 1.14 m

    Effective soil frustum angle (') = 25O

    Width total frustum (Bt) = 6.53

    E. UPLIFT CAPACITY

    1 Concrete

    Volume above GL (Vch1) = 0.14 m

    Volume within frustum (Vch2) = 0.882 m

    Volume below frustum (Vp) = 9.03125 m3

    Vol. chimney / Pedestal (Vch1+Vch2) = 1.03 m

    Counter Weight (Not Surcharge) (Cw) = 0.00 m3

    Vol concrete total (Vc) = 10.06 m

    Concrete weigth (Wc) = 236.79 kN

    2 Soil Weight Calculation

    A Method A

    Volume Soil Cone (Vcone) = 29.05 m Eq OK

    Volume of Soil just above the footing (Vsoil) = 43.37 m

    Total Volume Soil (Vs) = 72.42 m

    Soil weight (Method A, Ws) = 1137 kN

    B Method B

    Volume Soil Cone Qu = 14.73 m3

    Single footing - Subjected to Compressive & Tensile Force (P), Shear Force (V) (No Moment)

    Design Code TIA/EIA 222 F, ACI 318-99)

    DESIGN CALCULATION OF

    M=HR.h

    Bo

    hp

    h

    h1Ba

    Bt

    195993455.xls.ms_office 12/16/2013 1 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    2/12

    Foot Plate

    Volume of Soil just above the footing (Vsoil) = 43.37 m

    Total Volume Soil (Vs) = 58.10 m

    Soil weight (Method B, Ws) = 912 kN [Coefficient of lateral earth pressure K = 0.5]

    Total Soil Volume (Smaller of Method A & B) 912 kNSo Final Soil weight (Ws) = 912 kN

    3 Checking of uplift Capacity

    Total weight resisting uplift (Wc+Ws) = 1149 kN > 617.464 kN 1.86

    222F Code provision for uplift Check - 1 (Wc+Ws)/1.5 = 766 > 617.464 ...OK

    222F Code provision for uplift Check - 2 (Wc/1.25+Ws/2) = 645 > 617.464 ...OK

    F. BEARING CAPACITY

    1 Vertical Load from tower base (Downward) (Fc) = 745.95 kN

    Concrete weight (Excluding soil weight) (Wc') = 78.93 kN

    Maximum vertical load - (Compression Force) N max = 824.88 kN

    Minimum vertical load - (Tension Force) N min = Tension force need NOT to be checked for bearing, if compression

    Wind load combined with Load Combination? = Yes

    2 Bending momnet, due to Sliding / Shear force

    My = 160.60 kN e1 or ex = 0.195 Bo/6 = 0.708

    Mx = 155.00 kN e2 or ey = 0.188 Bo/6 = 0.708

    A Remember, Here footing has been designed for ONE WAY ECCENTRICITY (Uniaxial Moment), SO it should be checked for Mx,ex first

    then again in another calculation the footing should be checked for My, ey (Here calculation for My, ey has not been shown)

    (max) = 67.59 < 130.47 kN/m2 ...OK

    qs = surcharge

    T = Footing thickness

    (min) = 43.36 < 130.47 kN/m2 ...OK

    B For TWO WAY ECCENTRICITY (Biaxial Moment), below eq 1 must be satisfied FIRST. Most tower has biaxial moment for single

    footing / Pile. If eq 1) passes then use eq 2) to calculate the footing's 4 corner pressure, otherwise increase footing size.

    Eq 1) If this dont satisfy then increase footing size

    Here, Wf Weigth of footing

    c1 & c2 B and L

    Eq 2) ( another eq is max = P / Az + P*e1*c1/I1 + P*e2*c2/I2)

    (max) = 70.34 kN/m2

    < 130.47 kN/m2

    ...OK

    G. SLIDING (Sliding is important for Tower, specially Monopole or guyed pole or tapered pole)

    Coefficient of friction, From table = 0.35 - 0.45 Input manually

    Coefficient of friction, From Eq = tan (0.7*')

    = 0.296

    Finally use = 0.35

    Allowable Coefficient of friction (SF = 1.5 ~ 2) a = / SF

    a = 0.233

    ( )

    ( )

    61

    0.15 ,6

    20.15 ,

    3 (0.5 ) 6

    ss

    MAX

    ss

    eP

    LLT for eq w

    q BL

    P LT for eq w

    B L e

    +

    ++-=

    ++->-

    195993455.xls.ms_office 12/16/2013 2 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    3/12

    Foot Plate

    Alloable equivalent passive fluid density a = Page 278, Donald P. Coduto

    a = 113.193 lb/ft2 Foundation Design, Pprinciples and Practice

    Note Factor of safety for is 1.5 to 2

    Note Factor of safety for is 2 to 3

    Here is 110 cft

    Vfa =

    Case 1, Considering Compression Force, Down Downward P = 167.70 kip Page 278, Donald P. Coduto

    Case 2, Considering Tension Force, Upward Upward P = -138.81 kip Foundation Design, Pprinciples and Practice

    Footing Weight = 17.74 kip

    Footing Length B 13.94 ft

    Footing Depth 9.68 ft

    Developed shear at tower / pole / guy leg. V = 10.79 kip

    Case 1 Vfa, case 1 = 117.20 kip < V ok

    Case 2 Vfa, case 2 = 45.68 kip < V ok

    Factor of safety SF (Min 1.5 by TIA 222F code) SF (Case 1) = = 10.86

    Factor of safety SF (Min 1.5 by TIA 222F code) SF (Case 2) = = 4.23

    H. OVERTURNING MOMENT

    1 Resultan horizontal load (HR) = 66.63 kN

    2 Moment overturning (Mov) = 223.20 kN < 1128.92 kN3 Moment resisting (Mres) = 1128.92 kN

    4 Factor of safety SF (Min 1.5 by TIA 222F code) SF = 5.06 > 1.50 ok

    I. DESIGN OF PAD

    1 Concrete cover (d') = 70 mm

    2 Material Grade

    Concrete K-175 (fc') = 20.68 MPa 3.00 ksi

    Steel Reinforcing Bar (U-39) (fy) = 413 MPa 59.90 ksi

    3 Bending Moment

    Pad cantilever length (lc) = 1.825 m

    Compression

    Soil pressure at the perpendicular side of chimney

    Maximum (c)max = 67.59 kN/m2

    Minimum (c)min = 43.36 kN/m2

    Ultimate bending moment (Mu) = 99.11 kNm for 1 m' span

    Uplift

    Soil pressure at the perpendicular side of chimney

    Design uplift pressure (up) = -34.18 kN/m2

    Ultimate bending moment (Mu) = -56.93 kNm for 1 m' span

    4 Reinforced concrete design for bending

    min = 0.00366

    max = 0.75*b

    max = 0.01607

    = 0.85 = 0.8

    Upper pad

    Mn (Mu/) = -71.16 kN db = 16 mm

    Design width (b) = 1000 mm As1 = 201.06 mm2

    Effective depth (d) = 430 mm

    Rn Rn=Mn/bd2

    = -0.38

    Required area ratio of bar (req) = -0.0024

    Required area of bar (Asreq) = -1042.35 mm

    Spacing s=As1/Asreqxb = -192.89 mm Use D 16 - 136

    Lower pad

    Mn (Mu/) = 123.89 kN db = 16 mm

    Design width (b) = 1000 mm As1 = 201.06 mm2

    Effective depth (d) = 430 mm

    Rn Rn=Mn/bd2

    = 0.67

    Required area ratio of bar (req) = 0.0042 Use 0.004220356

    Required area of bar (Asreq) = 1814.75 mm

    Spacing s=As1/Asreqxb = 110.79 mm Use D 16 - 136

    nos = 30.22 Use 22

    Development length

    Minimun development length = 300 mm

    Below p arts havent yet been checked.

    195993455.xls.ms_office 12/16/2013 3 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    4/12

    Foot Plate

    Basic 0.02.As.fy/(fc')0.5

    = 365 mm

    Minimum 0.06.db.fy = 11 mm

    Available development length ldb = 430 mm

    5 Concrete Bearing Capacity

    A1 = 0.36 m ab = 2

    A2 = 18.0625 m2

    f = 0.7

    Max load on the center of cap, (Fc)ver+Wch = 766.72 kN

    Concrete Bearing Capacity f.0.85.fc'(ab.A1) = #REF! kN #REF! (Fc)ver+Wch #REF!

    6 Checking of one-way shear along Section A-A (eff. Face chimney)

    Strength reduction factor (f) = 0.65Compression

    Web width (bw) = 4250.00 mm

    Effective depth (d) = 430.00 mm

    Factored shear force (Vu) = 79.25 kN

    (Vc) = 1024.596 kN

    (fVc) = 665.987 kN > Vu ...OK

    Uplift

    Factored shear force (Vu) = -62.473 kN

    (fVc) = 665.987 kN > Vu ...OK

    7 Checking of Punching Shear

    bc = 1 (f) = 0.65

    as = 20 (for corner colomn)

    Compression

    Chimney width (bc) = 0.6 m

    Effective depth (d) = 0.43 m

    Perimeter length (bo)=4.(bc+d) (bo) = 4.12 m

    Factored shear force Vu=(c)(B2-(bc+d)

    2) (Vu) = 1149.19 kN

    Concrete shear strength (Vc) is the smallest amount of :

    = 4028.20 kN

    = 2744.13 kN

    (Vc)min = 2685.47 kN

    (fVc) = 1745.55 kN

    = 2685.47 kN

    (fVc) = 1745.55 kN > (Vu) ...OK

    Uplift

    Chimney width (bc) = 0.6 m

    Effective depth (d) = 0.43 m

    Chimney concrete cover (d') = 0.07 m

    Perimeter length (bo)=4.(bc+d-2d') (bo) = 3.56 m

    Factored shear force Vu=(up)(bo2-(bc-2d)

    2) (Vu) = -430.93 kN

    Concrete shear strength (Vc) is the smallest amount of :

    = #REF! kN

    = #REF! kN

    (Vc)min = #REF! kN

    (fVc) = #REF! kN

    = #REF! kN

    (fVc) = #REF! kN #REF! (Vu) #REF!

    dbfV wcc '61=

    12

    42

    ' dbfV occ

    c

    +=

    b

    122

    ' dbf

    b

    daV oc

    o

    sc

    +=

    124

    ' d

    bfV occ =

    12

    42

    ' dbfV occ

    c

    +=

    b

    122

    ' dbfb

    daV oc

    o

    sc

    +=

    124

    ' d

    bfV occ =

    195993455.xls.ms_office 12/16/2013 4 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    5/12

    Foot Plate

    J. DESIGN OF CHIMNEY

    1 Material Grades

    Concrete K225 (fc') = 18.63 MPa

    Steel reinforcement bar (fy) = 413 MPa

    2 Slenderness Evaluation

    bc = 0.6 m k = 1

    lu = 2.85 m r = 0.173 m

    I = 0.0108 m4

    A = 0.36 m2

    For a braced frame klu/r = 16.454 < 34 ...OK

    3 Axial and Moment Forces

    Compression

    Ru' = 66.63 kN

    Pu' = 745.95 kN

    Mu' = 189.88 kN.m

    Uplift

    Ru = 68.05 kN

    Pu = -617.46 kN

    Mu = 193.96 kN.m

    4 Longitudinal Bar Design

    rmin = 0.0034 b = 0.85

    rmax = 0.0145 f = 0.8

    According to Column interaction chart, available rebar

    Number of rebar = 20 nos

    Diameter of rebar = 16 mm Asreq = 0.000201062 m

    rmin < r = 0.0112 < rmax OK

    Development length

    Minimum development length 8db = 128 mm or 155 mm

    90 degrees standar hook = 259 mm

    Available development length = 1825 mm > 128 mm OK

    5 Stirrup Design

    Steel U-24 fy = 240 MPa db = 10 mm

    f = 0.65 Av = 0.000157 m

    (Vu) = 66.626 kN

    (fVs) = 133.204 kN

    (fVc) = 604.185 kN

    Maximum shear load for stirrup (fVs)max = 2134.788 kN > (fVs) OK

    Maximum spacing smax = 250 mm Use D 10 - 150

    (fVc)+(fVs) > (Vu) OK

    K. Sloof

    Ps = (60%P) = 447.570 kN

    Steel U-39 fy = 413 MPa nos = 8

    bs = 0.3 m dbs = 16

    hs = 0.5 m

    Depth of sloof hsl = 0.3 m

    Minimum base width of tower Bb = 7 m

    664.309 kN > 447.570 kN OK

    Stirrup Design

    fy = 240 MPa db = 10 mm

    f = 0.65 Av = 0.000157 m

    Maximum spacing smax = 250 mm Use D 10 - 200

    dbfV wcc'

    6

    1=

    195993455.xls.ms_office 12/16/2013 5 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    6/12

    Foot Plate

    L. ESTIMATED VOLUME OF MATERIALS

    1 Volume of concrete K-225 One leg = 11.11 m3

    2 Weight of steel bar

    Pad

    Lower Use 22 D 16 1.58 kg/m =

    Upper Use 22 D 16 1.58 kg/m =

    3 Chimney

    Longitudinal bar Use 20 D 16 1.58 kg/m =

    Stirrup Use D 10 -150 0.62 kg/m =

    4 Sloof Use 8 D 16 1.58 kg/m =

    Use D 10 -200 0.62 kg/m =

    Total =

    5 Total 4 (four) leg of lattice tower

    Volume of concrete K-175 = 44.43 m3

    Weight of steel bar = 2400.83 kg

    6 Excavation soil volume

    One leg (EVs) = 11.59 m

    One tower (EVs) = 46.37 m

    195993455.xls.ms_office 12/16/2013 6 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    7/12

    Foot Plate

    222F]

    alue EXACTLY 16 kN/m3 per TIA 222F]

    195993455.xls.ms_office 12/16/2013 7 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    8/12

    Foot Plate

    use this SF for RCC building design

    asses

    ...OK

    ...OK

    195993455.xls.ms_office 12/16/2013 8 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    9/12

    Foot Plate

    s

    s

    195993455.xls.ms_office 12/16/2013 9 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    10/12

    Foot Plate

    195993455.xls.ms_office 12/16/2013 10 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    11/12

    Foot Plate

    195993455.xls.ms_office 12/16/2013 11 of 12

  • 7/22/2019 Single Footing Design - Telecomm, Transmission & Guyed Tower & Pole - TIA 222F & ACI

    12/12

    Foot Plate

    172.76 kg

    172.76 kg

    90.06 kg

    20.15 kg

    88.48 kg

    56.00 kg

    600.21 kg

    195993455.xls.ms_office 12/16/2013 12 of 12