8
Shape Deformation: SVM Regression and Application to Medical Image Segmentation Song Wang, Weiyu Zhu and Zhi-Pei Liang Department of ECE and Beckman Institute University of Illinois at Urbana-Champaign, IL 61801, U.S.A. [email protected], [email protected], [email protected] Abstract This paper presents a novel landmark-based shape de- formation method. This method effectively solves two prob- lems inherent in landmark-based shape deformation: (a) identification of landmark points from a given input image, and (b) regularized deformation of the shape of an object defined in a template. The second problem is solved using a new constrained support vector machine (SVM) regression technique, in which a thin-plate kernel is utilized to provide non-rigid shape deformations. This method offers several advantages over existing landmark-based methods. First, it has a unique capability to detect and use multiple can- didate landmark points in an input image to improve land- mark detection. Second, it can handle the case of missing landmarks, which often arises in dealing with occluded im- ages. We have applied the proposed method to extract the scalp contours from brain cryosection images with very en- couraging results. 1 Introduction Image segmentation is an important task in image un- derstanding and computer vision. Traditional methods are usually based on edge detection, region merging/splitting, statistical pixel classification or hybrid methods [19]. Al- though these methods are capable of partitioning an image into regions of connected pixels according to image inten- sity distributions, more often than not, the segmented re- gions do not correspond well to true objects. This limitation is particularly serious for medical image segmentation be- cause medical images are often very noisy and the structures to be identified have large “internal” intensity variations. An effective way to solve this problem is to incorporate the known shape information of the desired objects into the segmentation process. Generally, the shape of an ob- ject is described by the boundary contour (or several closed contours) of the objects, which can be represented by a se- quence of sampled landmark points. A number of shape-based segmentation methods have been proposed. For example, the active contour (or snakes) [8, 1, 17, 4] model constrains the desired shape to be suf- ficiently continuous, smooth and differentiable during the deformation process. Although the original active contour cannot process multiple contours, the problem can be solved using the recent geodesic contour method [3]. More advanced shape models include the point distri- bution model (PDM) by Cootes et al.[5], which can learn shape variations from a set of segmented training images, each containing a set of landmarks to define the shape. PDM calculates the covariance matrix of these landmarks and then represents the shape variations along the directions of the most significant eigenvectors of the covariance ma- trix. However, it is a tedious job to build the training set manually and in some cases it is also difficult to identify the set of landmark points for all the shapes of interest. Similarly to PDM, Staib et al. [13] decompose the shape into items with different frequencies. Then the shape knowledge is learned by studying the distribution of each Fourier coefficient. The result is used to constrain the shape deformation. Jain [7] presents a similar approach which pa- rameterizes the shape and uses the distribution of the pa- rameters as the constraint for shape deformation. Along the same line, Leventon et al. [10] incorporate statistical shape information into geodesic active contours to segment medi- cal images. The work presented in the paper is more closely related to the deformable models developed by Rueckert et al. [12] and Zhong et al. [18]. Similar to the active contour, the energy function of those models consists of two terms ac- counting for external and internal energy respectively. The external energy is a potential field describing the edge and region matching information between the template and the input image. The internal energy represents the shape de- viation from the prior. However, it is not easy to determine the appropriate weight for the internal and external energy. Additionally, this energy function is nonlinear and includes too many unknowns to be well handled by gradient-based algorithms. This paper presents a new landmark-based shape defor- mation method which can effectively avoid the above ques-

Shape Deformation - Image Formation and Processing Group

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Shape Deformation - Image Formation and Processing Group

Shape Deformation: SVM Regression and Application to Medical ImageSegmentation

SongWang,Weiyu ZhuandZhi-PeiLiangDepartmentof ECEandBeckmanInstitute

Universityof Illinois at Urbana-Champaign,IL 61801,[email protected], [email protected], [email protected]

Abstract

This paperpresentsa novel landmark-basedshapede-formationmethod.Thismethodeffectivelysolvestwo prob-lemsinherent in landmark-basedshapedeformation: (a)identificationof landmarkpointsfroma giveninput image,and (b) regularizeddeformationof the shapeof an objectdefinedin a template. Thesecondproblemis solvedusinganew constrainedsupportvectormachine(SVM)regressiontechnique, in which a thin-platekernelis utilizedto providenon-rigid shapedeformations.This methodoffers severaladvantagesover existing landmark-basedmethods.First,it hasa uniquecapability to detectand usemultiple can-didatelandmarkpointsin an input image to improveland-markdetection.Second,it can handlethe caseof missinglandmarks,which oftenarisesin dealingwith occludedim-ages. We haveappliedthe proposedmethodto extract thescalpcontours frombrain cryosectionimageswith veryen-couragingresults.

1 Introduction

Imagesegmentationis an importanttask in imageun-derstandingandcomputervision. Traditionalmethodsareusuallybasedon edgedetection,region merging/splitting,statisticalpixel classificationor hybrid methods[19]. Al-thoughthesemethodsarecapableof partitioningan imageinto regionsof connectedpixelsaccordingto imageinten-sity distributions, more often than not, the segmentedre-gionsdonotcorrespondwell to trueobjects.Thislimitationis particularlyseriousfor medicalimagesegmentationbe-causemedicalimagesareoftenverynoisyandthestructuresto beidentifiedhave large“internal” intensityvariations.

An effective way to solve this problemis to incorporatethe known shapeinformation of the desiredobjectsintothe segmentationprocess.Generally, the shapeof an ob-ject is describedby theboundarycontour(or severalclosedcontours)of theobjects,which canberepresentedby a se-quenceof sampledlandmarkpoints.

A numberof shape-basedsegmentationmethodshave

beenproposed.For example,theactivecontour(or snakes)[8, 1, 17, 4] modelconstrainsthe desiredshapeto be suf-ficiently continuous,smoothanddifferentiableduring thedeformationprocess.Although the original active contourcannotprocessmultiplecontours,theproblemcanbesolvedusingtherecentgeodesiccontourmethod[3].

More advancedshapemodelsinclude the point distri-bution model (PDM) by Cooteset al.[5], which can learnshapevariationsfrom a setof segmentedtraining images,eachcontaininga set of landmarksto define the shape.PDM calculatesthe covariancematrix of theselandmarksandthenrepresentstheshapevariationsalongthedirectionsof the mostsignificanteigenvectorsof the covariancema-trix. However, it is a tediousjob to build the training setmanuallyandin somecasesit is alsodifficult to identify thesetof landmarkpointsfor all theshapesof interest.

Similarly to PDM, Staib et al. [13] decomposetheshapeinto itemswith differentfrequencies.Thentheshapeknowledgeis learnedby studyingthe distribution of eachFouriercoefficient. Theresultis usedto constraintheshapedeformation.Jain[7] presentsasimilarapproachwhichpa-rameterizesthe shapeandusesthe distribution of the pa-rametersastheconstraintfor shapedeformation.Along thesameline, Leventonet al. [10] incorporatestatisticalshapeinformationinto geodesicactivecontoursto segmentmedi-cal images.

Thework presentedin thepaperis morecloselyrelatedto thedeformablemodelsdevelopedby Rueckertetal. [12]andZhong et al. [18]. Similar to the active contour, theenergy function of thosemodelsconsistsof two termsac-countingfor externalandinternalenergy respectively. Theexternalenergy is a potentialfield describingtheedgeandregion matchinginformationbetweenthe templateandtheinput image. The internalenergy representsthe shapede-viation from theprior. However, it is not easyto determinetheappropriateweight for the internalandexternalenergy.Additionally, this energy functionis nonlinearandincludestoo many unknowns to be well handledby gradient-basedalgorithms.

This paperpresentsa new landmark-basedshapedefor-mationmethodwhich caneffectively avoid theaboveques-

Page 2: Shape Deformation - Image Formation and Processing Group

tions. At first, edge-or/andregion-basedmethodsareap-pliedto detectcandidatelandmarkpointsin theinput imagewithin the neighboringareaaroundeachlandmarkin thetemplate.Multiple candidatesmaybedetectedfor oneland-markwhenit is necessary. Thenthe templateis deformedusinga specialsupportvectormachine(SVM) regressiontechnique.Basedon the fitting result,a setof betterland-marksis identifiedfrom thedetectedcandidates.This pro-cessis repeateduntil thefinal resultis obtained.Usually, acoupleof iterationsis sufficient.

The rest of the paperis organizedas follows. In Sec-tion 2, we describethe proposedshape-baseddeformationmethod.Section3 discussestheselectionof theregulariza-tion parameterandhow to handlemissinglandmarks.Sec-tion 4 presentsrepresentativeresultsfor medicalimageseg-mentation,followedby theconclusionin Section5.

2 The Proposed Method

2.1 Problem formulation

For simplicity, considerthe casein which the templatecontainsonly a single closedcontour. Extensionto thecaseof multiple contoursis straightforward. The con-tour is representedasa seriesof orderedlandmarkpoints����������� �������� �� ���

, where� ����������������

arethecoordi-natesof the -th landmark.For eachlandmark

� �, thepro-

posedmethodfirst identifiesasetof possiblecorrespondinglandmarkpoints ! � �"���$#&%�'� )(*�,+-/.0��������1 � �

in the in-

put image,where� #&%�'� �2��� #&%�'� �� #&%�'� �

. Thentheproblemissolvedin two steps:

1. Identify the best landmarkpoint��3� �4�5��3� ��63� �

fromthelandmarkset ! � suchthat

�738�9���83� ��83� ������:��83� �locatedin or neartherealobjectboundaryin theinputimage;

2. Deformtheprior shape�

to match� 3

while keepingthegeneralshapecharacteristicsof

�.

The templatedeformationis describedas a regressionproblemof finding a transform; �<�>=��?0�A@�B �7C B �

thatminimizes +1 �D �FE��8G �5� 3� ; ��� � ���8HJI�KML ;ON (1)

where G �QPF�P&�ARTS is a lossfunction,IURVS

is a regulariza-tion parameterand

KML ;�N R9S is a regularizationfunctional.In this setting, ; ���W�X�<� ; �5� � �Y �2+�Z.0������[�1\� is thede-siredobjectshapein theinput image.

Generally, it is acombinatorialproblemto determinethebest

�73. In thispaper, weuseanEM-like(ExpectationMin-

imization)two-stepalgorithmto solve it iteratively. Specif-ically, we performtheshape-regularizedfitting to aninitial�73

to get an optimal ; and thenupdate�73

from detected

! � basedon the acquired; . This processis repeateduntilconvergence.

Therearethreemainsubproblemsin this approach:de-tectionof landmarkcandidates! � in the input image,de-terminationof theregressionmodelandupdating

� 3based

ontheregularizedfitting results.Solutionto theseproblemsarediscussedbelow.

2.2 Detection of landmark candidates

Given�

, we assumethat�83�

in aninput imagefalls in acircular areaof radius ] � centeredat

� �. Accordingto the

principle of anisotropicdiffusions[11], non-rigid biologicshapedeformationbetweenthe templateandthe input im-agecanbe doneeffectively by moving eachlandmark

� �along the normaldirectionof the shape. This meansthatwecansearchfor thecorresponding

�73only alongthenor-

mal directionsof�

asshown in Fig.1. Denote ^ � as the

2

n1

v

n2v2

vn

nn

n

v1

v1

v

Figure 1. Search for landmarks along the nor -mal direction of the initial shape .

unit vector along the normal direction at� �

. Combiningtheaboveassumptions,thecorrespondinglandmark

��3�can

be obtainedfrom the line segment _ � �`��� � H ]a^ � ]cbLed ] � ] � N � .Becauseof noiseandstructuralcomplexity, sometimes

it is difficult to accuratelyidentify�83�

from _ � . In this

case,we canextractseveralcandidatesin ! � �f��� #&%�'� �(W�+�Z.0������[�1 � �andtheproposedalgorithmwill determinean

optimal�83�

from ! � .For differentapplicationproblems,variousmethodscan

be usedto locate ! �� �g+�Z.0������:�1. Generally, they can

becategorizedinto two classes.

1. Edgedetectionmethods.Sincethedesiredshapeis thecontourof an object in the input image,edgepointsin _ � will be collectedto construct! � . Any edgede-tectionalgorithmcanbeappliedhere. A simplestap-proachis to calculatethegradientvectorfor eachpixelalong _ � . If its amplitudeis very large(accordingto apre-selectedthreshold),it will beincludedin ! � .

2. Region matchingmethods. For any pixel along _ � ,if its neighboringareahas similar featureswith the

Page 3: Shape Deformation - Image Formation and Processing Group

neighboringareacenteredat� �

in thetemplateimage,it will be includedin ! � . A numberof matchingmet-rics canbe usedfor this problem,which includenor-malizedcross-correlation,squareddifferencesin pixelintensities,measuresbasedonopticalflow modelsandmutualinformationmetrics[14].

Generally, region matchingis oftenmorerobust thanedgedetectionto processnoisy imagescontainingcomplex ob-jects. However, region matchingmethodsusually requirethetemplatelandmarks

�to beveryaccurate,which is not

necessaryfor edgedetectionmethods.Selectionof ] � is relatedto the similarity betweenthe

templateandthe input image.For segmenting3D medicalimagessliceby slice,this is usuallydeterminedby thesam-pling interval betweentwo neighboringslices. The largertheinterval, thelargerthe ] � . In practice,] � shouldalsobeadaptively modifiedbasedon thesizeof ! � . If therearetoomany candidatesin ! � , then] � needsto bereduced,andviceversa.

It is alsopossiblethatnolandmarkcandidateis identifiedfor some

� �. Thisproblemwill bediscussedin Section3.2.

2.3 SVM regression model for deformation

Given a set of estimatedlandmarks�73

from� ! �Q �+�/.h������[�1\�

, this sectiondescribesa regressionmodel for(1) andthecorrespondingalgorithm. Generally, we expectthe regressionmodel to have the following properties:(a); �5�i� is a goodapproximationfor

� 3; (b) ; ��P � is a geomet-

rically homologousmapping(an importantfeaturein bio-logic deformation);(c)

K�L ;ON representswell thebiologicde-formation between

�and ; �5�i� ; (d)

KML ;�N is invariantun-dertheaffine or rigid transforms;and(e) ThelossfunctionG �QPF�P&� is robustagainstnoiseandoutliers;

Fromregularizationtheory,KML ;�N canbedefinedasanorm

in a reproducingkernelHilbert space(or subspace)whichcanbe uniquelyrepresentedby a positive definite(or con-ditionally positive definite)kernel function j �5�k��83l� . Formedicalimagesegmentation,we proposeto usethe thin-platekernel[2] j �5�k��83l�m�onY�pdq�83rn �[sFt�u nO�vdi�83rn , whereK�L ;ON , alsonamedthebendingenergy, is givenbyKML ;�N �Vw$wyxz x �>{|��=:� H*{}�l?h���Q~-��~-� (2)

where{}�QP&�m���k������ � � � HJ.h����������� � � H��k������ � � � .

A popularlossfunctionis G �5�83� ; �5� �)���k�9nY�83� d ; �5� �)��n � .In this case,the model becomesthe traditional thin-platesplines[2]. However, it is well known that thesquareder-ror loss function is not robust againstoutliers. To avoidthis problem,variousrobust loss functionshave beende-veloped. Two examplesare the modulo function and theHuber’sfunction[6]. Hereweadoptthelinear � -insensitivefunctionusedin SVM [15] for thefollowing reasons:(a) Itis morerobustthanthesquarederrorlossfunction;(b) With

theinsensitive margin parameter� , landmarkpointscanbeidentifiedassupportvectorsor non-supportvectors. Thisresultcanbeusedto improve

�W3. This stepis discussedin

detail in Section2.4.The � -insensitive functionis definedbynO� 3� d ; �5� �)��n��� � S if

nO�83� d ; �5� �r��nA� �nY��3� d ; �5� �r��n�d � else�

When � �cS , this is just themodulolossfunction.Theonly remainingcomponentof the regressionmodel

is theadditionalconstraintsthatshouldbeplacedonthede-sireddeformation; �QP&� . Obviously, we hopethatthedesired; ��� ��� lie in thenormaldirectionof theshapecenteredat

� �,

i.e., ; �5� � �m��� � H�� � ^ � ��+�Z.0������[�1 (3)

where�0� b B .

Since�W3

is detectedalongthe normaldirectionsof�

,wehave � 3� ��� ��HJ��� ^ �Q ��+-/.0������:�1 (4)

where� � b B� ��+�/.h������[�1

are known. Noting that; ����=�Q?h�and

n ^ �/nv��+- �"+�Z.0������:�1, the regression

problemcanberewrittenasProblem 1:������/� ��� � ; ��$��� +1 �D �FE���� � � d�� � � � HJI�K�L ;ON

subjectto constraints(3), where���9�l���Q�0�������� Q�0�h�Q�

.The thin-plate kernel is conditionally positive definite

and the linear functionsform the null spaceof the result-ing ; �9�>=��?0� , which mustbeof theform [2]� =\�����k���0�kH*�6�O��H*�6 O�XHJ¡ ��FE��[¢ � j ���m�� �)�?:�5�M�k��£��$Hy£Y���¤HJ£Y O�XH ¡ ���E�� ~-� j ���m�� �)�Y� (5)

To solveProblem+, we first fix

�andminimize � � ; ��m�

with respectto ; underconstraints(3). This is equivalenttoseeking; minimizing ¥�¥ xz x ��{}�>=:�\H�{|�5?0���Q~-��~-� subjecttotheconstraintthat ; mustmap

� �to��¦���/6¦���>�m��� �)H|�0� ^ � , �+�Z.0������[�1

. It is a typical thin-plateinterpolationproblemandthe parameters§ �`���h�a/�6����6 ��Q�

, ¨ �`�>£��a/£Y�aZ£Y ����,© �ª� ¢ � ¢ �������� ¢ �h� � and « �ª��~0�/~-�-������:/~-�h� �

in (5)canbecalculatedby solvingthefollowing equation:¬®­ ¯¯ � °<± ¬ © «§ ¨ ± � ¬<²³ ²´° °�± (6)

where µ � % � j �5� � �� % � , �(¶�·+�/.h������[�1are the ele-

mentsof matrix­

and¯ �·�Q+� ³ ´ � . Note that ³ ��5�:�a����������� ����h�Q�

, ´ �g���¸������a������ ����h���,� �X�g����������)�

,²³ �9��¦�:�a6¦���-������:¸¦���h�Q� and²´ �9��¦�¸�a6¦����������:6¦���h��� .

Page 4: Shape Deformation - Image Formation and Processing Group

In theabove thin-plateinterpolation,theresultingmini-malbendingenergy is givenbyKML ;ON � © � ­ © H « � ­ « � +¹�º � ²³ �M» ²³ H ²´ ��» ²´ �O (7)

where»

is the1�¼71

upperleft sub-matrixof¬ ­ ¯¯ � °<± z � (8)

which is positivesemi-definite.Substituting(7) into Problem

+yields thefollowing un-

constrainedproblem.Problem 2:������ � ���k�m� +1 �D �FE�� � ���:d��6� � � H I¹�º � ²³ � » ²³ H ²´ � » ²´ �Using the standardSVM technique,we can formulate

theproblemasfollows.Problem 3:���F��[� ½��F¾½ � �����¿ ¦¿��·� +1 �D ��E�� ��À � H ¦À � �H I¹�ºÂÁ � ³ Hyà � �m� �M» � ³ H*à � �$�H¤� ´ Hyà � �$� � » � ´ Hyà � �k��Ä

subjectto � � dq� � � � H ¦À � ��+�Z.0������[�1� � d�� � � � H*À � ��+�Z.0������[�1À � ¦À � RÅS ��+�Z.0������[�1where

¿4� �5À����À��������� �À��h� �,¦¿4� � ¦À�a ¦À���������8 ¦À��h� �

,à � � diag��Ƥ� � /ÆÇ� � ������:/ÆÇ� � � and

à � � diag�>Ƥ� � ÆÇ� � ������ �ÆÂ� � � with ^ �8���>ÆÇ� � �ÆÂ� � � .

Introducethe Lagrangemultipliers È �4�>É\���ÉM��������:É��h� �,¦È �Ê��¦É$�a�¦É��������� �¦É��h� �

, Ë �Ì�5Í:��Í���������8�Í��h� �and

¦Ë �®� ¦Í:� ¦Í���������: ¦Í��h���, the Lagrangianfunction for

ProblemÎ isÏÐ���ÑQ¿: ¦¿ È ¦È Ë ¦Ë �m�Ò �D ��E�� ��À���H ¦À��)�8H +. Á � ³ Hyà � �m� � » � ³ Hyà � �m�H¤� ´ H*à � �m� � » � ´ Hyà � �k� Äd �D �FE�� É��/� � H*À��:d��6��HJ�����d �D �FE�� ¦É��/� � H ¦À���HU�6�:dU�����Md �D �FE�� �5Í���À��[H ¦Í�� ¦À��)�

whereÒ ��ÓZÔ��Õ .

Imposingthefirst-ordernecessaryconditions(settingthederivativesof theLagrangian

Ïwith respectto

�,¿

and¦¿

to zero)yields � � ÖU� ¦È d È �MdØ× (9)

and É � HUÍ � � Ò ��+�Z.0������[�1¦É � H ¦Í � � Ò ��+�Z.0������[�1É � �¦É � �Í � ¦Í � RJS ��+�Z.0������[�1where Ö � ��à �� » à � Hyà �� » à � � z �× � ÖU��à �� » ³ H*à �� » ´ �O�

Substitutingtheseresultsinto Problem Î givesthe fol-lowing equivalentformulation

Problem 4:�����Ù � ¾Ù ¦ÏÐ� È ¦È �k� +. � È d ¦È � � ÖU� È d ¦È �H¤�5×WH*Ú\� � � È d ¦È �8HyÛ � � È H ¦È � (10)

subjectto S��JÉ � �¦É � � Ò �Ü+-/.h������[�1where

����� � /� � ������:Z� � ���and

Û¤�Ü� � � ������: � ��� .Problem Ý is a simplequadraticprogrammingproblem

which canbe solved usingstandardalgorithms. After theoptimal È ¦È areobtained,thedesired

�in ProblemÎ can

becalculatedfrom (9). Finally, we apply(6) and(5) to getthedesired; .2.4 Updating

�73Thenext stepin our iterativealgorithmis to improvethe

estimationof�W3

from ! �Q �Þ+�/.h������[�1 basedon there-sults from the shapefitting step. To do so, we invoke theKuhn-Tuckerconditionfor ProblemÝ , which statesÉ � �5� � d�� � d � dØÀ � �m��S ��+�Z.0������:�1¦É � �5� � d�� � H � H ¦À � �m��S ��+�Z.0������:�1� Ò d�É��)�rÀ��M��S ��+�Z.0������:�1� Ò d¶¦É��)� ¦À��M��S ��+�Z.0������[�1$�It is obvious that

É � Pm¦É � �2Sh �"+-/.h������[�1. The input

data� �

for whichÉ �

or¦É �

have nonzerovaluesarecalledsupportvectors. Otherwise,

� �is a non-supportvector.

As shown in Fig.2, if� �

is a non-supportvector, thenthe current

�83�lies insidethe � -insensitive margin centered

at the resulting ; �5�i� , i.e., � � � dV� � � � � . From (10), italso easyto seethat

�83�will have no effects on the final

regressionandhasnocontributionto thebendingenergy. In

Page 5: Shape Deformation - Image Formation and Processing Group

ε-insensitive margint( )

t( )

v

j

i

v

v

jv

j

i

invi jn

v

Figure 2. Suppor t vector� % and non-suppor t

vector� �

.

this case,the current��3�

canbe regardedasbeingaccurateenoughwith the permissibleerror margin � . On the otherhand,any supportvector lying outsidethe margin needtobe improved if possible. Basedon this consideration,thefollowing simpleexchangingstrategy is adoptedto update� 3

.

1. For non-supportvector� �

, we leave thecurrent��3�

un-changed;

2. For supportvector� �

, if anothercandidatein ! � liesin the � -insensitivemargin, thenweadoptit asthenew�83�

.

Thisstrategy will reducesthebendingenergy if � is fixed.Theremainingproblemis theselectionof � . Inspiredby

thearea-shrinkingtechniqueusedin SOM (self-organizingmapping),wereduce� graduallyin theiterationprocessun-til it approacheszero.This is quitereasonablesincetheac-quired ; �5�i� is usually inaccurateat the beginning of theiterationfor somemis-selected

� 3�. Thusa large � may in-

creasethechanceof includingthetrue�W3

insidetheinsen-sitive margin while eliminatingbadoutliers. As ; �5�i� be-comesmoreandmoreaccurate,wecanreduce� to improvetheresolutionof thefinal results,which is similar to whatisdonein multiscaleimageanalysis[9].

2.5 Summary of the algorithm

Theproposedalgorithmis summarizedbelow.

1. Basedonthetemplateshape�

, detectalandmarkcan-didateset ! � �o+�Z.0������[�1 in theinput imagealongthenormaldirectionof

�.

2. Randomlyselect� 3

from ! � �Ð+-/.h������[�1 andini-tialize � ;

3. Perform SVM regressionusing a thin-plate kernel.Find the deformedshape; �5�i� and label the supportvectorsandnon-supportvectors;

4. Update�W3

by replacingthesupportvectorswith bettercandidatesin ! �Q ��+-/.0������:�1 . If nooneis updated,reduce� . Returnto step Π. If no oneis updatedand

� �2S , stopthe algorithmandreturncurrent ; �5�i� asthedesiredshape.

3 Discussion

This sectiondiscussestwo relatedissuesin practicalap-plication of the proposedalgorithm: (a) how to selecttheregularizationparameter

I(orÒ

which boundsthe È and¦È ), and (b) how to deal with the casewhen some ! � isempty.

3.1 Selection ofI

TheregularizationparameterI

playsanimportantroleinthedeformation.Theoptimal

Iis chosenfor our problem

by minimizing the ordinary cross-validation (OCV) func-tion ß�à ��I��k� +1 �D �FE�� nO� 3� d ;�á â/ãÕ �5� �)��n��where;�á âZãÕ is theminimizerof Problem

+exceptthatthe µ th

landmarkpoint is left out, i.e., ;�á â/ãÕ minimizes+1 �D��E�� � �räE â nY� 3� d ; �5� � ��n � HJI�K�L ;ON (11)

subjectto constraints(3). This is obtainedusingtheprinci-ple of “leave-out-one”cross-valuesfor crossvalidation. Inthiscase,the

�83â is alsosetasanunknown which is allowedto vary freely alongthenormaldirection ^ � . Similar to theanalysisin Section2.3,solutionto this problemcanbeob-tainedby solvingthequadraticprogrammingin ProblemÝtogetherwith two additionalconstraintsÉ â �¦É â ��S��In this case,

� â arefixedto bea non-supportvectorand� â(so

��3â ) will not affect theresults.Basedon theacquiredÈand

¦È , we canapply(9), (6),and(5) to get�

and ; .Wahba[16] hasconducteda thoroughstudyon how to

estimateI

for the scalar function approximationsplinesandalsoextendedtheOCV to generalizedcrossvalidation(GCV). The main principle can also be adaptedto selectoptimal

Ifor ourSVM-basedshapedeformation.

3.2 No landmark candidate

It is possiblethatno landmarkcandidatescanbe identi-fied for some

� �. Assumeå �g� � +q� �<1$ ! �X�çæ6�

.In this case,we canonly usethe remaininglandmarksde-tected.Accordingto theresultingfunction ; , theundetectedlandmarkscanbedirectlycalculatedfrom ; �5� �r� . Theprob-lemcanbeformulatedasminimizing+1 �D��E�� � �räè�é nY� 3� d ; ��� � ��n � HJI�K�L ;ON

Page 6: Shape Deformation - Image Formation and Processing Group

subjectto constraints(3).This can be regardedas the “leave-several-out” test

which is a generalizationof (11)andhasasimilar solution.At first, we solveProblemÝ with additionalconstraintsÉ % �¦É % ��ShêÊë0( bpå whichdisable

� % �( b7å . ThenbasedontheacquiredÈ and¦È , we canuse(9), (6) and(5) to gettheoptimal�

and ; .This propertyis usefulfor two reasons:(a) We canpur-

poselyexclude“bad” landmarkcandidatesets! � in thefit-ting step. (b) When the object to be segmentedis partlyoccluded,this methodcancombinetheobjectshapein thetemplateto geta reasonableandaccuratesegmentation.

However, it should be noted that the numberof non-empty ! � ’smustbesufficient largeto capturetheshapede-formationbetweenthetemplateandtheinput image.Deter-mining the minimum numberof landmarkpointsrequiredfor a givenshapehasnot beensolved.

4 Experiments

We have usedthe proposedmethodto extract the scalpcontourfrom a seriesof braincryosectionimagesfrom theVisual HumanProject. Fig.3(a)shows the initial templateslice with the manuallyextractedscalpcontourcomposedof+�S�S

landmarkpointsdistributeduniformly.

(d)(c)

correct one(a) (b)

Figure 3. (a) Initial template image with themanuall y extracted scalp contour; (b) The in-put image with the unpr ocessed scalp con-tour from the template overlaid; (c) Detected! � based on one special

� �; (d) Detailed il-

lustration sho ws there are Î landmark candi-dates in ! � .We usedthe edgedetectionmethodto extract the land-

mark candidates! �� �ì+�/.h������[�1. Noting that the in-

tensity of pixels just outsidethe scalpcontour is smaller

thanthat of thosejust insidethe contour, we extracted ! �by searchinga rising-edge(from outsideto inside) along^ � near

� �. An exampleis illustratedin Figs.3(c)and(d)

whereÎ landmarkcandidatesaredetectedcorrespondingtoone

� �.

Our first experimentis to segmentan image(shown inFig.3(b))

+�Sslicesaway from the template.Theshapede-

formationprocessis shown in Fig.4. At thebeginning(leftcolumnof Fig.4), some

��3�aremis-selected.However, the

regularizedshapecanmatchthedesiredcontourmuchbet-teralthoughsomeerrorstill existsin somelocalareas.Afterupdating

�W3�correspondingto the supportvectors,we can

seethatmany outliersareremoved.The secondexperimentis to verify the effectivenessof

theproposedalgorithmwhenpartof theinput imageis oc-cluded. Fig.5(a)is a simulated“occluded” imagewith thetemplateshapeoverlapped.Usingtheproposedmethodto-getherwith the additionalconstraintsdiscussedin Section3.2,quiteaccuratesegmentationwasacquired,asshown inFig.5(b). In this experiment,only

.-íout of

+�S-Slandmarks

areallowedto slidefreely alongtheir normaldirections.Finally, we usedthe proposeddeformationmethodto

segmentthe cryosectionbrain imagesslice by slice. Be-ginning from the manual segmentedtemplateshown inFig.3(a), the shapein the templateis deformedto matchits neighbors.Thenthesegmentedslicesaretreatedasnewtemplatesto processtheirunsegmentedneighbors.Thefirstand last imagesin Fig.6 are Î + slicesaway from the ini-tial templateimage. Only the sliceswith oddnumbersareshown here.

5 Conclusion

A novel landmark-basedshapedeformationmethodhasbeendescribedin thispaper. Thismethodprovideseffectivesolutionto two problemsinherentin landmark-basedshapedeformation: (a) identificationof landmarkpoints from agiven input image,and(b) regularizeddeformationof ob-ject shapeembeddedin a template. The first problemissolvedusinga combinationof edgedetectionandshapefit-ting. Thesecondproblemis solvedusinganew constrainedSVM regressiontechnique,in which a thin-plate kernelis utilized to provide non-rigid shapedeformations. Thismethodoffers several advantagesover existing landmark-basedmethods. First, it hasa uniquecapability to detectandusemultiple candidatelandmarkpointsin aninput im-ageto improve landmarkdetection.Second,it canhandlethecaseof missinglandmarks,whichoftenarisesin dealingwith occludedimages.

Theproposedmethodis especiallysuitablefor segment-ing 3D imagesslice by slice, wherethereare only smallshapevariationsacrosstheneighboringslices. In this typeof applications,the segmentedshapein one slice can beusedasa templatefor its unsegmentedneighborings.Wehave appliedtheproposedmethodto extract thescalpcon-

Page 7: Shape Deformation - Image Formation and Processing Group

Figure 4. Segmentation to the input image sho wn in (Fig.3). The top row is the updated�W3

(connectedas a pol ygon). The mid dle row sho ws the acquired ; �5�i� . The bottom row is the local enlar gement ofthe mid dle row. From the left to right column sho ws the intermediate results with � of Î , . , + and

S,

respectivel y.

(b)(a)

Figure 5. Segmentation to a sim ulated oc-cluded image.

toursin cryosectionheadimageswith veryencouragingre-sults.

Acknowledgements

We would like to thankProf. TamerBasarfor invalu-able suggestionson solving the optimization algorithm.This work wassupported,in part, by NSF-BES-î í - S-.h+�.h+(Z.P.L) and a BeckmanGraduateFellowship

.�S�S-S-.�S�S�+

(S.W.).

References

[1] A. A. Amini, S. Tehrani,andT. E. Weymouth. Using dy-namic programmingfor minimizing the energy of activecontoursin the presenceof hard constraints. In Proc. ofICCV, pages95–99,1988.

[2] F. L. Bookstein.Principalwarps:Thin-platesplinesandthedecompositionof deformations.IEEETrans.PAMI, 11:567–585,June1989.

[3] V. Casselles,F. Catte,T. Coll, andF. Dibos. A geometricmodelfor active contours. Numerische Mathematik, 66:1–31,Jan.1993.

[4] L. D. CohenandI. Cohen.A finite elementmethodappliedto new active contourmodelsand 3d reconstructionfromcrosssections.In Proc.of ICCV, pages587–591,1990.

[5] T. F. Cootes,C. J.Taylor, D. H. Cooper, andJ.Graham.Ac-tiveshapemodels- their trainingandapplication.ComputerVisionandImage Understanding, 61:38–59,Jan.1995.

[6] P. Huber. RobustStatistics. New York: Wiley, 1981.[7] A. K. Jain,Y. Zhong,andS.Lakshmanan.Objectmatching

using deformabletemplates. IEEE Trans.PAMI, 18:267–278,March1996.

Page 8: Shape Deformation - Image Formation and Processing Group

Figure 6. Segmentation of the Î D brain image slice by slice . The top-left and bottom-right slices areÎ + slices away from the template .

[8] M. Kass,A. Witkin, andD. Terzopoulos.Snakes: Activecontourmodels.Int. Journalof ComputerVision, 1(4):321–331,1987.

[9] J. J. Koenderink. The structureof images. Biological Cy-cbernetics, 50:363–370,1984.

[10] M. E. Leventon,E. L. Grimson,andO. Faugeras.Statisti-cal shapeinfluencein geodesicactive contours.In Proc.ofCVPR, pages316–323,2000.

[11] P. Perona,T. Shiota,andJ.Malik. Anisotropicdiffusion. InGeometry-DrivenDiffusionin ComputerVision, pages73–92.Dordrecht:Kluwer, 1994.

[12] D. Rueckert andP. Burger. Geometricallydeformabletem-platesfor shape-basedsegmentationandtrackingin cardiacmr image.In EnergyMinimizationMethodsin Comp.VisionandPatternRecog.: Int. Workshop, pages83–98,1997.

[13] L. H. StaibandJ.S.Ducan.Boundaryfindingwith paramet-rically deformablemodels. IEEE Trans.PAMI, 17:1061–1075,Nov. 1992.

[14] A. W. Toga.Brain Warping. AcademicPress,1999.[15] V. N. Vapnik. The Nature of StatisticalLearningTheory.

New York: Springer-Verlag,2000.[16] G. Wahba.SplineModelsfor ObservationalData. Society

IndustrialandApplied Mathematics,1990.[17] D. J. Williams and M. Shah. A fast algorithm for active

contours.In Proc.of ICCV, pages592–595,1990.[18] Y. Zhong, A. K. Jain, andM. P. Dubuisson-Jolly. Object

tracking using deformabletemplate. IEEE Trans. PAMI,22:544–549,May 2000.

[19] S. C. Zhu and A. Yuille. Region competition: Unifyingsnakes,regiongrowing, andbayes/mdlfor multi-bandimagesegmentation.IEEETrans.PAMI, 18(9):884–900,1996.