40
© Steven F. Bartlett, 2011 Lecture Notes Reading Assignment Ch. 9 FHWA manual Foundations_vibrations.pdf Other Materials Homework Assignment 10 Complete CVEEN 7330 Modeling Exercise 5 (40 points) 2. B = 2 feet L = 2.6 feet D = ? feet (you determine this) Vertical static = 12 kips Vertical dynamic = 2.4 kips (upward or downward, most critical) Horizontal dynamic = 4 kips (in X direction = longest footing dimension) Moment about y axis = 9 kip feet The factored forces for the design of a sign post foundation are: 1. From this information, calculate the following: D for adequate FS against bearing capacity failure (15 points) Maximum soil pressure (5 points) D for FS against sliding (neglect passive pressure) (10 points) Seismic Design of Shallow Foundations Sunday, August 14, 2011 3:32 PM Shallow Foundations Page 1

Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

  • Upload
    buiminh

  • View
    225

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Lecture Notes○

Reading Assignment

Ch. 9 FHWA manual○

Foundations_vibrations.pdf○

Other Materials

Homework Assignment 10

Complete CVEEN 7330 Modeling Exercise 5 (40 points)2.

B = 2 feet○

L = 2.6 feet ○

D = ? feet (you determine this)○

Vertical static = 12 kips○

Vertical dynamic = 2.4 kips (upward or downward, most critical)○

Horizontal dynamic = 4 kips (in X direction = longest footing dimension)

Moment about y axis = 9 kip feet○

The factored forces for the design of a sign post foundation are:1.

From this information, calculate the following:

D for adequate FS against bearing capacity failure (15 points)○

Maximum soil pressure (5 points)○

D for FS against sliding (neglect passive pressure) (10 points) ○

Seismic Design of Shallow FoundationsSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 1

Page 2: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

All ground response consider thus far has not considered the effect of1.the structure on ground response. The presence of a structure, either buried or at the surface, changes the free-field motion.

In a manner similar to evaluation of seismic stability of slopes, earthquake effects on foundations can be modeled using either pseudo-static approach or a dynamic response approach.

2.

In the pseudo-static analysis, the effects of the dynamic earthquake-induced loads on the foundation are represented using static forces and moments. Typically, the pseudo-static forces and moments are calculated by applying a horizontal force equal to the weight of the structure times a seismic coefficient through the center of gravity of the structure. The seismic coefficient is generally a fraction of the peak ground acceleration for the design earthquake and may also be dependent upon the response characteristics of the structure, the behavior of the foundation soils, and the ability of the structure to accommodate permanent seismic displacement.

a.

In a dynamic response analysis, the dynamic stiffness and damping of the foundation is incorporated into a numerical model of the structure to evaluate the overall seismic response of the system and the interaction between the soil, foundation and structure.

b.

IntroductionSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 2

Page 3: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

The bearing capacity and lateral resistance of a foundation is evaluated using static formulations and compared to pseudo-static loads.

Used often for "unimportant structures," where the gross stability of the foundation is to be evaluated.

The static shear strength may be either decreased or increased, depending on soil type and groundwater conditions, to account for dynamic loading conditions.

Dynamic forces are represented as pseudostatic forces and moments and are calculated by applying a horizontal force (weight time seismic coefficient) through the center of gravity of the structure. Seismic coefficients are usually a fraction of pga.

Seismic loads in structures are typically dominated by the inertial forces from the superstructure, which are predominantly horizontal.

However, these horizontal forces are transmitted to the foundation in the form of horizontal and vertical forces, and rocking and torsional moments.

In cases where a dynamic analysis has been completed for the structure, the peak loads, reduced by a peak load reduction factor, is used in the pseudo-static analysis.

The resultant load will usually have to be inclined or applied eccentrically to account for vertical loads and moment loadings.

Alternatively, vertical bearing capacity and horizontal sliding resistance of the foundation can be determined independently. However, the influence of the applied moments on the vertical and horizontal loads must be considered in the bearing capacity and sliding calculations (see figure on next page).

Pseudostatic ApproachSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 3

Page 4: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

The dynamic stiffness of the foundation is incorporated into an analytical model of the superstructure to evaluate the overall seismic response of the system.

1.

horizontal sliding (two orthogonal directions)a.vertical motionb.rocking about two orthogonal axisc.torsion (rotation) about the vertical axis.d.

The foundation of a structure typically has six degrees of freedom (modes of motion) (Fig. 66)

2.

The response of the foundation to the above modes of motion is thus described by a 6 x 6 stiffness matrix, having 36 stiffness coefficients (Fig. 66).

3.

Internal damping of the soil is commonly incorporated in the site response model used to calculate design ground motions, and not in the foundation model.

a.Similarly, a 6 x 6 matrix is needed to described the damping of the foundation.4.

Dynamic Response Analysis ApproachSunday, August 14, 20113:32 PM

Shallow Foundations Page 4

Page 5: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

Shallow Foundations Page 5

Page 6: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Typically, the geotechnical engineer provides the values of the stiffness and damping matrix to the structural engineer for use in the dynamic response analysis of the structure.

5.

Based on the results of the analysis, the structural engineer should then provide the peak dynamic loads and deformations of the foundation elements back to the geotechnical engineer.

6.

The geotechnical engineer then compares the dynamic loads and deformations7.to acceptable values to ascertain if the seismic performance of the foundation isacceptable. This sometimes is an iterative process to achieve a satisfactory design.

If a dynamic response of the structure-foundation is performed, the bearing capacity, sliding, overturning and settlement of the shallow foundation should be evaluated using pseudo-static limit equilibrium analysis.

8.

Dynamic Response Analysis Approach (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 6

Page 7: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Dynamic response analyses incorporate the foundation system into the general dynamic model of the structure. The combined analysis is commonly referred to as the soil-structure-interaction, SSI analysis. In SSI analyses, the foundation system can either be represented by a system of springs (classical approach), or by a foundation stiffness (and damping) matrix. The latter approach, commonly used for SSI analyses of highway facilities, is commonly referred to as the stiffness matrix method approach.

The general form of the stiffness matrix for a rigid footing was presented in figure 66 . The 6 x 6 stiffness matrix can be incorporated in most structural engineering programs for dynamic response analysis to account for the foundation stiffness in evaluating the dynamic response of the structural system. The diagonal terms of the stiffness matrix represent the direct response of a mode of motion to excitation in that mode while the off diagonal terms represent the coupled response. Many of the off diagonal terms are zero or close to zero, signifying that the two corresponding modes are uncoupled (e.g. , torsion and vertical motion) and therefore may be neglected. In fact, for symmetric foundations loaded centrically, rocking and sliding (horizontal translation) are the only coupled modes of motion considered in a dynamic analysis.

Often, all of the off-diagonal (coupling) terms are neglected for two reasons : (1) the values of these off-diagonal terms are small, especially for shallow footings; and (2) they are difficult to compute. However, the coupling of the two components of horizontal translation to the two degrees of freedom of rocking (tilting) rotation may be significant in some cases . For instance, coupled rocking and sliding may be important for deeply embedded footings where the ratio of the depth of embedment to the equivalent footing diameter is greater than five. The reader is referred to Lam and Martin (1986) for more guidance on this issue.

The stiffness matrix, K, of an irregularly shaped and/or embedded footing can be expressed by the following general equation:

where KECF is the stiffness matrix of an equivalent circular surface footing, is

the foundation shape correction factor, and is the foundation embedment factor.

Dynamic Response Analysis (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 7

Page 8: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

The solution for a circular footing rigidly connected to the surface of an elastic half space provides the basic stiffness coefficients for the various modes of foundation displacement, translation, the stiffness coefficient K33 can be expressed as:

For horizontal translation, the stiffness coefficients and K22 can be expressed as:

For torsional rotation, the stiffness coefficient K can be expressed as:

For rocking rotation, the stiffness coefficients K44 and K55 can be expressed as:

In these equations, G and v are the dynamic shear modulus and Poisson’s ratio for the elastic half space (foundation soil) and R is the radius of the footing.

The dynamic shear modulus, G, used to evaluate the foundation stiffness should be based upon the representative, or average, shear strain of the foundationsoil. However, there are no practical guidelines for evaluating a representative shear strain for a dynamically loaded shallow foundation. Frequently, the value of G, the shear modulus at very low strain, is used to calculate foundation stiffness. However, this is an artifact of the original development of the above equations for foundation stiffness for the design of machine foundations for vibrations. For earthquake loading, it is recommended that values of G be evaluated at shear strain levels calculated from a seismic site response analysis (i.e., use strain-compatible values of G).

StiffnessSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 8

Page 9: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

One of the advantages of the stiffness matrix method over the classical approach is that a damping matrix can be included in SSI analysis. The format of the damping matrix is the same as the format of the stiffness matrix shown on figure 66. While coefficients of the damping matrix may represent both an internal (material) damping and a radiation (geometric) damping of the soil, only radiation damping is typically considered in SSI analysis.

The internal damping of the soil is predominantly strain dependent and can be

relatively accurately represented by the equivalent viscous damping ratio, . At the small strain levels typically associated with foundation response, is on the order of 2 to 5 percent. Radiation damping, i.e., damping that accounts for the energy contained in waves that ‘radiate” away from the foundation, is frequency-dependent and, in a SSI analysis, significantly larger than the material damping. Consequently, radiation damping dominates the damping matrix in SSI analyses.

The evaluation of damping matrix coefficients is complex and little guidance is available to practicing engineers. Damped vibration theory is usually used to form the initial foundation damping matrix. The theory, commonly used to study (small-strain) foundation vibration problems, assumes that the soil damping can be expressed via a damping ratio, D, defined as the ratio of the damping coefficient of the footing to the critical damping for the six-degree-of-freedom system.

The damping ratio for a shallow foundation depends upon the mass (or inertia) ratio of the footing. The following table lists the mass ratios and the damping coefficients and damping ratios for the various degrees of freedom of the footing. The damping ratios should be used as shown on figure 66 to develop the damping matrix of the foundation system. It should be noted that this approach only partially accounts for the geometry of the foundations and assumes that small earthquake strains are induced in the soil deposit. For pile foundations or for complex foundation geometry, a more rigorous approach, commonly referred to as the soil-foundation-structure-interaction (SFSI) analysis, may be warranted. SFSI is beyond the scope of this lecture.

Damping for Circular, Rigid FootingsSunday, August 14, 20113:32 PM

Shallow Foundations Page 9

Page 10: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Damping Table (Circular Footing)

Damping (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 10

Page 11: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Definition of variables on previous page

Damping (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 11

Page 12: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Application of the foundation stiffness general equation (K = KECF) for rectangular footings involves the following two steps:

Calculate the radius of an equivalent circular footing for the various modes of displacement using damping table and Figure 68. For vertical and horizontal (translational) displacements, the equivalent radius, r0, is the radius of a circular footing with the same area as the rectangular footing. For rocking and torsional motions, the calculation of the equivalent radius is more complicated, as it depends on the moment of inertia of the footing. The equivalent radius is then used in the stiffness equations to solve for the baseline stiffness coefficients required in the following formula: K = KECF.

1.

Damping for Rectangular FootingsSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 12

Page 13: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Find the shape factor a to be used in (K = KECF) using Figure 69. This figure gives the shape factors for various aspect ratios (LIB) for the various modes of foundation displacement.

2.

Damping for Rectangular Footings (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 13

Page 14: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Embedment

The influence of embedment on the response of a shallow foundation is described in detail in Lam and Martin (1986). The values of the foundation embedment factor from that study are presented in figure 70 for values of D/R less than or equal to 0.5 and in Figure 71 for values of D/R larger than 0.5. For cases where the top of the footing is below the ground surface, it is recommended that the thickness of the ground above the top of the footing be ignored and the thickness of the footing (not the actual depth of embedment Df) be used to calculate the embedment ratio (D/R) in determining the

embedment factor .

Damping for Rectangular Footings (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 14

Page 15: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Embedment (cont.)

Damping for Rectangular Footings (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 15

Page 16: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Method 1 - Seismic loads from dynamic response analysis

Potential for amplification of ground motion by the structure is included in the peak loads from the dynamic response analysis

Combination of loads from dynamic response analysis (vertical and horizontal) for use in bearing capacity, sliding and overturning evaluations.

Assume 100% peak vertical (2 cases; 100 percent upward and 100 percent downward) and 40% peak horizontal, applied in the direction that is most critical for stability. Generally 100 percent peak vertical in the downward directions controls the design.

Do not forget to apply the static dead loads (both horizontal and vertical) and static moments. These should be added to the seismic loads.

Common Approach for bearing capacity○

Load Evaluation - Loads from Dynamic Response AnalysisSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 16

Page 17: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Method 2 - Pseudostatic seismic loads from pga and seismic coefficient

seismic loads = (weight of structure) x (seismic coefficient)○

use peak ground acceleration from AASHTO maps (10 probability of exceedance in 50 years, or

0.5 x pga (for structures that can tolerate some deformation, or

use pga (for structures that can not tolerate large deformations)

for such structures, the design acceleration should be the spectral acceleration associated with the fundamental period of the structure. This acceleration should be factored according to requirements outlined in the appropriate design code.

consider potential amplification of horizontal acceleration for slender flexible structures.

no general guidance for selection of seismic coefficient, some possible approaches are:

Combination of loads (vertical and horizontal)○

(Common Approach for Bearing Capacity). Assume the horizontal and vertical loading is independent, (i.e., assume that it is highly unlikely that peak vertical and peak horizontal force will occur at the same time during the earthquake strong ground motion record, thus vertical and horizontal inertial loads can be considered separately for bearing capacity calculation).

vertical load, if applied centrically will generate only vertical forces on the foundation

if vertical load is applied eccentrically, it will generate a vertical force and a moment

both compressive and tensile vertical loads should be considered

horizontal load, if applied eccentrically, will generate a horizontal load and a moment.

Do not forget to apply the static dead loads (both vertical and horizontal) to the seismic loads.

Load Evaluation (cont.) - Loads from Pseudostatic AnalysisSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 17

Page 18: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Compute the earthquake loads (from Method 1 or Method 2 above) and combine

1.

For Method 1, use the 100% and 40% of peak inertial force rule to determine the lowest factor of safety.

For Method 2, remember that vertical and horizontal earthquake loads are treated separately (do not apply peak horizontal and peak vertical ground acceleration at the same time).

into a single resultant force with an inclination of α and an eccentricity, e (fig 65).

Load eccentricity is caused by the applied moment to the foundation○

Applied moment causes a non-uniform pressure distribution on the bottom of the footing.

Equivalent footing width (B') is computed for the footing, where the width of the footing is reduced, to account for load eccentricity

B' = (B-2e) (Meyerhof, 1953)B' = (3B/2-3e) (linear soil pressure distribution)(The calculated values from the above equations tend to be conservative the contact area is usually larger than the calculated values)

Commonly used relations for B'○

e < B/6 (Hansen, 1953) (for ah < 0.4 g)e < B/4 (Hansen, 1953) (for ah > 0.4 g)

limit to eccentricity (to prevent uplift)○

Adjust of Bearing Capacity Equation for Eccentric (Moment) Loading2.

Check bearing capacity with loadings from Method 1 or 2.3.

Report the lowest factor of safety that controls the design.4.

Check sliding factor of safety.5.

FHWA guidance

Evaluation Steps - Bearing CapacitySunday, August 14, 2011

3:32 PM

Shallow Foundations Page 18

Page 19: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Shallow Foundations Page 19

Page 20: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Sliding resistance should be assessed separately from the bearing capacity○

Assume 100% peak horizontal inertial load and 40% peak vertical inertial load (2 cases; 40% upward and 40% downward).

Also, check 40% peak horizontal and 100% peak vertical (2 cases; 100 percent upward and 100 percent downward).

Apply combinations in the direction that is most critical for sliding and gives the lowest factor of safety.

Load combinations (Method 1 or 2) Common approach for sliding○

frictional resistance (σv tan φ)

adhesion and the interface frictional resistance of the base depend on the type of soil and the type and finish of the foundation material.

For pre-cast concrete foundations , the adhesion and interface friction coefficient should be reduced by approximately 20 to 33 percent from the cohesion and friction coefficient of the underlying soils (see Navy Design Manual DM 7.2). Values from this manual can be used for both shallow foundations and retaining wall.

For foundations poured directly on the foundation soil, the phi of the soil is often used.

adhesion (a)

For eccentrically loaded foundations, the effective base area (B' x L') should be used in evaluating sliding resistance.

For embedded foundations the passive seismic resistance in front (leading edge) of the foundation is sometimes neglected; however, if included, the passive earth pressure is typically reduced by a factor of two to account for the large deformation required to mobilize full passive resistance.

active seismic force on the back (trailing edge) of the foundation is sometimes added to the seismic driving force, but is usually neglected if passive pressure on the leading edge has been neglected. Thus, in many cases, the net result calculated from factoring the passive seismic resistance and adding the active seismic force, produces very little change in the overall sliding factor of safety for shallow foundations; hence the embedment is sometimes ignored in sliding calculations.

Resistance to sliding:○

evaluation.

Sliding CalculationsSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 20

Page 21: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Definitions for use of Myerhof's equations

Need to use general bearing capacity equation to account for eccentric loads, moments, inclined loads, and different foundation shapes.

Myerhof's MethodSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 21

Page 22: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Bearing capacity factors

Inclination factors

Myerhof's Method (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 22

Page 23: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Shape factors for L < 6B

Myerhof's Method (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 23

Page 24: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Myerhof (Example) - Loading from Dynamic Analysis

Example CalculationSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 24

Page 25: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Myerhof (Example) - Loading from Dynamic Analysis

Example CalculationSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 25

Page 26: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Evert C. Lawton, 2011

Soil PressureSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 26

Page 27: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Machine Vibrations from Vertical Source (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 27

Page 28: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Machine VibrationsSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 28

Page 29: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

Machine Vibrations from Vertical SourceSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 29

Page 30: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Shallow Foundations Page 30

Page 31: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Idealization of a system using a spring with a dynamic stiffiness, Kz and a viscous dashpot Cz undergoing a harmonic loading of Pz.

Machine Vibrations from Vertical Source (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 31

Page 32: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Dynamic stiffness = static stiffness x dynamic stiffness coefficient. See chart A, next page for k(w) values.

Do not need these for FLAC modeling

Machine Vibrations from Vertical Source (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 32

Page 33: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

Machine Vibrations from Vertical Source (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 33

Page 34: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

FLAC Model with 3-D (i.e., radiation) damping

FLAC modeling of Machine Vibration (Vertical Source)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 34

Page 35: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

FLAC modeling of Machine Vibration (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 35

Page 36: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

FLAC modeling of Machine Vibration (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 36

Page 37: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

FLAC modeling of Machine Vibration (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 37

Page 38: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

FLAC modeling of Machine Vibration (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 38

Page 39: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

FLAC formulation for radiation damping

Machine Vibrations from Vertical Source (cont.)Sunday, August 14, 2011

3:32 PM

Shallow Foundations Page 39

Page 40: Seismic Design of Shallow Foundationscivil.utah.edu/~bartlett/CVEEN7330/Seismic Design of Shallow... · Seismic Design of Shallow Foundations Sunday, August 14, ... foundation displacement,

© Steven F. Bartlett, 2011

BlankSunday, August 14, 2011

3:32 PM

Shallow Foundations Page 40