46
©2014 J.A. Woollam Co., Inc. www.jawoollam.com 1 Andrew Martin Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014

Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 1

Andrew Martin

Session 3B Using the Gen-Osc Layer to Fit Data

UPenn, February 2014

Page 2: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 2

Using Gen-Osc to Fit Data

Pre-built Existing Genosc Layer

Library optical constants GENOSC

Cauchy Point-by-Point GENOSC

Choosing the correct oscillators

– Fitting out-of-range oscillators

– Parameter correlation

Page 3: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 3

GENOSC Process Overview

Use Oscillator

To Fit DATA

Create

Oscillator Model

Existing

Oscillator Model

Tabulated

Optical Constants

Pt-by-Pt Fit

Reference

optical constants

itera

te

Page 4: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 4

1 Example_1_a-si_on_glass.dat

Use 7059_u.mat for substrate

Use a-si_asp.mat as Reference

Remember to add

surface oxide

– Very important for

semiconductors

Page 5: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 5

1 Example_1_a-si_on_glass.dat REPEAT

Compare Tauc-Lorentz to Cody-

Lorentz.

Use pre-existing Genosc layer for a-

Si available in the library and

repeat the example.

Page 6: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 6

Procedure for UV Absorbing Films

6

1. Cauchy Fit

– transparent region only

2. Pt-by-Pt Fit – all wavelengths

– fix thickness, then perform pt-by-pt fit

– Build Genosc from tabulated ‘cauchy’

3. Match n,k using Genosc

– fit reference – first e2, then e1

4. Fit Y & D data using new Genosc model

Page 7: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 7

2 Example_2_Thin_Dielectric_on_Si.dat

Use Si_vuv.mat for substrate

Cauchy PBP Gen-Osc

Page 8: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 8

Example 2: Thin Dielectric on Silicon

Select Transparent

Region

Build Model with Single-

layer Cauchy

Fit thickness and

Cauchy parameters

Extend range further

toward absorbing

region until MSE climbs

Generated and Experimental

Wavelength (nm)

600 800 1000 1200 1400 1600 1800

Y

in

degre

es

3

6

9

12

15

18

21

24

Model Fit

Exp E 60°

Exp E 75°

0 si_vuv 1 mm

1 cauchy 22.541 nm

Page 9: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 9

Example 2: Thin Dielectric on Silicon

Fix Thickness and

Cauchy parameters

Select data at ALL

wavelengths

Fit n & k using Pt-by-Pt fit

Generated and Experimental

Wavelength (nm)

0 300 600 900 1200 1500 1800

Y in

de

gre

es

0

10

20

30

40

50

60

70

Model Fit Exp E 60°Exp E 75°

Page 10: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 10

Example 2: Thin Dielectric on Silicon

PBP fit result n,k

Page 11: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 11

Example 2: Thin Dielectric on Silicon

Shortcut: Build GenOsc from tabulated‘cauchy’

0 si_vuv 1 mm

1 genosc 22.522 nm

If you have

tabulated optical

constants from any

layer you would like

to use as reference in Genosc, use

right-click menu.

Page 12: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 12

Example 2: Thin Dielectric on Silicon

Tabulated n & k is

loaded as Reference

Material

Note this particular

dielectric has Tauc-

Lorentz absorption shape in UV

Select Fit e2 only

Page 13: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 13

Example 2: Thin Dielectric on Silicon

Add Oscillators to match e2 shape of Reference material.

~ 5eV

Page 14: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 14

Example 2: Thin Dielectric on Silicon

Fit Oscillator Parameters to match Reference e2.

Page 15: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 15

Example 2: Thin Dielectric on Silicon

Select “Fit e1 Only”

Fit e1 with poles & offset

Page 16: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 16

Example 2: Thin Dielectric on Silicon Generated and Experimental

Wavelength (nm)

0 300 600 900 1200 1500 1800

Y in

de

gre

es

0

10

20

30

40

50

60

70

Model Fit Exp E 60°Exp E 75°

Generated and Experimental

Wavelength (nm)

0 300 600 900 1200 1500 1800

D in

de

gre

es

-100

0

100

200

300

Model Fit Exp E 60°Exp E 75°

Generate data

before fitting to insure

that the new layer

agrees with point-by-

point result.

Generated curves

should be close to

Experimental data.

Page 17: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 17

Example 2: Thin Dielectric on Silicon

Generated and Experimental

Wavelength (nm)

0 300 600 900 1200 1500 1800

D in

de

gre

es

-100

0

100

200

300

Model Fit Exp E 60°Exp E 75°

Allow oscillator parameters and thickness to fit.

Watch for

correlation

between

parameters.

MSE=1.36

SAVE Model File for FUTURE!

Page 18: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 18

3 Example_3_SiNx_on_Si.dat

Start from Cauchy to get a

Gen-Osc for SiNx layer.

Minimize number of Genosc

parameters.

Page 19: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 19

Out-of-range oscillators,

Correlation & sensitivity

– Fit with 2 Gaussian Oscillators

Photon Energy (eV)

4 6 8 10 12

Ima

g(D

iele

ctr

ic C

on

sta

nt)

, e 2

0.0

0.5

1.0

1.5

2.0

3) sion_pbpgaussian near bandgapout-of-range gaussian

Measured spectral

range

Page 20: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 20

Out-of-range oscillators,

correlation & sensitivity – Note that 3 different oscillators, all fit the measured spectral range equally

well !!

– The Gen-Osc function insensitive to the out-of-range Gaussian parameters

– The amplitude, center energy & broadening are correlated !!

Photon Energy (eV)

4 6 8 10 12 14Im

ag

(Die

lectr

ic C

on

sta

nt)

, e 2

0

2

4

6

8

10

3) sion_pbpout-of-range gaussian, eo=9p4evout-of-range gaussian, eo=11evout-of-range gaussian, eo=12evgaussian near bandgap

Measured spectral

range

Photon Energy (eV)

4 6 8 10 12 14

Ima

g(D

iele

ctr

ic C

on

sta

nt)

, e 2

0

2

4

6

8

10

3) sion_pbpout-of-range gaussian, eo=9p4evout-of-range gaussian, eo=11evout-of-range gaussian, eo=12evgaussian near bandgap

Measured

spectral range

Page 21: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 21

4 Example_4_Resist_on_Si.dat

Use si_vuv.mat for substrate

Cauchy PBP Gen-Osc

Gaussians work well to match

absorptions from organic film, such

as this photoresist.

Page 22: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 22

GENOSC Process Overview

Use Oscillator

To Fit DATA

Create

Oscillator Model

Existing

Oscillator Model

Tabulated

Optical Constants

Pt-by-Pt Fit

Reference

optical constants

itera

te

Page 23: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 23

Using Genosc to Fit Data

Starting with Existing Genosc Layer

Cauchy Point-by-Point GENOSC

Choosing the correct oscillators

Fitting out-of-range oscillators

Parameter correlation

Page 24: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 24

Advanced Genosc

When the pt-by-pt fit fails?

Page 25: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 25

5 Example_5_Organic_on_Si.dat

Use si_vuv.mat for substrate

Is the PBP result KK consistent?

– Use Gen-Osc to check

Page 26: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 26

What to do when Pt-by-Pt Fails?

1. Ask why did it fail?

Abrupt n,k changes (try # Pts. To Avg. = 2)

Starting model inaccurate (Roughness, Grading, Depolarization?)

2. Match e2 with oscillators (Gaussians) and match e1 at long-l. Fit. Go to #4 if needed.

3. Slowly move into absorbing region with Genosc, adding oscillators as needed. Go to # 4 if needed.

4. After oscillators come close to solution, do Normal Fit for n,k to develop a “reference” material file.

5. E-mail to us! ([email protected])

Page 27: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 27

Example 5

Previous point-by-point fit is not KK consistent.

However, we can match e2 at all wavelengths,

and e1 at longer wavelengths to get “starting

point”.

Page 28: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 28

Example 5, continued

Allowing all fit

parameters to vary,

we get: Generated and Experimental

Wavelength (nm)

0 300 600 900 1200 1500 1800

Y i

n d

eg

ree

s

0

20

40

60

80

100

Model Fit Exp E 65°Exp E 75°

Generated and Experimental

Wavelength (nm)

0 300 600 900 1200 1500 1800

D i

n d

eg

ree

s

-100

0

100

200

300

Model Fit Exp E 65°Exp E 75°

Watch for oscillators that get lost.

Page 29: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 29

6 Example_6_Organic_on_Si.dat

Is the Point-by-Point Fit KK consistent?

Try # Pts. To Avg. for next guess = 2

Extra Credit, Alternatively Try: – Match e2 with oscillators (Gaussians) and match

e1 at long-l. Fit.

– After oscillators come close to solution, do

Normal Fit for n,k to develop a “reference”

material file.

Page 30: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 30

Example 6 Results

0 si_jaw 1 mm

1 GenOsc 89.853 nmMSE = 2.5

Generated and Experimental

Wavelength (nm)

0 200 400 600 800 1000

Y in d

egre

es

0

20

40

60

80

100

Model Fit Exp E 65°Exp E 70°Exp E 75°

Generated and Experimental

Wavelength (nm)

0 200 400 600 800 1000

D in d

egre

es

-100

0

100

200

300

Model Fit Exp E 65°Exp E 70°Exp E 75°

Page 31: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 31

7 Example_7_Organic_on_Si

How do we get the answer without

reference material file?

Try:

– Slowly move into absorbing region

with Genosc, adding oscillators as

needed.

– After oscillators come close to

solution, do Normal Fit for n,k to

develop a “reference” material file.

Page 32: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 32

Example 7

Point-by-Point Fit FAILS

Generated and Experimental

Wavelength (nm)

200 400 600 800 1000 1200

Y in

degre

es

10

20

30

40

50

60

70

80

Model Fit Exp E 65°Exp E 70°Exp E 75°

Page 33: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 33

Cauchy to Sellmeier

Cauchy Fit up to 1.75eV

Then, convert to Genosc (Sellmeier)

Page 34: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 34

Extend Data to 2eV

Range-select to 2eV (Generate),

don’t fit yet. Generated and Experimental

Photon Energy (eV)

1.2 1.4 1.6 1.8 2.0

Y in

de

gre

es

15

18

21

24

27

30

33

Model Fit Exp E 65°Exp E 70°Exp E 75°

Must need absorption at 1.8eV and above

Page 35: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 35

Add Gaussian, Fit and Repeat

Difficult, take small steps (.2eV)

After oscillators come close to solution, do Normal

Fit for n,k to develop a “reference” material file.

Build another Genosc with new “Ref.Mat” file.

0 si_jaw 1 mm

1 GenOsc 60.127 nm

Generated and Experimental

Photon Energy (eV)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Y in

de

gre

es

D in

de

gre

es

10

20

30

40

50

60

70

80

-100

-50

0

50

100

150

Model Fit Exp Y-E 65°Exp Y-E 70°Exp Y-E 75°Model Fit Exp D-E 65°Exp D-E 70°Exp D-E 75°

GenOsc Optical Constants

Photon Energy (eV)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ind

ex o

f R

efr

actio

n '

n'

Extin

ctio

n C

oe

fficie

nt '

k'

1.2

1.4

1.6

1.8

2.0

2.2

0.0

0.2

0.4

0.6

0.8

nk

MSE = 12

Page 36: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 36

EXTRA CREDIT - Depolarization

Film was non-uniform and this is

required to fit data better.

Generated and Experimental

Photon Energy (eV)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Y in

de

gre

es

D in

de

gre

es

10

20

30

40

50

60

70

80

-100

-50

0

50

100

150

Model Fit Exp Y-E 65°Exp Y-E 70°Exp Y-E 75°Model Fit Exp D-E 65°Exp D-E 70°Exp D-E 75°

0 si_jaw 1 mm

1 genosc 59.191 nm

MSE = 3.9

Generated and Experimental

Photon Energy (eV)

1.0 1.5 2.0 2.5 3.0 3.5 4.0%

Depola

rization

0

3

6

9

12

15

18

Model Fit Exp -dpolE 65°Exp -dpolE 70°Exp -dpolE 75°

Page 37: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 37

Extra Slides

The following slides provide an

additional Example.

Page 38: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 38

p-semi Oscillator

The Genosc psemi has 9 main

variable parameters (11 total*):

1. E Center energy

2. A Amplitude

3. B Broadening

4. WL Left end point

5. WR Right end point

6. PL position left control point

7. AL amplitude left control point

8. PR position right control point

9. AR amplitude right control point.

eV

e 2

PL=0.75

(fixed)

A & E1

(variable)

WL WR

PR=0.5

(fixed)

AR:(variable)

B (variable)

O2R = 0

(fixed)

O2L = 1

(fixed)

Psemi-M1

AL:(variable)

Page 39: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 39

Psemi-Triangle oscillator

Psemi-TRI

eV

e 2

A, Ec (variable)

WL

(variable)

PR=0.5

(fixed)

AR:(variable)

PL=0.5

(fixed)

AL:(variable)

B (variable)

AL = 0.3, AR = 0.5

WR

(variable)

Page 40: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 40

Psemi-M0 oscillator

AR (variable) = 0.8

A

B = 0.05eV

O2R = 0

(all variable)

eV

e 2

PR=0.5

PR=0.6

AR = 0.5

AR = 0.3

Eo

(variable)

WR (variable)

PR (variable)

Psemi-M0

Page 41: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 41

8 Example_8_Direct_gap_film_on_SiC.dat

Use SiC_4H_o_g.mat for substrate

Try to match with Gaussians. How many

does it require?

How many PSEMI oscillators are required?

Count up the total number of “free”

parameters.

Page 42: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 42

Poly-Silicon The dielectric function of silicon varies with crystallinity.

Amorphous films have broad UV absorption: no distinct electronic

transitions (E1, E2,…)

As crystallinity increases, individual peaks separate & become

narrower.

To quantify crystallinity, optical constants are compared to

“reference” measurements where a film with known crystallinity was measured.

Photon Energy (eV)

1.0 2.0 3.0 4.0 5.0 6.0

Ima

g(D

iele

ctr

ic C

on

sta

nt)

, e 2

0

10

20

30

40

50

a-Si70% Poly-Si85% Poly-Sic-Si

e2 for different

silicon films from

one “reference”

file.

Page 43: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 43

Estimating Crystallinity

Ellipsometry can be used to estimate the amount of

crystallinity by comparing the measured optical constants

to the “reference” files. To improve accuracy, a new

“reference” file can be created for the particular deposition process.

Photon Energy (eV)

1.0 2.0 3.0 4.0 5.0 6.0

Ima

g(D

iele

ctr

ic C

on

sta

nt)

, e 2

0

10

20

30

40

50

75% Poly-Si80% Poly-Si90% Poly-SiCrystalline Si

For high crystalline %,

the peak is narrower

and eventually

separates into two

distinct regions.

Page 44: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 44

Estimating Crystallinity - 2

For amorphous films and small-grain poly-Si,

the absorption peak is broad – but there is still

a shift of the optical constants as shown

below.

Photon Energy (eV)

1.0 2.0 3.0 4.0 5.0 6.0

Ima

g(D

iele

ctr

ic C

on

sta

nt)

, e 2

0

10

20

30

40

a-Si10% poly-Si20% poly-Si30% poly-Si

Page 45: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 45

Estimating Bandgap

The ellipsometer is sensitive to optical constants of film. It will be most sensitive to the shape of absorbing region where e2 is larger. Although many models such as Tauc-Lorentz and Cody-Lorentz contain a bandgap term, the indirect gap of silicon films is not directly measurable. The bandgap can be estimated by plotting the decrease in a toward zero (log-scale).

Discussed in Woollam Newsletter article from year 2012

Photon Energy (eV)

0.0 1.0 2.0 3.0 4.0 5.0 6.0Lo

g(A

bso

rptio

n C

oe

ffic

ien

t in

1/c

m)

0

3

5

8

10

a-Si10% poly-Si20% poly-Si30% poly-Si

Tauc-Lorentz model matches

different a-Si and poly-Si films.

Blue area shows the level of

absorption that the SE can

detect. Values below are

extrapolated from T-L shape

Page 46: Session 3B - Penn Engineeringnanosop/documents/... · Session 3B Using the Gen-Osc Layer to Fit Data UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. 2 Using Gen-Osc to Fit Data

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 46

Estimating Bandgap - 2 Cody-Lorentz provides more flexibility for amorphous

semiconductors. Similar to the Tauc-Lorentz, SE is sensitive to

shape primarily from the more absorbing UV region and the

bandgap region just shifts as the overall shape changes.

Lesson: T-L and C-L can provide a qualitative ‘bandgap’ value for comparison, but may not match actual physical

property of film.

Photon Energy (eV)

0.0 1.0 2.0 3.0 4.0 5.0 6.0Lo

g(A

bso

rptio

n C

oe

ffic

ien

t in

1/c

m)

2.0

3.0

4.0

5.0

6.0

7.0

a-Si10% poly-Si20% poly-Si30% poly-Si