32
Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P. Evtikhiev and A.V. Ankudinov Ioffe Institute

Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Embed Size (px)

Citation preview

Page 1: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Semiconductor nanoheterostructures in nonequilibrium conditions: glance through

scanning probe microscope

K.S. Ladutenko (SPbGPU)

scientific advisers

V.P. Evtikhiev and A.V. Ankudinov

Ioffe Institute

Page 2: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Plan of the report:

• The construction of atomic force microscope

• Several techniques

• My research of nanoheterostructures in nonequilibrium conditions

Page 3: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

The construction of atomic force microscope

• Probe

• “Probe-sample” interaction detection system

• Coarse positioning system

• Fine positioning system (piezoelectric tube)

• Feedback loop

• Vibration isolation system

Page 4: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

The outward appearance

our microscope

Smena NT-MDT

Page 5: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Coarse positioning system

• Arm reducer.

• Springing reducer

• Piezo stepper motor • Stepper electric motor

Page 6: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Piezoceramic scanner

kijkij Edu Uh

ldZ 0

Page 7: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Piezoceramics drawbacks

1. Nonlinearity

2. Creep

3. Hysteresis

1

2 3

Page 8: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Probe

Page 9: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Van der Waals interaction

Page 10: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

“Probe-sample” interaction detection system

Page 11: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

FFzz

FFLL

“Probe-sample” interaction detection system

Page 12: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Feedback loop

Page 13: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Vibration isolation system

Hz

Hz

ext 10020

1010

Page 14: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Acoustic noises

Page 15: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Measuring techniques

• contact techniques – constant force technique – constant height technique – lateral force technique

• Semicontact – constant amplitude technique – Kelvin probe technique

Page 16: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Constant force technique

Page 17: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Constant height technique

Page 18: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Lateral force technique

Page 19: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

GaSb with five quantum wells GaInSbAs GaInSbAs(5nm)/GaSb(25nm)

QW QW

Page 20: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Constant amplitude technique

Page 21: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Kelvin probe technique

)sin( tVVV acdctip

dz

dCyxVF tipcap

2),(2

1

dz

dCtVΦ(x,y)VF acdccap )sin()(

Page 22: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

List of techniques STM techniques • Constant Current mode

• Constant Height mode

• Barrier Height imaging

• Density of States imaging

• I(z) Spectroscopy

• I(V) Spectroscopy

AFM techniques• dc Contact techniques

• Constant Height mode

• Constant Force mode

• Contact Error mode

• Lateral Force Imaging

• Spreading Resistance Imaging

• ac Contact techniques

• Force Modulation mode

• Contact EFM

• AFAM

• AFAM Resonance Spectroscopy

• Piezoresponce Force Microscopy

• Semicontact techniques • Semicontact mode • Phase Imaging mode • Semicontact Error mode • Non-Contact techniques • Non-Contact mode • Frequency Modulation mode

• Many-pass techniques • EFM • Scanning Capacitance

Microscopy • Kelvin Probe Microscopy • DC MFM • AC MFM • Dissipation Force Microscopy

• Spectroscopies • Force-distance curves • Adhesion Force imaging • Amplitude-distance curves • Phase-distance curves • Frequency-distance curves • Full-resonance Spectroscopy

SNOM techniques • Shear Force Microscopy • Transmission mode • Reflection mode • Luminescence mode • SNOM Lithography

aSNOM techniques • Scanning Plasmon Near-field

Microscopy

Lithographies • AFM Oxidation Lithography • STM Lithography • AFM Lithography - Scratching • AFM Lithography - Dynamic

Plowing

Confocal Microscopy techniques • Laser mode • Image mode • Spectral mode • Confocal Volume Lithography

Page 23: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Semiconductor nanoheterostructure in nonequlibrium conditions

• The motivation : need to improve the characteristics of injection lasers

• Method : Kelvin probe technique

• Modernization of this method

• Results

• Conclusions

Page 24: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Motivation

N P

h

Page 25: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

p i n

Technique to measure the leakage currants

h

Page 26: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Measurement

Page 27: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

CPD dependence from pumping currantV

olta

ge, V

Vol

tage

, V

X, nmX, nm

Page 28: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Impulse power supply

Page 29: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

p i n

Technique to measure the leakage currants

Page 30: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

CPD dependence from pumping currantV

olta

ge, V

Vol

tage

, V

Currant, ACurrant, A

Page 31: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Results

• The proposed and realized measurement procedure under pulse laser power supply allowed taking measurements at currents flowing through lasers is much higher than threshold current

• A change in contact potential difference is recorded far from pn-transition, in a strongly alloyed substrate depending on currents flowing through lasers

Page 32: Semiconductor nanoheterostructures in nonequilibrium conditions: glance through scanning probe microscope K.S. Ladutenko (SPbGPU) scientific advisers V.P

Conclusion

The attained results allow presuming that the proposed EFM procedure under pulse diode pumping enables to access the contribution of different physical processes to the leakage current of laser diode operating within a broad range of pumping currents.