25
Mesoscopic nonequilibrium thermoydnamics Application to interfacial phenomena Dynamics of Complex Fluid-Fluid Interfaces Leiden, 2011 Miguel Rubi

Mesoscopic nonequilibrium thermoydnamics

  • Upload
    leanna

  • View
    53

  • Download
    1

Embed Size (px)

DESCRIPTION

Mesoscopic nonequilibrium thermoydnamics. Application to interfacial phenomena. Miguel Rubi. Dynamics of Complex Fluid-Fluid Interfaces  Leiden, 2011. Interfaces. The interface is a thermodynamic system ; excess properties ; Local equilibrium holds . - PowerPoint PPT Presentation

Citation preview

Page 1: Mesoscopic nonequilibrium thermoydnamics

Mesoscopic nonequilibrium thermoydnamics

Application to interfacial phenomena

Dynamics of Complex Fluid-Fluid Interfaces Leiden, 2011

Miguel Rubi

Page 2: Mesoscopic nonequilibrium thermoydnamics

Interfaces• The interface is a thermodynamic system;

excess properties; Local equilibrium holds.• Transport and activated processes take place• The state of the surface can be described by

means of an internal coordinate

bound free

shear

Page 3: Mesoscopic nonequilibrium thermoydnamics

000

fff

Page 4: Mesoscopic nonequilibrium thermoydnamics

0F 0F

stick slip

shear

Activation

Examples:

Chemical reactions, adsorption, evaporation, condensation, thermionic emmision, fuel cells….

Activation: to proceed the system has to surmount a potential barrier; nonlinearNET: provides linear relationships between fluxes and forces

Page 5: Mesoscopic nonequilibrium thermoydnamics
Page 6: Mesoscopic nonequilibrium thermoydnamics

Nonequilibrium thermodynamics• Global description of nonequilibrium processes (k0; ω0) Shorter scales: memory kernels (Ex. generalyzed

hydrodynamics, non-Markovian)

• Description in terms of average values; absence of fluctuations

Fluctuations can be incorporated through random fluxes (fluctuating hydrodynamics)

• Linear domain of fluxes and thermodynamic forces

Page 7: Mesoscopic nonequilibrium thermoydnamics

Chemical reactions1 JAT

2 1( )L LJ AT T

Law of mass action

2 1

(1 )A

kT kT kT LJ D e e D e AT

Conclusion: NET only accounts for the linear regime.

linearization

Page 8: Mesoscopic nonequilibrium thermoydnamics

Unstable substance

Final product

Naked-eye: Sudden jump

Progressive molecular changes

Activation

DiffusionWatching closely

Page 9: Mesoscopic nonequilibrium thermoydnamics

Translocation of ions (through a protein channel)

short time scale: local equilibrium alongthe coordinate

biological pumps,chemical and biochemical reactions

Arrhenius, Butler-Volmer,Law of mass action

Local, linear Global, non-linear

Biological membrane

Page 10: Mesoscopic nonequilibrium thermoydnamics

Protein folding

Intermediate configurations, same as for chemical reactions

Page 11: Mesoscopic nonequilibrium thermoydnamics

Molecular motors

Energy transduction,Molecular motors

Page 12: Mesoscopic nonequilibrium thermoydnamics

( ) kT kT kT kTL kLJ e e De eT P

2 2

1 1kT kTd Je D d e

2 1

2 1( )kT kTJ D e e D z z

Activated process

viewed as a diffusion process along a reaction coordinate

From local to global: ...d

Page 13: Mesoscopic nonequilibrium thermoydnamics

What can we learn from kinetic theory?

J. Ross, P. Mazur, JCP (1961)

A B C D A

AS AS

f E Rt

(0) (1) 2 (2)1 ..A A A Af f

Boltzmann equation

LMA 1 JAT

Chapman-Enskog

Page 15: Mesoscopic nonequilibrium thermoydnamics

Molecular changes: diffusion through a mesoscopic coordinate

:( , ) :mesoscopic coordinate

P t probability

Second law D. Reguera, J.M. Rubi and J.M. Vilar, J. Phys. Chem. B (2005); Feature Article

Page 16: Mesoscopic nonequilibrium thermoydnamics

Meso-scale entropy production

Page 17: Mesoscopic nonequilibrium thermoydnamics

Relaxation equations

v Pudu

hydrodynamic

dv P vdt

1 1P p kT

1)i t   Fick

1)ii t    Maxwell-Cattaneo

1 dJJ Ddt

2( )D k kt

1 2( ) (1 )D k D D k

Burnett

J.M. Rubi, A. Perez, Physica A 264 (1999) 492

Page 18: Mesoscopic nonequilibrium thermoydnamics

References

• A. Perez, J.M. Rubi, P. Mazur, Physica A (1994)• J.M. Vilar and J.M. Rubi, PNAS (2001)• D. Reguera, J.M. Rubi and J.M. Vilar, J. Phys.

Chem. B (2005); Feature Article• J.M. Rubi, Scientific American, November, 40

(2008)

Page 19: Mesoscopic nonequilibrium thermoydnamics

Adsorption

Physisorbed Chemisorbed

( ) 1 2

1 0 2

Page 20: Mesoscopic nonequilibrium thermoydnamics

MNET of adsorption

Page 21: Mesoscopic nonequilibrium thermoydnamics

Langmuir equation

I. Pagonabarraga, J.M. Rubi, Physica A, 188, 553 (1992)

Page 22: Mesoscopic nonequilibrium thermoydnamics

Evaporation and condensationD. Bedeaux, S. Kjelstrup, J.M. Rubi, J. Chem. Phys., 119, 9163 (2003)

Page 23: Mesoscopic nonequilibrium thermoydnamics

Condensation coefficient

Page 24: Mesoscopic nonequilibrium thermoydnamics

0F 0F

stick slip

shear

Stick-slip transition

0

0

( )

ln

ln

f bkT kT

f f

b b

J l e e

kT c

kT c

C. Cheikh, G. Koper, PRL, 2003

Page 25: Mesoscopic nonequilibrium thermoydnamics

Conclusions

• MNET offers a unified and systematic scheme to analyze dissipative interfacial phenomena.

• The different states of the surface are characterized by a reaction coordinate.

• Chemical reactions, adsorption, evaporation, condensation, thermionic emmision, fuel cells….