Sbw 03 Proteins

Embed Size (px)

Citation preview

  • 8/12/2019 Sbw 03 Proteins

    1/16

    PROTEINS

    FOLDED POLYPEPTIDES

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    2/16

    PRIMARY STRUCTURE

    The sequence of amino acids

    MIL1 sequence:>gi|7662506|ref|NP_056182.1| MIL1 protein [Homo sapiens]

    MEDCLAHLGEKVSQELKEPLHKALQMLLSQPVTYQAFRECTLETTVHASGWNKILVPLVLLRQMLLELTRLGQEPLSALLQFGVTYLEDYSAEYIIQQGGWGTVFSLESEEEEYPGITAEDSNDIYILPSDNSGQVSPPESPTVTTSWQSESLPVSLSASQSWHTESLPVSLGPESWQQIAMDPEEVKSLDSNGAGEKSENNSSNSDIVHVEKEEVPEGMEEAAVASVVLPARELQEALPEAPAPLLPHITATSLLGTREPDTEVITVEKSSPATSLFVELDEEEVKAATTEPTEVEEVVPALEPTETLLSEKEINAREESLVEELSPASEKKPVPPSEGKSRLSPAGEMKPMPLSEGKSILLFGGAAAVAILAVAIGVALALRKK

    length: 386amino acids Anne-Marie Ternes

    http://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.html
  • 8/12/2019 Sbw 03 Proteins

    3/16

    PRIMARY STRUCTURE The numbers of amino acids vary

    (e.g. insulin 51, lysozyme 129, haemoglobin574, gamma globulin 1250)

    The primary structure determines the folding of

    the polypeptide to give a functional protein Polar amino acids (acidic, basic and neutral)

    are hydrophilic and tend to be placed on theoutside of the protein.

    Non-polar (hydrophobic) amino acids tend to beplaced on the inside of the protein

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    4/16

    Infinite variety

    The number of possible sequences isinfinite

    An average protein has 300 amino acids,At each position there could be one of 20different amino acids= 10390 possible combinations

    Most are uselessNatural selection picks out the best

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    5/16

    SECONDARY STRUCTURE

    The folding of the N-C-

    C backbone of the

    polypeptide chainusing weak hydrogen

    bonds

    Science Student

    Text 2007 Paul Billiet ODWS

    http://science-student.com/course-notes/biology-notes/biology-proteinshttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://science-student.com/course-notes/biology-notes/biology-proteins
  • 8/12/2019 Sbw 03 Proteins

    6/16

    SECONDARY STRUCTURE

    This produces the alpha helix and beta pleating

    The length of the helix or pleat is determined by certainamino acids that will not participate in these structures

    (e.g. proline)

    Dr Gary Kaiser Text2007 Paul Billiet ODWS

    http://student.ccbcmd.edu/~gkaiser/biotutorials/proteins/fg4b.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://student.ccbcmd.edu/~gkaiser/biotutorials/proteins/fg4b.htmlhttp://student.ccbcmd.edu/~gkaiser/biotutorials/proteins/fg4b.html
  • 8/12/2019 Sbw 03 Proteins

    7/16

    TERTIARY STRUCTUREThe folding of the polypeptide into

    domains whose chemical properties are

    determined by the amino acids in the

    chain

    MIL1 protein

    Anne-Marie Ternes

    2007 Paul Billiet ODWS

    http://kachkeis.com/essay2.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.htmlhttp://kachkeis.com/essay2.html
  • 8/12/2019 Sbw 03 Proteins

    8/16

    TERTIARY STRUCTURE

    This folding is sometimes held together bystrong covalent bonds(e.g. cysteine-cysteine disulphide bridge)

    Bending of the chain takes place at certainamino acids(e.g. proline)

    Hydrophobic amino acids tend to arrange

    themselves inside the molecule Hydrophilic amino acids arrange themselves

    on the outside

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    9/16

    Max Planck Institute for Molecular Genetics

    Chain B of Protein Kinase C

    http://lectures.molgen.mpg.de/ProteinStructure/Levels/index.htmlhttp://lectures.molgen.mpg.de/ProteinStructure/Levels/index.html
  • 8/12/2019 Sbw 03 Proteins

    10/16

    QUATERNARY STRUCTURE

    Some proteins are

    made of several

    polypeptide subunits(e.g. haemoglobin has

    four)

    Protein Kinase C

    Max Planck Institute for Molecular Genetics

    Text 2007 Paul Billiet ODWS

    http://lectures.molgen.mpg.de/ProteinStructure/Levels/index.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.htmlhttp://lectures.molgen.mpg.de/ProteinStructure/Levels/index.html
  • 8/12/2019 Sbw 03 Proteins

    11/16

    QUATERNARY STRUCTURE

    These subunits fit together to form the

    functional protein

    Therefore, the sequence of the aminoacids in the primary structure will influence

    the protein's structure at two, three or

    more levels

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    12/16

    Result

    Protein structure depends upon the

    amino acid sequence

    This, in turn, depends upon the sequenceof bases in the gene

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    13/16

    PROTEIN FUNCTIONS

    Protein structure determines protein

    function

    Denaturation or inhibition which maychange protein structure will change its

    function

    Coenzymes and cofactors in general mayenhance the protein's structure

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    14/16

    Fibrous proteins

    Involved in structure: tendons ligaments

    blood clots

    (e.g. collagen and keratin) Contractile proteins in movement: muscle,

    microtubules

    (cytoskelton, mitotic spindle, cilia, flagella)

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    15/16

    Globular proteins

    most proteins which move around (e.g.

    albumen, casein in milk)

    Proteins with binding sites:enzymes, haemoglobin, immunoglobulins,

    membrane receptor sites

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html
  • 8/12/2019 Sbw 03 Proteins

    16/16

    Proteins classified by function CATALYTIC: enzymes

    STORAGE: ovalbumen (in eggs), casein (in milk), zein(in maize)

    TRANSPORT: haemoglobin

    COMMUNICATION: hormones (eg insulin) andneurotransmitters

    CONTRACTILE: actin, myosin, dynein (in microtubules)

    PROTECTIVE: Immunoglobulin, fibrinogen, blood

    clotting factors TOXINS: snake venom

    STRUCTURAL: cell membrane proteins, keratin (hair),collagen

    2007 Paul Billiet ODWS

    http://www.saburchill.com/IBbiology/bio_hp.htmlhttp://www.saburchill.com/IBbiology/bio_hp.html