426
Venable Vault I Venable Instruments This content is shared with permission from Dr. R. David Middlebrook’s estate to further educaon and research. This content may not be published or used commercially.

s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Venable Vault I Venable Instruments

This content is shared with permission from Dr. R. David Middlebrook’s estate to further education and research. This content may not be published or used commercially.

Page 2: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1A. FETs AND BJTs ARE CCDsField-Effect Transistors and Bipolar Junction Transistors

are Charge-Controlled Devices

Both can be represented by the same small-signal equivalentcircuit model

v.0.1 3/07 http://www.RDMiddlebrook.com 1A. FETs & BJTs are CCDs

1

Page 3: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 1A. FETs & BJTs are CCDs

2

Recommended model for both the FET and the BJT:

For the FET, set =1, =∞α β

Page 4: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 1A. FETs & BJTs are CCDs

3

Conventional terminology:

This is the model used throughout the TTDVD

Page 5: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 1A. FETs & BJTs are CCDs

4

Page 6: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10. BASIC FEEDBACK

∞in terms of only two quantities, the Specification and G

the Loop Gain T

An Improved Formula expresses the closed-loop gain G

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

1

Page 7: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

2

Page 8: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

3

Page 9: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

4

Page 10: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

5

Page 11: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

6

Page 12: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

7

Page 13: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

8

Page 14: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

9

Page 15: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

10

Page 16: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

11

Page 17: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

12

Page 18: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

13

Page 19: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

14

Page 20: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

15

Page 21: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

16

Page 22: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

17

Page 23: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

18

Page 24: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

19

Page 25: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

20

Page 26: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

21

Page 27: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

22

Page 28: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

23

Page 29: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

24

Page 30: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

25

Page 31: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

26

Page 32: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

27

Page 33: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

28

Page 34: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

29

Page 35: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

30

Page 36: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

31

Page 37: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

32

Page 38: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

33

Page 39: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

34

Page 40: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

35

Page 41: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

36

Page 42: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

37

Page 43: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

38

Page 44: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

39

Page 45: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

40

Page 46: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

41

Page 47: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

42

Page 48: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

43

Page 49: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

44

Page 50: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

45

Page 51: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

46

Page 52: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

47

Page 53: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

48

Page 54: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

49

Page 55: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

50

Page 56: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

51

Page 57: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

52

Page 58: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

53

Page 59: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

54

Page 60: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

55

Page 61: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

56

Page 62: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

57

Page 63: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

58

Page 64: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

59

Page 65: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

60

Page 66: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

61

Page 67: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

62

Page 68: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

63

Page 69: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

64

Page 70: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

65

Page 71: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

66

Page 72: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

67

Page 73: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

68

Page 74: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

69

Page 75: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

70

Page 76: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

71

Page 77: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

72

Page 78: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

73

Page 79: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

74

Page 80: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

75

Page 81: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

76

Page 82: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

77

Page 83: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

78

Page 84: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

79

Page 85: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

80

Page 86: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

81

Page 87: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

82

Page 88: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

83

Page 89: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

84

Page 90: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

85

Page 91: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

86

Page 92: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

87

Page 93: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

88

Page 94: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

89

Page 95: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

90

Page 96: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

91

Page 97: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

92

Page 98: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

93

Page 99: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

94

Page 100: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

95

Page 101: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

96

Page 102: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

97

Find the discrepancy factor for a switching regulator loop gain .D TExercise 10.1

Page 103: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

98

Exercise 10.1 ‐ Solution

Page 104: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

99

Exercise 10.1 ‐ Solution

Page 105: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

100

Exercise 10.1 ‐ Solution

Page 106: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

101

Exercise 10.1 ‐ Solution

Page 107: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

102

Exercise 10.1 ‐ Solution

Page 108: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

103

Exercise 10.1 ‐ Solution

Page 109: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

104

Page 110: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

105

Page 111: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

106

Page 112: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 10. Basic Feedback

107

Page 113: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

11. NDI AND THE GFT:Null Double Injection and the General Feedback Theorem

How to identify and include nonidealities in a third quantity,the Null Loop Gain nT

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

1

Page 114: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Conventional block diagram:

o iu Hu=

+ -iu

T AK=

A

K

1 1

where is the loop gain

A AHAK T

T AK

= =+ +

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

2

Page 115: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Block diagram approach for closed‐loop gain :H

o iu Hu=

+ -iu

T AK=

A

K

1 1where is the loop gain

A AHAK TT AK

= =+ +

The block diagram says: if 0, then 0A H= =v.0.1 3/07 http://www.RDMiddlebrook.com

11. NDI & the GFT3

Page 116: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

4

But, this isn’t true in an actual circuit model: ..

. .If the second device fails open, the input signal can still reach the outputby going the ʺwrong wayʺ through the feedback path.

Page 117: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

+

+−

+

o iv He=

ie

xuyu

zuA

K

1AHT

=+

T AK≡

The formula is wrong because it is based on an incomplete model:

Two deficiencies:

1. Requires an ideal injection point

2. Ignores nonidealitiesv.0.1 3/07 http://www.RDMiddlebrook.com

11. NDI & the GFT5

Page 118: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

In contrast, the Dissection Theorem, which is a formula in similar format, is not based on a model.

On the contrary, the block diagram is a of the formula, not its , and contains no assumptions or approximations.

result origin

+−

++

T

o iu Hu=iunT

yuH T

1yuH

xuH

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

6How can the DT be made to represent a feedback system?

Page 119: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Dissection Theorem (DT)

signal signalinput output

iu

test signal

xuyu

zuou

first level TF second level TFs

1

1

1

1y nu T

TH H

+=

+1

1 1y xu uTH H

T T= +

+ +

ndi

si

ndindi

0z

oi u

uHu =

0o

yn

x u

uT

u =≡

0

y

y

u oi u

uHu =

≡Redundancy Relation:y

x

un

uTHTH

=

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

70i

y

x u

uT

u =≡

0

x

x

u oi u

uHu =

Page 120: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

There are many reasons why the Dissection Theorem is useful.

The benefit of the DT is that it embodies the ʺDivide and Conquerʺ approach, because one complicated calculation is replaced by three calculations, two of which are ndi calculations and are th

minimum

erefore and than si calculations.

simpler easier

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

8

Page 121: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Not only does the DT implement the Design & Conquer objective, but the DT is itself a Low Entropy Expression, and benefits accrue if the second level TFs have useful physical interpretati

much greaterons.

Thus, the second level TFs themselves contain the useful design‐orientedinformation and you may never need to actually substitute them into thetheorem.

For example, if , 1, yunT T H H>> ≈

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

9

Page 122: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

How to determine the physical interpretations of the second level TFs?

What kind of signal (voltage or current) is injected, and where it isinjected, defines an ʺinjection configuration.ʺ

Therefore, the key decision in applying the DT is choosing a test signalinjection point so that at least one of the second level TFs has the physicalinterpretation you want it to have.

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

10

Page 123: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Specific injection configurations for the DT lead to the: Extra Element Theorem (EET)Chain Theorem (CT)General Feedback Theorem (GFT)

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

11

Page 124: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Dissection Theorem (DT)

signal signalinput output

iu

test signal

xuyu

zuou

y

x

un

uTHTH

=

1

1

1

1y nu T

TH H

+=

+

ndi

si

11 1

y xu uTH HT T

= ++ +

ndindi

first level TF second level TFs

0o

yn

x u

uT

u =≡

0i

y

x u

uT

u =≡

0

x

x

u oi u

uHu =

≡0z

oi u

uHu =

≡0

y

y

u oi u

uHu =

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

12gain

Page 125: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

What test signal injection configuration makes the DT represent afeedback system?

We want to represent the ideal closed‐loop gain, and so the testsignal must be injected at the error signal summing point. At the same time, is the signal going forward around the feedback l

yu

z

x

Hu

uoop, so represents the loop gain: T

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

13

Page 126: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Test signal injection at the error signal summing point:

signal signalinput output

iu ouxuyu

zu iHu=

1

1

1

1y nu T

TH H

+=

+

y

x

un

uTHTH

=

ndi

si

11 1

y xu uTH HT T

= ++ +

ndindi

first level TF second level TFs

0o

yn

x u

uT

u =≡

0i

y

x u

uT

u =≡

0

x

x

u oi u

uHu =

≡0z

oi u

uHu =

≡0

y

y

u oi u

uHu =

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

14gainideal closed‐loop gain gain

null loopclosed‐loop loopgain

Page 127: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Test signal injection at the error signal summing point:

signal signalinput output

iu ouxuyu

zu iHu=y

x

un

uTHTH

=

1

1

1

1y nu T

TH H

+=

+1

1 1y xu uTH H

T T= +

+ +

It is seen that the closed‐loop gain is the weighted sum of twocomponents:

H

yuH H∞ ≡closed‐loop gain when :(the ʺideal closed‐loop gainʺ)

T = ∞

0 xuH H≡v.0.1 3/07 http://www.RDMiddlebrook.com

11. NDI & the GFT15

closed‐loop gain when 0:(the ʺdirect forward transmissionʺ)

T =

Page 128: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

General Feedback Theorem (GFT):With these new definitions, the DT morphs into the

signal signalinput output

iu ouxuyu

zu iHu=0

nTHH T∞ =

1

01

1 11 11

nT

T

TH H H HT T∞ ∞

+= = +

+ ++

ndi

si

ndindi

first level TF second level TFs

0o

yn

x u

uT

u =≡

0i

y

x u

uT

u =≡

0y

oi u

uHu∞

=≡ 0

0x

oi u

uHu =

≡0z

oi u

uHu =

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

16ideal closed‐loop gain

direct forwardtransmission gain

null looploopgaingain

closed‐loop

Page 129: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The augmented feedback block diagram:

0

This is the same block diagram that represents the conventional model, the block, and the corresponding null loop gain , which

represent not accounted for in the conventional moplus nH T

nonidealities del.

+−

++

T

o iu Hu=iunT

0H

H T∞

1H∞

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

17One of these nonidealities is the direct forward transmission through the feedback path ʺin the wrong direction.ʺ

Page 130: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The GFT Approach:

+−

notarrowheads

Note boxes,<

<<

iu o iu Hu=

zu

xuyu

Inject a test signal at error summing point.The GFT gives all the second‐level TFs directlyin terms of the circuit elements.

zu

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

18

Page 131: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

As already seen, the GFT can be expressed as the weighted sum of twocomponents:

1

01

1 11 11

nT

T

TH H H HT T∞ ∞

+= = +

+ ++

0

It is useful to define the weighting factors as ʺdiscrepancy factors and :D D

01

1 1TD DT T

≡ ≡+ +

1Also define a ʺnull discrepancy factorʺ 1nn

DT

≡ +

0 0nH H DD H D H D∞ ∞= = +

0When 1, 1 and 1 /T D D T>> → → When 1, 1n nT D>> →

0When 1, and 1T D T D<< → → When 1, 1 / n n nT D T<< →

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

19

Page 132: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Different versions of the GFT:1

01

1 11 11

nT

T

TH H H HT T∞ ∞

+= = +

+ ++

0 0nH H DD H D H D∞ ∞= = +

0Thus, the direct forward transmisson nonideality appears either:Has a multiplier term, indirectly via or , orn nT Das an additive term, directly

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

20

Page 133: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The job of a , as distinct from that of an , is to construct hardware that meetsspecifications within certain tolerances.

If you are designing a feedback amplifier,you effectively proce

designeranalyst

ed through four steps:

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

21

Page 134: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0dB

H∞

Design Step #1

Design the feedback network 1 / so that meets the specification

K H H∞ ∞=

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

22

Page 135: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

23

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0dB

T

1TDT

=+

Design Step #2

Design the loop gain so that is large enough that theactual meets the specification within the allowed tolerances

TH

Page 136: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

dB

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

H∞

D

H D∞

Design Step #2 cont.

Construct from and H D H D∞ ∞

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

24

Page 137: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

25

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0dB

T

D

Design Step #3

Design to be large enough up to a sufficiently high frequency. Usually the most difficult step; includesthe stability requirement

T

0D

Page 138: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

26

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0dB

0H

Design Step #4

0Design the direct forward transmission so that is small enough that the actual meets the specification within the allowed tolerances

HH

0D0 0H D

Page 139: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0dB

H D∞

H

Design Step #4 cont.

0 0H D

0 0Construction of with as an additive term to

H H DH D∞

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

27

Page 140: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0dB

H∞

H D∞

HnD

Construction of with as a multiplier term to

nH DH D∞

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

28

Page 141: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0Calculation of the second level TFs , , , byinjection of a test signal .

n

z

H T H Tu

Ultimately, we want to calculate the second‐level TFs directly from the circuit model, but first weʹll do it fromthe block diagram.

We want to do this by , without disturbing the circuit configuration and therefore without disturbing the circuit determinant.

signal injection

Normally, we inject a single signal and calculate a TF whose input is that signal. This is single injection (si).

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

29

Page 142: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

However, a powerful analytic technique is to inject two signals, mutually adjust them to null some dependent signal, and calculate a TF whose input is one or theother of the two injected signals. This is

(ndi).null double

injection

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

30

Consider the second‐level TF , the ideal closed‐loop gain. The actual closed‐loop gain falls short of

because the error signal, which is the difference between the input signal and the fedbai

HH

Hu

∞ck signal

, is not zero when the loop gain is not infinite.oKu

Page 143: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0H

H T∞

1H∞

+++

_

T

o iu Hu=iu

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

31

Page 144: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0H

H T∞

1H∞

+++

_

o iu Hu=iu

T

Normal closed‐loop operation

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

32

Page 145: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0H

H T∞

1H∞

+++

_

o iu Hu>iuzu

xuyu

Inject a test signal that adds to the error signal:the output increases and the error signal decreases

z

o y

uu u

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

33

Page 146: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

34

0H

H T∞

1H∞

+++

_

iu o iu H u∞=yuzu

xu

Simulates infinite lo op gain

0

Increase until falls to zero: this is an ndi .

The ndi is y

z y

o

i u

u u condition

ucalculation H

u∞=

=

Page 147: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

35

0H

H T∞

1H∞

+++

_

y xu Tu=0iu =zu

xu

T

0

Inject with set to zero: this is an si condition.

The si is i

z i

y

x u

u uu

calculation Tu =

=

Page 148: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0H

H T∞

1H∞

+++

_

o iu Hu=iu

T

Back to normal closed‐loop operation

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

36

Page 149: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0H

H T∞

1H∞

+++

_

o iu Hu<iuzu

xuyu

Inject a test signal that subtracts from the error signal:the output decreases and decreases

z

o x

uu u

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

37

Page 150: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

38

0H

H T∞

1H∞

+++

_

0o iu H u=iuzu

xuyu

Simulates zero loop gain

00

Increase until falls to zero: this is an ndi .

The ndi is x

z x

o

i u

u u condition

ucalculation H

u ==

Page 151: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0H

H T∞

1H∞

+++

_

o iu Hu<<iuzu

xuyu

Further increase of causes to reverse, and a furtherdrop in

z x

o

u uu

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

39

Page 152: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

40

0H

H T∞

1H∞

+++

_

0ou =y n xu T u=iuzu

xunT

0

Increase until falls to zero: this is an ndi .

The ndi is o

z o

yn

x u

u u conditionu

calculation Tu =

=

Page 153: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

41

0H

H T∞

1H∞

+++

_

0ou =y n xu T u=iuzu

xunT

0 0

Under this ndi condition of nulled ,. But , so / / ,

which is how was originally defined.

o

x i y i y x

n

uH Tu H u u u u u H T H

T∞ ∞= = =

Page 154: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

42

0H

H T∞

1H∞

+++

_

T

0

0 1

111 1 1

HH T

T

TH H H HT T

∞∞ ∞

+= + =

+ + +

0

nT HT H

∞=

Redundancy relation:

nT

0

0

00

0

ndi calculation

si calculati

ideal closed‐loop gain:

principal loop gain:

direct fwd tra

on

ndi calculationnsmission:

null loop gain: ndi calculation

y

i

x

o

o

i u

y

i u

o

i u

yn

x u

uHu

uT

u

uHu

uT

u

∞=

=

=

=

=

=

=

=

Page 155: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

∞ 0

In order for the of the four second‐level TFs, , , to have the shown, it is

necessary that the Test Signal Injection Configuration sa

Test Signal Injection Configuration

n

definitionsH T H T interpretations

tisfy the conditions adopted in the preceding derivation:

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

43

Page 156: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

∞ 0

In order for the of the four second‐level TFs, , , to have the shown, it is

necessary that the Test Signal Injection Configuration sa

Test Signal Injection Configuration

n

definitionsH T H T interpretations

tisfy the conditions adopted in the preceding derivation:

This makes equal

1. The test signa

to the Ideal Clo

l must be injected so that is t

sed LoopGain 1/ , the reciprocal of the feedback rati

he error

sigo.

nal. y

HK

u

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

44

Page 157: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

∞ 0

In order for the of the four second‐level TFs, , , to have the shown, it is

necessary that the Test Signal Injection Configuration sa

Test Signal Injection Configuration

n

definitionsH T H T interpretations

tisfy the conditions adopted in the preceding derivation:

2. The test signal must be injected inside the major loop,but outsi This makes represent thede any miPrincipal

nor loops. Loop Gain.

T

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

45

Page 158: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The GFT Approach:

+−

notarrowheads

Note boxes,<

<<

iu o iu Hu=

zu

xuyu

Inject a test signal at error summing point.The GFT gives all the second‐level TFs directlyin terms of the circuit elements.

zu

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

46

Page 159: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1. Reverse transmission through the feedback path2. Reverse transmission through the forward path3. If both paths have reverse transmission, there is

a nonzero reverse loop g

Nonidealities:

All n

ain

onidealities are automatically accounted for by the GFT

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

47

Page 160: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Are , , voltages or currents?x y zu u u

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

48

< >

< xuyuzu

_ +

+ _xvyv

‐+ze

< >

> xiyi

zj

Page 161: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Inverting Opamp

ieov

LR

120 k

2 10kR

iR10 k

11 kRP1

mtransconductance g ( ) :(0)=110 mA/V, poles

at 10 kHz, 700 kHzm

sg

ov

_

+

2

1We want to get , so inject to add to

the error voltage at P1:

zRH eR∞ =

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

49

Page 162: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Ideal voltage injection point

ieLR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _xvyv

ze

ov

_

+mg ( )s

An ideal voltage injection point is where comes from

an ideal (zero impedance) voltage generator, where looks into an infinite impedance.

y

x

v

or v

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

50

Page 163: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _

_

+

0

y

y

vo

i v

vH H

e∞=

= ≡A superscript indicates the signal being nulled

0yv =

ie

yvo iv H e=

2

110 20 dByv R

HR

= = ⇒

mg ( )sxv

ze

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

51

Page 164: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _

_

+

0i

yv

x e

vT T

v == ≡

0ie =

xv

ze

mg ( )s

11 2

1 2(0) (0)[ ( )] 92 39.2 dBiv m L i

i

R RT g R R R R

R R R= + = ⇒

+

y v xv T v=

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

52

Page 165: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _

_

+

ze

00

x

x

vo

i v

vH H

e == ≡

ie

0xv =yv

xvo iv H e=

2

2 1 2

( )0.83 1.6 dB

( )x i Lv L

L i L

R R RRHR R R R R R

+= = ⇒ −

+ + +

mg ( )s

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

53

Page 166: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _

_

+

zeie

0ov =

xvmg ( )s

0o

yn nv

x v

vT T

v == ≡

y nv xv T v=

2(0) (0) 1100 60.8 dBnv mT g R= = ⇒

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

54

(0)The redundancy relation 12 .0

(0)is verified.

y

x

vnv

vv

T HT H

= =

Page 167: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0

Note that is a simpler result from a shorter calculationthan is ,which is usually the case.

nTH

Therefore, it may be preferable to use the second of the two versions of :H

0 0 0

First version:1

1 1TH H H H H D H DT T∞ ∞= + = +

+ +

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

55

1

1

Second version:

1

1nT

nT

H H H DD∞ ∞

+= =

+

Page 168: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

56

Intusoft ICAP/4 Circuit Simulator with GFT Template

LR

120 k

2 10kR

iR10 k

11 kR

Y X

W

Vy Vx

IxIy

-

+

+

-Ez-+

- + VoEi+

-

GFTve

UoUi

mg ( )s

P1

Performs single voltage injection at the ideal point P1

Page 169: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0

The GFT Template calculates all the second‐level TFs, , , and inserts them into any version of the

first‐level TF , for comparison with the directlycalculated (the ʺnormalʺ closed‐loop gain

nH T H TH

H

with noinjected test signal).

All TFs can be displayed as magnitude and phaseBode plots.

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

57

The results for the above circuit were those used previously to illustrate the four Feedback AmplifierDesign Steps.

Page 170: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

20 dBH∞ =

dBCheck that is what was expectedH

nvT

vTcrossovervT

crossovernvT

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

58

Page 171: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

H∞

D

nDH

Check that [calculated] is same as [direct simulation]H H

crossovervT

crossovernvTnH H DD∞=

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

59

Page 172: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

60

( )

1

1

1 1 /

1 1

1 1

1

1

1 11

1 1

A third version of can be found by forcing the result

to be of the form :

1 1

1 1

1 1 11

where is a ʺpseudo l

p

n

p

n

n

n

n

nn

n

T

T Tn

T T

pTTT T T

n

T

T

T

T

p

H

H H

H H DD H H

H H H D

DT

∞ +

∞ ∞ ∞

∞ ∞ ∞

+

=

+

+= = =

+ + +

= = =++ −

≡−

oop gainʺ

and is a ʺpseudo discrepancy factorʺ1

pp

p

TD

T≡

+

Page 173: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

61

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

H∞

HpT

pD

The pseudo loop gain may be hard to relate to

the circuit model, because it contains both and p

n

T

T T

1p

pp

TH H D H

T∞ ∞= =+

Page 174: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Ideal current injection point

ieov LR

120 k

2 10kR

iR10 k

11 kR _

+

><xiyi

zjmg ( )s

An ideal current injection point is where comes from

an ideal (infinite impedance) current generator, where looks into a zero impedance.

y

x

i

or i

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

62

Results are exactly the same as for the ideal voltageinjection point.

Page 175: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

H∞

H

vT

vT

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

63

Page 176: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

H∞

H H

H∞

vT

vT

iT

iT

v.0.1 3/07 http://www.RDMiddlebrook.com 11. NDI & the GFT

64

Page 177: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

12. DNTI AND THE 2EET:Double Null Triple Injection and the Two Extra Element

Theorem

A short and easy way to find the poles and zeros of a circuitcontaining two reactances

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

1

Page 178: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

2

Page 179: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

3

Page 180: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

4

Page 181: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

5

Page 182: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

6

Page 183: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

7

Page 184: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

8

Page 185: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

9

Page 186: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

10

Page 187: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

11

Page 188: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

12

Page 189: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

13

Page 190: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

14

Page 191: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

15

Page 192: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

16

Page 193: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

17

Page 194: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

18

Page 195: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

19

Page 196: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

20

Page 197: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

21

Page 198: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

22

Page 199: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

23

Page 200: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

24

Page 201: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

25

Page 202: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

26

Page 203: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

27

Page 204: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

28

Page 205: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

29

Page 206: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

30

Page 207: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

31

Page 208: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

32

Page 209: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

33

1c LQ Q

1c LQ Q

c LQ Q

Page 210: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

mr

LR

tCEiα

Ei

36

5p10k

v SA v−120=β

S BR R4.6k

dC500p 1

62 36S B

B Lvm R RS B m

R RA dBR R r +

≡ = ⇒+ + β

α1dpR

2dpR

1CE with and t dC CUse the 2EET to add and t dC C

( ) Sv

and are already absorbedS BR Rinto a Thevenin equivalent1

Eiβ+

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

34

Page 211: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

mr

LR

tCEiα

Ei

36

5p10k

v SA v−120=β

S BR R4.6k

1dpR

For alone, results are already known:tC

( ) Sv(1 )

62S B m

S B m L

R R rm

R R r R+

≡ =β

1

62 36S B

B Lvm R RS B m

R RA dBR R r +

≡ = ⇒+ + β

α

21 / 36Z

mnR r α=∞ = = Ω 21 620Z

LdR mR k=∞ = =

21

1z Z

t nC Rω =∞≡

211

1p Z

t dC Rω =∞≡

1

/ 2880/ 2

51

1 136

1 1z

p

s sMHz

v vm s skHz

A A dBπ

ωπ

ω

− −= =

+ +1Eiβ+

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

35

Page 212: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For alone:dC

mr

LR

tCEiα

Ei

36

5p10k

v SA v−120=β

S BR R4.6k

dC500p 2dpR

( ) Sv

1Eiβ+

(1 )62S B m

S B m L

R R rm

R R r R+

≡ =β

12 0ZnR

=∞ = ( )12 1 2.2Z

S B mdR R R r kβ=∞ = + =1

62 36S B

B Lvm R RS B m

R RA dBR R r +

≡ = ⇒+ + β

α2

/ 2140

1 1361 1

p

v vm s skHz

A A dB πω

= =+ +

122

1p Z

d dC Rω =∞≡

These results are obtainable by inspection;no algebra is required.

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

36

Page 213: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

mr

LR

tCEiα

Ei

36

5p10k

Ei1+β

v SA v−120=β

S BR R4.6k

dC500p

1dpR

2dpR( ) Sv

1

1

1z

p

s

v vm sA A ω

ω

−=

+1Eiβ+

2

11

p

v vm sA Aω

=+

(1 )62S B m

S B m L

R R rm

R R r R+

≡ =β

With the corner frequencies for and separately now known, t dC Conly and remain to be found.n dK K

Since does not contribute a zero, is irrelevant, andd nC K

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

37

Page 214: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For and :t dC C

mr

LR

tCEiα

Ei

36

5p10k

v SA v−120=β

S BR R4.6k

dC500p

1dpR

2dpR( ) Sv

1

1

1z

p

s

v vm sA A ω

ω

−=

+

1Eiβ+

2

11

p

v vm sA Aω

=+

(1 )62S B m

S B m L

R R rm

R R r R+

≡ =β

1 2 1 2

1

1z

p p p p

s

v vm s s s sd

A AK

ω

ω ω ω ω

−=

+ + +

where

2 1

2 1

0 01 2

1 2

1 1 or (1 )

Z ZS B m Ld dL

d dZ ZL S B md d

R R R R r RRK KmR m mR R rR R β

= =

=∞ =∞≡ = = ≡ = =+

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

38(Redundancy check)

Page 215: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For and :t dC C

mr

LR

tCEiα

Ei

36

5p10k

Ei1+β

v SA v−120=β

S BR R4.6k

dC500p

1dpR

2dpR( ) Sv

1

1

1z

p

s

v vm sA A ω

ω

−=

+1Eiβ+

2

11

p

v vm sA Aω

=+

1dK m=

(1 )62S B m

S B m L

R R rm

R R r R+

≡ =β

1 2 1 221 1 1

1

1z

p p p p

s

v vm

m

A As s

ω

ω ω ω ω

−=

⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

The of the quadratic isQ

1 2

1 2

11 2

1 1 1 2

1p p

p p

m p p

p pQ

mω ω

ω ω

ω ω

ω ω= =

++

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

39max

0.5In general, , and since m 1 the quadratic always has real roots.Qm

= ≥

Page 216: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For and :t dC C

mr

LR

tCEiα

Ei

36

5p10k

Ei1+β

v SA v−120=β

S BR R4.6k

dC500p

1dpR

2dpR( ) Sv

1

1

1z

p

s

v vm sA A ω

ω

−=

+1Eiβ+

2

11

p

v vm sA Aω

=+

(1 )62S B m

S B m L

R R rm

R R r R+

≡ =β1

dK m=

1 2 1 221 1 1

1

1z

p p p p

s

v vm

m

A As s

ω

ω ω ω ω

−=

⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Here, 62 so the real root approximation is extremely good, and theresult can be written

m =

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

40( )1 2 1 2

1

1 1

z

p p p p

s

v vms s

m

A A ω

ω ω ω ω+

−=

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Page 217: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For and :t dC C

mr

LR

tCEiα

Ei

36

5p10k

v SA v−120=β

S BR R4.6k

dC500p

1dpR

2dpR( ) Sv

1Eiβ+ (1 )

62S B m

S B m L

R R rm

R R r R+

≡ =β

( )1 2 1 2

1

1 1

z

p p p p

s

v vms s

m

A A ω

ω ω ω ω+

−=

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( )/ 2

880/ 2 / 2

1237

136

1 1

sMHz

s sMHzkHz

dBπ

π π

−=

+ +

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

41

37kHz

51kHz140kHz 12MHz

880MHz

36dB

Interaction between and t dC Ccauses ʺpole splitting.ʺ

Page 218: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

42

Page 219: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

43

Page 220: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

44

Page 221: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 12. DNTI & the 2EET

45

Page 222: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

13. DNTI AND THE 2GFT:Double Null Triple Injection and the Two General Feedback

Theorem

Why two injected test signals are needed in the general case

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

1

Page 223: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The GFT with a single injected test signal, as a special case of the Dissection Theorem, incorporates all nonidealities, but still requires an ideal test signal injection point.

Why does a nonideal test signal injection point giveʺwrongʺ answers?

Consider the example circuit already discussed:

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

2

Page 224: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Ideal voltage injection point

ieLR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _xvyv

ze

ov

_

+mg ( )s

An ideal voltage injection point is where comes from

an ideal (zero impedance) voltage generator, where looks into an infinite impedance.

y

x

v

or v

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

3

Page 225: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Test voltage injection on the other side of :iR

ieov LR

120 k

2 10kR

iR10 k

11 kR _

+

_ +

+ _xvyv

ze

mg ( )s

P1P2

This is a nonideal voltage injection point,and the results for are quite different:vT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

4

Page 226: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

dB

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

H∞

H H

H∞

H

H∞vT

vT

iT

iT

vT

vT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

5

Page 227: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Reason for the difference in :vT

LR

120 k

2 10kR

iR10 k

11 kR

_ +

+ _xvyv

ze>0yi ≠ P1P2

Consider ( ): opamp gain goes to zerovT ω →∞

1 2 1[ ( )]y L y y

x i y

v R R R i R i

v R i

= + ≈

=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

6

1so 0yv

x i

v RT

v R= = ≠

Page 228: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

A nonideal injection point gives a / that depends

not only on , but also on the impedance ratio (lookingforward and backward) from the injection point.

y xu u

T

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

7

Page 229: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

A nonideal injection point gives a / that depends

not only on , but also on the impedance ratio (lookingforward and backward) from the injection point.

y xu u

T

A nonideal injection point also gives a thatis different from the desired :

yuHH∞

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

8

Page 230: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

dB

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

H∞

H H

H∞

H

H∞vT

vT

iT

iT

vT

vT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

9

Page 231: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kR _

+

_ +

+ _xv

ze

0yv =

ie

yvo iv H e=

>0yi ≠

Reason for the difference in :yvH

2

10Again, 0 so ,

but depends also on the opamp gain.

y

y

v oy

i v

v Ri He R=

≠ = ≠

mg ( )s

P1P2

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

10

Page 232: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

An extension of the Basic Feedback Theorem is needed:

To set up 1 / , the reciprocal of the feedback ratio,both the error voltage and the error current must

be nulled.

In the preceding examp

l

e

y y

H Kv i

∞ =

with injected test voltage , the desired result 1 / was obtained because nulled error voltage automatically implied nulled error current:

zeH K∞ =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

11

Page 233: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _

_

+

0

y

y

vo

i v

vH H

e∞=

= ≡A superscript indicates the signal being nulled

0yv =

ie

yvo iv H e=

2

110 20 dByv R

HR

= = ⇒

mg ( )sxv

ze

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

12

Page 234: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

In a realistic circuit model, the injection point is not idealand the X terminal looks into a 2‐port model that exhibitsnoninfinite input impedance and nonzero reverse transmission:

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

13

Page 235: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kRP1 _ +

+ _

_

+

0

y

y

vo

i v

vH H

e∞=

= ≡A superscript indicates the signal being nulled

0yv =

ie

yvo iv H e=

xv

ze

2 1

When is nulled, the error current is nulled, and

is not equal to / .yv not

H R R∞

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

14

Page 236: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

A nonideal voltage injection point implies thatwhen is nulled, is not nulled.y yv i

A nonideal current injection point implies thatwhen is nulled, is not nulled.y yi v

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

15

Page 237: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1

1

1

1nT

nT

H H H DD∞ ∞

+= =

+

The 2GFT: The Final Solution

To make equal 1 / :H K∞

What is needed is a way to null simultaneously boththe error voltage and the error current .y yv i

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

16

Page 238: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The answer is obvious:

Since

One signal can be nulled by mutual adjustment of twndi

oindependent sources ( , null double injection)

Two signals can be nulled by mutual adjustment of threeindependent sources ( , double null triple injectidnti on).

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

17

Page 239: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Therefore:In the presence of the input signal , inject voltage

current test signals so that the error voltage

the error current

bo

can be null

thand both

an edd .

i

y

y

ev

i

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

18

Page 240: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kR

_ +

+ _

_

+0yv =

ie

yvo iv H e=

xv

ze< >

zj

xi0yi =

2 1

When and are both nulled, is again equal to

/ , the reciprocal of the feedback r ta io .y yv i H

R R K∞

, 0

y y

y y

i vo

i i v

vH H

e∞=

= ≡Superscripts indicate the signals being nulled

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

19

Page 241: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The format of the GFT remains the same:1

11

1nT

TH H∞

+=

+

where now , and and contain bothvoltage and current loop gains.

y yi vnH H T T∞ =

http://www.RDMiddlebrook.com 13. DNTI & the @GFT

20

Since the GFT and the EET are special cases of the Dissection Theorem for a single injected test signal, and the 2EET is a special case of the 2DT, it is to be expected that the 2GFT for two injected test signals would have the same format as the 2EET with impedance ratios replaced by return ratios.

Page 242: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The 2GFT tells how to find when both currentand voltage loop gains are present.

T

+

−+

−ze

zj o iu Hu=iu xvyv

xiyi

1 1 1 1

1 1 1 1

1

1

v vi iy yy ynv nvy y ni ni

v vi iy yy yv vi i

nT TT Ti v

dT TT T

KH H

K

+ + +

=+ + +

where and are interaction parameters:d nK Ky y

x x

v ii v

d v ivi

T TKT T

≡ =y y

x x

v ini nv

n v invni

T TKT T

≡ =21

Page 243: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Interpretations:

zj o iu Hu=iuiou H u∞=

0yv =

0yi =+

−+

xvyv

ze xiyi

, 0

y y

y y

i v oi i v

uH Hu∞

=≡ ≡ ideal closed‐loop gain=

is a double null triple injection (dnti) calculation, which is even simpler and shorter than an ndi calculation.

y yi vH

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

22

Page 244: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Interpretations:

zjiu 0yv =

yvy xii T i=

0iu =

+

−+

xvyv

ze xiyi

0

y

y

v yi

x v

iT

i =≡

is a null double injection (ndi) calculation,which is simpler and shorter than an si calculation.

yviT

short‐circuit current loop gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

23

Page 245: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Interpretations:

1xx yv

ii i

T=

xiyi

zjiu 0xv =0iu =

+

−+

xvyv

ze

0

1x

x

xv yi v

iiT =

≡ reversshort‐circuit current loop e gain=

is a null double injection (ndi) calculation.xviT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

24

Page 246: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Interpretations:

zjiu

0yi =

0iu =

+

−+

xvyv yiy xvv T v=

ze xiyi

0

y

y

i yv

x i

vT

v =≡

is a null double injection (ndi) calculation.yivT

open‐circuit voltage loop gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

25

Page 247: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Interpretations:

1xx yiv

v vT

=xvyv

zjiu

0xi =

0iu =

+

−+

−ze xiyi

0

1x

x

xi

yv i

vvT =

is a null double injection (ndi) calculation.xivT

reversopen‐circuit voltage loop e gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

26

Page 248: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

zjiu

0

y

y

v yi

x v

iT

i =≡

0yv =

yvy xii T i=

0iu =

+

−+

xvyv

ze xiyi

forwarshort‐circuit current loop d gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

27

Page 249: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

zjiu

0

y

y

v yi

x v

iT

i =≡

0yv =

yvy xii T i=

0iu =

+

−+

xvyv

ze xiyi

v.0.2 8/07 28

iu 0yv =0iu =

+

−+

− xiyi

sc

y xi fwdi T i=

sci fwdT≡forwarshort‐circuit current loop d gain=

Page 250: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

1xx yv

ii i

T=

xiyi

zjiu 0xv =0iu =

+

−+

xvyv

ze

0

1x

x

xv yi v

iiT =

≡ reversshort‐circuit current loop e gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

29

Page 251: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

v.0.2 8/07 30

iu0iu =

+

−+

− xiyi

1xx yv

ii i

T=

xiyi

zjiu 0xv =0iu =

+

−+

xvyv

ze

0

1x

x

xv yi v

iiT =

0xv =

sc

x yi revi T i=

sci revT≡reversshort‐circuit current loop e gain=

Page 252: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

zjiu

0yi =

0iu =

+

−+

xvyv yiy xvv T v=

ze xiyi

0

y

y

i yv

x i

vT

v =≡ forwaropen‐circuit voltage loop d gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

31

Page 253: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

v.0.2 8/07 32

iu0iu =

+

−+

zjiu

0yi =

0iu =

+

−+

xvyv yiy xvv T v=

ze xiyi

0

y

y

i yv

x i

vT

v =≡

xv oc

y xv fwdv T v=

0yi =

yi

ocv fwdT≡forwaropen‐circuit voltage loop d gain=

Page 254: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

1xx yiv

v vT

=xvyv

zjiu

0xi =

0iu =

+

−+

−ze xiyi

0

1x

x

xi

yv i

vvT =

≡ reversopen‐circuit voltage loop e gain=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

33

Page 255: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Definitions:

v.0.2 8/07 34

iu0iu =

+

−+

xv

1xx yiv

v vT

=xvyv

zjiu

0xi =

0iu =

+

−+

−ze xiyi

0

1x

x

xi

yv i

vvT =

0xi =

oc

x v rev yv T v=yv

ocv revT≡reversopen‐circuit voltage loop e gain=

Page 256: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

35

Summary so far:1

1

1

1nT

TH H∞

+=

+The 2GFT:

0

y

y

v yi

x v

iT

i =≡

sci fwdT≡forwarshort‐circuit current loop d gain=

0

y

y

i yv

x i

vT

v =≡

ocv fwdT≡forwaropen‐circuit voltage loop d gain=

0

1x

x

xv yi v

iiT =

≡ sci revT≡reversshort‐circuit current loop e gain=

0

1x

x

xi

yv i

vvT =

≡ocv revT≡reversopen‐circuit voltage loop e gain=

1 1 1 1 1y yy ydv vi i

v vi i

KT T TT T≡ + +

in which the second level TF , the total loop gain, can be written in terms of the newly defined third level TFs:

T

Page 257: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1 1 1 1 1dsc oc sc oc

i fwd v fwd i fwd v fwdK

T T T TT≡ + +

and the redundant interaction parameter isdK

y y

x x

v ii v

d v ivi

T TKT T

≡ = sc sc oc oc

d i rev v revi fwd v fwdK T T T T≡ =or

In words, the redundancy relation says that

=product of short‐circuit forwardreverse and current loop gains

product of open‐circuit and volta

forwage lo

rdopr everse gains=dK

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

36

Page 258: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The expression for discloses that nonzero reverse loop gain entersonly through .d

TK

In the absence of reverse loop gain, reduces to the forward loop gain given byfwd

TT

1 1 1sc ocfwd i fwd v fwdT T T

= + sc oc

fwd i fwd v fwdT T T=or

In words, is the parallel combination of the short‐circuit forward

current gain and the open circuit forward voltage gain, and is therefore dominated by whichever one is smaller.

fwdT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

37

Page 259: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Now that reverse current and voltage loop gains have been identified,a reverse loop gain can be defined:revT

1 1 1sc ocrev v revreviT T T

= + sc oc

rev v revreviT T T=or

,sc sc oc ocd i rev v revi fwd v fwdK T T T T≡ =From the redundancy relation

can be written in terms of asrev dT K

drev sc oc

i fwd v fwd

KTT T

=+

or

1 1 1 1d revsc oc sc oc

i fwd v fwd i fwd v fwdK T

T T T T

⎛ ⎞⎜ ⎟= +⎜ ⎟⎝ ⎠

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

38

Page 260: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Finally, by substitution for in terms of , the total loop gain d revK T T

1 1 1 1 1dsc oc sc oc

i fwd v fwd i fwd v fwdK

T T T T T≡ + +

becomes

11 1 1 1 1 revrevsc oc sc oc fwdi fwd v fwd i fwd v fwd

TTT TT T T T

⎛ ⎞ ⎛ ⎞ +⎜ ⎟ ⎜ ⎟= + + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

or11 rev

fwd

TT T

+=

or

1fwd

rev

TT

T=

+

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

39

Page 261: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

A 1975 paper* showed how the loop gain could be found by combining the current and voltage loop gains obtained by simultaneous injection of current and voltage test signals at a nonideal injection poi

nt. That result is

actually obtained above.sc ocfwd i fwd v fwdT T T=

However, the 1975 paper was based on a model that excluded nonzero reverse loop gain, and so the exact 2GFT result can be considered anextension of the previous limited result.

In summary, the total loop gain given by the 2GFT isT

1fwd

rev

TT

T=

+

where sc oc

fwd i fwd v fwdT T T= and sc oc

rev v revreviT T T=

*R.D.Middlebrook, ʺMeasurement of loop gain in feedback systems,ʺInt. J. Electronics, 1975, vol. 38, No. 4, pp. 485 512.−

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

40

Page 262: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The 2GFT also tells how to find when both currentand voltage loop gains are present.

nT

+

−+

−ze

zj o iu Hu=iu xvyv

xiyi

1 1 1 1

1 1 1 1

1

1

v vi iy yy ynv nvy y ni ni

v vi iy yy yv vi i

nT TT Ti v

dT TT T

KH H

K

+ + +

=+ + +

where and are interaction parameters:d nK Ky y

x x

v ii v

d v ivi

T TKT T

≡ =y y

x x

v ini nv

n v invni

T TKT T

≡ =41

Page 263: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The four ʹs are defined in the same way as the four ʹs, except that theinput is restored and the output is also nulled.

n

i o

T Tu u

xvyvzjiu

+

−+

−ze xiyi

0ou =ou

The four ʹs are double null triple injection (dnti) calculations, as is ,which are even simpler and shorter than ndi calculations.

y yi vnT H

Since the structure of the null loop gain is exactly the same asthat of the loop gain , the discussion for can simply be repeatedfor with the extra modifier ʺnullʺ, as follows:

n

n

TT T

Tv.0.2 8/07 http://www.RDMiddlebrook.com

13. DNTI & the @GFT42

Page 264: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

http://www.RDMiddlebrook.com 13. DNTI & the @GFT

43

1

1

1

1nT

TH H∞

+=

+The 2GFT:

Discussion of the total loop gainnull :nT

1 1 1 1nsc oc sc oc

v fwd v fwdn ni fwd n ni fwd nK

T T T TT= + +

in which the second level TF , the total null loop gain, can be written in terms of the newly defined third level TFs:

nT

,

0forwa nrdshort‐circuit current loop gainully

o y

v yni

x u v

scni fwd

iT

iT

=≡≡ =

,

0forwa nuopen‐circuit voltage loop gard inlly

o y

i yvn

x

ocnv fw

id

uT

vT

v =≡≡ =

, 0

reve1 short‐circuit currenrse n t loop gaull inx

o x

xv yn

sc

i u vni rev

iiT

T=

≡≡ =

, 0

rever n1 open‐circuit voltage ul ll oop gainsex

o x

xi

ynv u i

ocnv rev

vvT

T=

≡≡ =

Page 265: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1 1 1 1nsc oc sc oc

v fwd v fwdn ni fwd n ni fwd nK

T T T TT= + +

and the redundant interaction parameter isnK

y y

x x

v ini nv

n v ini nv

T TKT T

≡ = sc sc oc oc

n nv revi revn v fwdni fwd nK T T T T= =or

In words, the redundancy relation says that

product of short‐circuit a nulnd curr

forwardre ent loop vers le gains

product of open‐circuit a null nd volta

forwardreve ge loop grse ains

nK = =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

44

Page 266: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

or

The expression for discloses that nonzero reverse loop gain entersonly throug

nh

ul.

ln

n

TK

In the absence of reverse loop gain, reducnull nulles to the forward loop gain given by

n

n fwd

TT

1 1 1sc oc

v fwdn fwd ni fwd nT TT= +

sc ocn fwd nv fwdni fwdT T T=

In words, is the parallel combination of the short‐circuit forward

current loop gain and the open circuit forward voltage loop gain, and is therefore dominated by whichever one is snull null

m

n fwdT

aller.

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

45

Page 267: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

or

From the redundancy relation

or

Now that reverse current and voltage loop gains have been identified,a reverse l

nuoop gain can be defined:

ll null n revT

1 1 1sc ocn nv revn rev i revT TT

= + sc ocnn rev nv revi revT T T=

can be written in terms of asn rev nT K

nn rev sc oc

v fwdni fwd n

KTT T

=+

1 1 1 1n n revsc oc sc oc

v fwd v fwdni fwd n ni fwd nK T

T T T T

⎛ ⎞⎜ ⎟= +⎜ ⎟⎝ ⎠

= = ,sc sc oc ocn nv revi revn v fwdni fwd nK T T T T

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

46

Page 268: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

becomes

Finally, by substitution for in terms of , the tota null l loop gain n n rev nK T T

1 1 1 1nsc oc sc oc

v fwd v fwdn ni fwd n ni fwd nK

T T T TT= + +

11 1 1 1 1 n revn revsc oc sc oc

v fwd v fwdn n fwdni fwd n ni fwd n

TTT T T TT T

⎛ ⎞ ⎛ ⎞ +⎜ ⎟ ⎜ ⎟= + + + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

11 n rev

n n fwd

TT T

+=

or

or

1n fwd

nn rev

TT

T=

+

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

47

Page 269: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

In summary, the 2GFT in terms of the newly defined TFs is

1

1

1

1nT

TH H∞

+=

+where

y yi vH H∞ =

in which and 1

in which and 1

fwd sc oc sc ocv fwdfwd rev v revi revi fwd

rev

n fwd sc oc sc ocnn n fwd n rev nv revi revnv fwdni fwd

n rev

TT T T T T T T

TT

T T T T T T TT

= = =+

= = =+

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

48

Page 270: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Reminder:

49

1

0 1

0

111 1 1

Redundancy Relation:

In order for the of the four second‐level TFsto have the following

ideal closed loop gain principal lo

nTn

T

n

definitionsint

TH H H H H D

erpretations

DT T

H TH T

HT

∞ ∞ ∞

+= + = =

+ + +

=

=

=

0

op gain direct forward transmission

null loop gainn

HT

=

=

Page 271: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Test Signal Injection Configurationit is necessary that the satisfy two conditions:

1. The test signal ( and/or ) must be injected so that ( and/or ) is the error signal.

z z z

y y y

u e ju i v

2. The test signal must be injected inside the major loop, but outside any minor loops.

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

50

Page 272: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ieov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_xv

_

+yv

ze

mg ( )s

P1P2 < >

zj

‐+iRyi xi

Inverting Opamp with nonideal injection pointov

Inject both a test voltage and a test current

1

1

1

1nT

TH H∞

+=

+

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

51

Page 273: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ieov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_xv

_

+

ze

mg ( )s

P1P2 < >

zj

‐+iRxi

, 0

y y

y y

i vo

i i v

vH H

e∞=

= ≡

2

110 20 dBy yi v R

HR

= = ⇒

ie

0yi =

0yv =

y yi vo iv H e=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

52

Page 274: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_xv

_

+

mg ( )s

P1P2 < >iR

, 0

y

i y

v yi

x e v

iT

i ==

0ie =

0yv =

sci fwdT≡

sc

y xi fwdi T i=

xi

( ) 2

sc Li mi fwd

L

RT R g sR R

=+

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

53

Page 275: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_

_

+

mg ( )s

P1P2 < >iRxi

, 0

yy

i y

viv

x e i

Tv

=

=

0ie =

0yi =

ocv fwdT≡

oc

y xv fwdv T v= xv

1 2 1

( )oc Lmv fwd

L

RT g s RR R R

=+ +

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

54

Page 276: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_

_

+yv

mg ( )s

P1P2 < >iR0xv =

0ie =

0

1x

x

xv

yii

v

screvTi

iT =

≡≡

sc

x i rev yi T i=

yi

0, and because there is no reverse current loop gain,

0 so 0.x

scx i rev

v

i T

=

= =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

55

Page 277: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_

_

+

mg ( )s

P1P2 < >iRyi

0ie = 0xi =

0

1x

x

xi

yvv

i

ocrevTv

vT =

≡≡

oc

x v rev yv T v=yv

0, and because there is no reverse voltage loop gain,

0 so 0.x

ocx v rev

i

v T

=

= =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

56

Page 278: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Finally,

1fwd

rev

TT

T=

+ 0,sc ocrevirev v revT T T= =where

so sc ocfwd i fwd v fwdT T T T= =

( )12 1

(0) (0) 92 39.2 dBLm i

L i

RT g R RR R R R

= = ⇒+ +

which is the same as (0) obtained from single voltage injection at the ideal voltage injection point P1.

vT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

57

Page 279: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ieov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_xv

_

+

mg ( )s

P1P2 < >iR

, 0

y

o y

v yni

x v v

iT

i ==

ie

0yv =

0ov =

2

Because and are both nulled, there is

no current in or , so 0 andy o

L x

v v

R R i =

scni fwdT≡

xi

scy xni fwdi T i=

scni fwdT = ∞

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

58

Page 280: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ieov LR

120 k

2 10kR

iR10 k

11 kR _

+

+

_

_

+

mg ( )s

P1P2 < >iRxi

ie

0yi =

0ov =, 0

y

o y

i ynv

x v i

ocv fwdn

vT

vT

== ≡

oc

y xv fwdnv T v=xv

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

59

2 ( )ocmv fwdnT g s R=

and are both zero for the same reason

that and are zero: there is no reverse currentor voltage loop gain.

sc ocni rev nv rev

sc oci rev v rev

T T

T T

Page 281: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Finally,

where 1n fwd

nn rev

TT

T=

+ 0sc ocn rev ni rev nv revT T T= =

so sc ocn n fwd ni fwd nv fwdT T T T= =

However, , so sc ocnni fwd nv fwdT T T= ∞ =

2( )n mT g s R=

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

60

which is the same as obtained from single voltage injection at the ideal voltage injection point P1.

nvT

Page 282: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

61

..

Y X

W

Vy Vx

IxIy

-

+

+

-JzEz-+

- + VoEi+

-

GFTv

UoUi

Intusoft ICAP/4 Circuit Simulator with GFT Template

LR

120 k

2 10kR

iR10 k

11 kR

Performs coupled currrent and voltage injectionat the same nonideal point P2

P2 P1

Page 283: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

sci fwdT

ocv fwdT

sci fwd

ocv ffwd wdT TT =

0, so rev fwdT T T= =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

62

Page 284: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

ocnv fwdT

, so ocnv fwdn fwni d d

scfw T TT = ∞ =

0, so n rev n n fwdT T T= =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

63

Page 285: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Mfrequency in hertz

-150

-90.0

-30.0

30.0

90.0

dB

H∞

T

H

T

H

H∞

T

T

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

64

Results are the same as for single voltage injectionat the ideal point P1

Page 286: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

D

A

i

n

ff

is defined by testsignals are adopted, and they are

erent injection configurations produce differentsets of second‐level TFs, but each set combines

inject

ed.injection configuration which

where

to givethe first‐level TF .same H

Therefore, the choice of Test Signal Injection Configuration is crucial in making the second‐level TFs

, , have the desired interpretations.nH T T∞

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

65

Page 287: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Basic Inverting Opamp

Identify error voltage and error current :y yv i

Note box,not

arrowhead+

<

+

yi

yvie

+

−+

ov =iHe

1Z 2Z

(Requirement 1)

2

1ideal closed‐loop gain = y yi v Z

H HZ∞ ≡ =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

66

Page 288: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Identify drive to the forward path, and hence where is to be injected (Requirement 2):

x

z

ve

Note box,not

arrowhead

+

+

<ze

+

+

yi

xvyvie

+

−+

ov =iHe

1Z 2Z

When is nulled, is automatically nulled?y yv i

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

67

Page 289: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

If not, identify drive to the forward path, and hencewhere is to be injected:

x

z

ij

Note box,not

arrowhead

+

+

<

<

ze

zj

+

+

xiyi

xvyvie

+

−+

ov =iHe

1Z 2Z

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

68

Page 290: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Basic Noninverting Opamp

Identify error voltage and error current :y yv i

+

Note box,not

arrowhead<

−+ yiyvie

ov =

+

−+

iHe1Z

2Z

(Requirement 1)

1 2

1ideal closed‐loop gain = y yi v Z Z

H HZ∞+

≡ =

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

69

Page 291: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Identify drive to the forward path, and hence where is to be injected (Requirement 2):

x

z

ve

ze+

+

Note box,not

arrowhead<

+−

−+ yi

xv

yvie

ov =

+

−+

iHe1Z

2Z

When is nulled, is automatically nulled?y yv i

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

70

Page 292: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

If not, identify drive to the forward path, and hencewhere is to be injected:

x

z

ij

zj ze+

+

Note box,not

arrowhead<

<

+−

−+

xi

yi

xv

yvie

ov =

+

−+

iHe1Z

2Z

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

71

Page 293: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Despite the apparently different layouts, both the Invand Noninv configurations are the same, except that the reference node for the output voltage is different:

Note box,not

arrowhead

+

+

<

<

ze

zj

+

+

xiyi

xvyvie

+

−+

ov =iHe

1Z 2ZNoninv

Inv

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

72

Page 294: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Note box,not

arrowhead

+

+

<

<

ze

zj

+

+

xiyi

xvyvie

+

−+

ov =iHe

1Z 2ZNoninv

Inv

Inv1

Inv Inv 1

1

1+nT

TH H∞

+= Noninv

1

Noninv Noninv 1

1

1+nT

TH H∞

+=

The principal loop gain is the for both;T same

Noninv

Noninv Inv Inv

The amplifier CM gain affects , but doesnot affect , , , or .

n

n

TH H T T∞ ∞ 73

Page 295: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

SUMMARY

History of the conventional approach

The GFT: The Final Solution approach

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

74

Page 296: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

+

+−

+

o iv He=

ie

Analysis History: Replace the boxes with arrowheads:

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

75

Page 297: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Spotlight the loop gain:

+

+−

+

o iv He=

ie

xuyu

zuA

K

1AHT

=+

T AK≡

Development chronology:1. Disconnect the feedback path, calculate and separately: ignores loading2. Inject test signal where there is no loading (ideal injection point)3. Inject coupled test signals (nonideal injection

A K

point)

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

76Result: reverse transmission is ignored

Page 298: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Alternative: set up the forward and feedback pathsas 2‐port networks:

+

+

+

+−

h

fh

+

o iv He=

ie

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

77

This requires four different sets of 2‐port parameters for the four feedback connections, and itʹs still not clear how to account for reverse loop gain.

Page 299: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The model itself is inaccurate, in three of the four connections, because common‐mode gain is ignored.

Essentially useless for design

Disadvantage:

Greater Disadvant, because the circuit

element

age:

s are buried inside the 2‐port parameters, which are themselves buried in expressions forclosed‐loop gain and loop gain.

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

78

Page 300: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

WHAT THE GFT DOES:

Defines and calculates the Principal Loop Gain

Identifies and calculates nonidealities

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

79

Page 301: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The GFT Approach: the Final Solution

+

+−

+

o iv He=

ie

zj

+ ze

notarrowheads

Note boxes,

Inject coupled test signals at error summing point.The GFT gives all the second‐level TFs directlyin terms of the circuit elements.

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

80

Page 302: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1

1

1

1nT

TH H∞

+=

+

HOW THE GFT DOES IT:

The Test Signal Injection Configuration is chosen tomeet the following criteria:

1 The test signal(s) must be injected at the error summing point. This makes equal to the Ideal Closed‐Loop Gain 1 / , the reciprocal of the feedback ratio.

. H

K∞

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

81

The test signal(s) must be injected inside the majorloop, but outs2.

ide any minor loops. This makes representthe Principal Loop Gain.

T

Page 303: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

makes the Null Loop Gain represent all the nonidealities, including: forward transmission through the feedback path reverse transmission through the forward path

If

1

>

plus

>1, t

2

he nonid

n

n

T

T ealities are negligible.

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

82

Page 304: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Injection of both voltage and current test signals at a nonideal point includes, as special cases, injection of only one test signal at an ideal point, so you donʹt have to know in advance whether or not the injection point is ideal.

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

83

Page 305: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

84

Results include reverse transmission in both forwardand feedback paths, and thus include reverse loop gain.Approximations are easily made, if desired.

All four second lev

Be

el

nefit:

Be TFs

n, ,

e t:

fiH T∞ 0, are

produced, either numerically by Intusoft ICAP/4 GFTTemplate, or symbolically by ndi and dnti analysis.

The second‐level TFs combine in the GFT to producethe first‐level result, the cl

Benefit:

nT H

0

osed‐loop TF :1

1 1

HTH H HT T∞= +

+ +

Page 306: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

This result fits the block diagram:

+−

++H T∞

T

0H

1H∞

o iu Hu=iunT

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

85

Page 307: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Greater Benefit:unidirectional bloThus, the block diagram, with ,

is a of simple and straightforward calculation,

cks

.result exact

not an initial assumption

v.0.2 8/07 http://www.RDMiddlebrook.com 13. DNTI & the @GFT

86

0The second‐level TFs , , , are obtained directly in terms of the circuit elements, which makes it possible for the results to be used backwards for des

Great

ign.

est Benefi

This

t

is the princ

:

nH T T H∞

Design‐Oriented Analysis: the Only Kind of Anal

ipal object

ysis Worth

ive of

Doing.

Page 308: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

EXAMPLE

14. A 2CE/S FEEDBACK AMPLIFIERA 2-stage Common-Emitter/-Source Amplifier

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

1

Page 309: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

2

..

. .

25 Ω

1i

2i100 k

50 Ω

1R

2R

1 k

9 k

0.5 p

1iα

2iα

>

>ie

ovFor FETs, =1α

10 Ω

2C

2With , should have a pole and a rhp zero

C T

Page 310: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

An ideal test current injection point is at the output ofthe first stage:

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

3

Page 311: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

4

..

. .

1i

2i100 k

50 Ω

1R

2R

1 k

9 k

0.5 p

1iα

2iα

>ie

ov

< >yi xi

0

loop gain:

==

i

y

x e

iT

i

25 Ω

>

10 Ω

2C

2With , should have a pole and a rhp zero

C T

Page 312: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-180

-120

-60.0

0

60.0 T

T

dB

deg

2With : ʺrightʺ answerC

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

5

Page 313: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

6

..

. .

1i

2i100 k

50 Ω10 Ω

1R

2R

1 k

9 k

0.5 p

1iα

2iα

>ie

ov

< >yi xi

0

loop gain:

==

i

y

x e

iT

i

25 Ω

>

2C

10 p1C

1 2With and , should have two poles, a rhp zero and a lhp zero

C C T

Page 314: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-180

-120

-60.0

0

60.0 T

T

dB

deg

1 2With and : ʺwrongʺ answerC C

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

7

Page 315: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Why?

2In the presence of , the selected test current injectionpoint is no longer ʺidealʺ, and in fact there is no idealinjection point for either a test current or a test voltage

C

*A 1975 paper showed that injection, at a nonideal point, of current and voltage test signals to give and could be combined to give the correct result for :

i v

successive

T TT1 1 1 1or

1 1 1 2i v

i v i v

T TTT T T T T

−= + =

+ + + + +

8

*R.D.Middlebrook, ʺMeasurement of loop gain in feedback systems,ʺInt. J. Electronics, 1975, vol. 38, No. 4, pp. 485 512.−

Page 316: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The same paper also showed that injectionof current and voltage test signals, adjusted to give the

short‐circuit current loop gain and open‐circuit

voltage loop gain could be comb

y

y

vi

iv

simultaneous

T

T ined to give thecorrect result

1 1 1yy ivvi

T TT= +

9

The advantage of this method is that the ndi calculations

of and are symbolically simpler and easier thanthe si calculations of and .

y yv ivi

i v

T TT T

Page 317: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Nevertheless, the conclusions of that paper wereincomplete, because the nonidealities were still ignored.

The 2GFT includes the nonidealities, and gives the correct answer for : T

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

10

Page 318: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

11

..

1i

2i100 k

50 Ω

1R

2R

1 k

9 k

0.5 p1iα

2iα

>ie

ov

< >yi xi

25 Ω

>

yv xv+

+

.10 Ω

10 p1C

2C

Coupled voltage and current injection at a nonideal point

Page 319: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

12

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-180

-120

-60.0

0

60.0 T

Tʺrightʺ answer

dB

deg

The ʺrightʺ answer ( has two poles, a lhp and a rhp zero)is obtained by coupled voltage and current injection(GFTv Template) at a nonideal point.

T

Page 320: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-180

-120

-60.0

0

60.0 T

T

dB

deg H∞

H

ʺwrongʺ answer

<>phasemargin 87°

But, there is another problem:

is not equal to 1/H K∞

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

13

Page 321: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Why?The test signal configuration meets the first criterion,that the test signal must be inside the loop, but it doesnot meet the second: the test signal must be able tonull the error signal.

Therefore, choose a test signal configuration that meetsthe second criterion as well:

must be the error voltage, and

must be the error current.y

y

v

i

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

14

Coupled injection must be used, since and do not

null simultaneously with only single injection.y yv i

Page 322: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

15

..

1i

2i100 k

50 Ω

1R

2R

1 k

9 k

0.5 p

1iα

2iα

>ie

ov

25 Ω

>

10 Ω

10 p1C

2C

<>

xv

yv

xi

yi

+

+

Select: GFTv Template

Page 323: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0dBCheck that is the expected 1/ 20 dB:H K∞ =

H∞H

T

and are still the sameT H

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

16

Page 324: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

17

100 10k 1Meg 100Meg 10Gfrequency in hertz

-80.0

-40.0

0

40.0

80.0

sci fwdfw

ocv f dd wTT T=

sci fwdT

ocv fwdT

sc oci revrev v revTT T=

, and since 1 and <<1,1

ocv rev

ffwd

wd

revT T

TT

T= >>

+

sci fwdT T≈

Page 325: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

18

100 10k 1Meg 100Meg 10Gfrequency in hertz

-80.0

-40.0

0

40.0

80.0

scni fwdT

ocnv fwdT

, and since 1 and <<1,

1on fw cn

dv fw n r

nev

rdn

evTT

TT

T= >>

+

scni dn fwT T≈

sc ocni rev nvn re evv rT T T=

scni fw

ocnvn d ff wdwd TT T=

Page 326: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

dB

DH D∞

H

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0

0 0The component of :H D H H D H D∞ ∞= +

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

190

It may be thought that the peaking in is due toinsufficient phase margin, but in fact it comes from :

HH

Page 327: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0dB

0H

0 0 0 0The component of :H D H H D H D∞= +

01

1D

T=

+

0 0H D

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

20

Page 328: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0dB

H

H D∞0 0H D

0 0Both component of :s H H D H D∞= +

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

21

Page 329: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The first‐level TF can be a current gain, transadmittance, transimpedance, or a voltage gain.

H

As applied to an output impedance , which is aself‐impedance, the GFT becomes

oZ

o 01

1 1o oTZ Z ZT T∞= +

+ +

The ʺoutputʺ is as for voltage gain, but theʺinputʺ is now a current driven into the output.

o

i

vj

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

22

Page 330: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

23

..

1i

2i100 k

50 Ω

1R

2R

1 k

9 k

0.5 p

1iα

2iα

>

25 Ω

>

10 Ω

10 p1C

2C

<

>

xv

yv

xi

yi

+

+

o o iv Z j=

ij

Select: GFTh Template

Page 331: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For voltage feedback, as in this example, isalways zero, so

oZ ∞

o 01

1oZ ZT

=+

which is the familiar result that the closed‐loop outputimpedance is the open‐loop value divided by thefeedback factor.

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

24

Page 332: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.2 8/07 http://www.RDMiddlebrook.com 14. 2CE/S Feedback Amp

25

100 1k 10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0dB

0oZ

11 T+

oZ

o

0

The closed‐loop output impedance rises to the open‐loop value as loop gain crossover is approached.o

ZZ

Page 333: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

EXAMPLE

15. A REALISTIC IC FEEDBACK AMPLIFIER

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

1

Page 334: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

2

1 1 1 2

1 1 1

111 2 ( )1 2

1 111

1

1sC sC R R

sC sC R

R R R RHRR

+∞

++ + += =

+ +

Expectation:

Example 1: Noninverting Amplifier with nonflat H∞

R3200

i(V2)

RL1k

R1100

i(V1)

rm1.05k

rm2200

V2

Rs100

VL

V5

V1ix<

iy>

- +

+ -

vx

vy

rm350

rm410

R810meg

Cc20p

V3 V4

R2900

i(V3) i(V4)

C1160u

uiuo

WX

Y

Page 335: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

3

Expectation:

1 should be flat at low frequencies, with a small shelf due to ,plus a dominant pole due to .c

T CC

R3200

i(V2)

RL1k

R1100

i(V1)

rm1.05k

rm2200

V2

Rs100

VL

V5

V1ix<

iy>

- +

+ -

vx

vy

rm350

rm410

R810meg

Cc20p

V3 V4

R2900

i(V3) i(V4)

C1160u

uiuo

WX

Y

Page 336: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

4

This Test Signal Injection Configuration meets the two requirements

R3200

i(V2)

RL1k

R1100

i(V1)

rm1.05k

rm2200

V2

Rs100

VL

V5

V1ix<

iy>

- +

+ -

vx

vy

rm350

rm410

R810meg

Cc20p

V3 V4

R2900

i(V3) i(V4)

Y X

W

Vy Vx

IxIy

-

+

+

-JzEz-+

- + VoEi+

-

GFTv

UoUi

xgftGFTv

C1160u

ui

ui uo

uo

WX

Y

Page 337: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The expectations are borne out:

100m 10 1k 100k 10Meg 1G 100

-80.0

-40.0

0

40.0

80.0hd

binf

, tdb

in u

nkno

wn

-450

-270

-90.0

90.0

270

p

T

T

H∞

deg dB

crossover 5.6MHzT

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

5

Page 338: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The discrepancy factor should be flat at 0dB at low frequencies,with a dominant pole at the crossover frequency, beyondwhich :

DT

T D=

100m 10 1k 100k 10Meg 1G 100

-80.0

-40.0

0

40.0

80.0hd

binf

, ddb

in u

nkno

wn

-450

-270

-90.0

90.0

270

crossover 5.6MHzT

H∞

D D

deg dB

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

6

Page 339: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The null discrepancy factor would be 0dB at all frequencies,nD

http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

7

100m 10 1k 100k 10Meg 1G 100

-80.0

-40.0

0

40.0

80.0dd

bn in

unk

now

n

-450

-270

-90.0

90.0

270

p

nD

nD

deg dB

but the nonideality direct forward transmission through the feedback path causes , above the crossover frequency, to rise.

n nD T

crossover 8GHznT

Page 340: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100m 10 1k 100k 10Meg 1G 100

-80.0

-40.0

0

40.0

80.0hd

b, h

dbin

fd in

unk

now

n

-450

-270

-90.0

90.0

270

H D∞

H

H

deg dB

Assembled results:The closed‐loop gain follows up to crossover, then fallswith . However, levels off above crossover:n

H H TD H T

crossover 8GHznT

The nonideality is negligible.v.0.2 8/07 http://www.RDMiddlebrook.com

15 Realistic IC Feedback Amp8

Page 341: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

9

R3200

i(V2)

RL1k

R1100

i(V1)

rm1.05k

rm2200

V2

Rs100

VL

V5

V1ix<

iy>

- +

+ -

vx

vy

rm350

rm410

R810meg

Cc10p

V3 V4

R2900

i(V3) i(V4)

Y X

W

Vy Vx

IxIy

-

+

+

-JzEz-+

- + VoEi+

-

GFTv

UoUi

xgftGFTv

C1160u

C4t50p

vy

ui

ui uo

uo

WX

Y

C2d16p

Ct15p

C4d160p

C3d30p

Ct25p

C1d30p

Same basic circuit, but many device capacitances included:

These cause additional nonidealities: reverse transmission inthe forward path, and nonzero reverse loop gain.

Page 342: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10

R3200

i(V2)

RL1k

R1100

i(V1)

rm1.05k

rm2200

V2

Rs100

VL

V5

V1ix<

iy>

- +

+ -

vx

vy

rm350

rm410

R810meg

Cc10p

V3 V4

R2900

i(V3) i(V4)

Y X

W

Vy Vx

IxIy

-

+

+

-JzEz-+

- + VoEi+

-

GFTv

UoUi

xgftGFTv

C1160u

C4t50p

vy

ui

ui uo

uo

WX

Y

C2d16p

Ct15p

C4d160p

C3d30p

Ct25p

C1d30p

Expectations: crossover is lowered ; high‐frequency is more complicated;phase margin is loweredT T

Page 343: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

11

R3200

i(V2)

RL1k

R1100

i(V1)

rm1.05k

rm2200

V2

Rs100

VL

V5

V1ix<

iy>

- +

+ -

vx

vy

rm350

rm410

R810meg

Cc10p

V3 V4

R2900

i(V3) i(V4)

Y X

W

Vy Vx

IxIy

-

+

+

-JzEz-+

- + VoEi+

-

GFTv

UoUi

xgftGFTv

C1160u

C4t50p

vy

ui

ui uo

uo

WX

Y

C2d16p

Ct15p

C4d160p

C3d30p

Ct25p

C1d30p

To retain about the same crossover frequency of 5.6MHz, has been lowered from 20pF to 10pF.cC

Page 344: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

deg dB

100m 10 1k 100k 10Meg 1G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0td

bfw

d, td

bv_i

y, td

bi_v

y

-630

-450

-270

-90.0

90.0

sci fwd

ocv ffwd wdT TT =

sci fwdT

ocv fwdT

ocv fwdT

sci fwdT

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

12

Page 345: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The expectations are borne out:

100m 10 1k 100k 10Meg 1G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0td

b, h

dbin

f in

unkn

own

-450

-270

-90.0

90.0

270

p

1

T

TH∞

deg dB

crossover 5.4MHzT

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

13

Page 346: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Beyond crossover, and therefore is also more complicated:T D T=

100m 10 1k 100k 10Meg 1G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0dd

b, h

dbin

f in

unkn

own

-450

-270

-90.0

90.0

270

p

1

H∞

D

D

deg dB

crossover 5.4MHzT

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

14

Page 347: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The crossover is drastically lowered from 16GHz to 82MHz:nT

100m 10 1k 100k 10Meg 1G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0dd

bn in

unk

now

n

-450

-270

-90.0

90.0

270

p nDnD

deg dB

crossover 82MHznT

Even though is approximately 0dB at both low and high frequencies, it undergoes a complete phase reversal

nD15

Page 348: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100m 10 1k 100k 10Meg 1G 100frequency in hertz

-80.0

-40.0

0

40.0

80.0hd

b in

unk

now

n

-450

-270

-90.0

90.0

270

H

H

deg dB

The major effect of the additional nonidealities is to cause tofall off much more rapidly,

H

crossover 82MHznT

crossover 5.4MHzT

16

and it is now asymptotic to ‐450 instead of to 0 ! The transient response is therefore strongly degraded.

° °

Page 349: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

20.0n 60.0n 100n 140n 180ntime in seconds

-200m

200m

600m

1.00

1.40

1 /(2 * 5.4MHz) 30nsπ =

50%

Step response:

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

17

Page 350: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Add step response with only:cC

20.0n 60.0n 100n 140n 180ntime in seconds

-200m

200m

600m

1.00

1.40

1 /(2 * 5.4MHz) 30nsπ =

(1 1 / ) 64%e− =50%

v.0.2 8/07 http://www.RDMiddlebrook.com 15 Realistic IC Feedback Amp

18

Page 351: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

EXAMPLE

16. A DESIGN SOLUTION TO DARLINGTON FOLLOWER INSTABILITY

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

1

Page 352: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Example 3: Darlington Emitter/Source Follower

The Darlington Follower is known to be unstablefor certain values of load capacitance.

The Design Problem is to select a dampingresistance so that the Follower is not only stable, but has a maximum peaking , regardless of theload capacitance.

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

2

Page 353: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

3

..

.

sR1C1r

1i0

2C2r

LC

0<<

<

2i

2i<

1i

ie ov

Page 354: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

4

..

. .

111 1

iissC r

=+

si

<<< <

i<

sR1C1r

1i0

11

1 1i issC r=

oZ

Page 355: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

5

..

. .

111 1

iissC r

=+

si

<<< <

i<

sR1C1r

1i0

11

1 1i issC r=

The ʺreflectionʺ process works

1 11

1 sCwith effective :rβ =

11 1

11

so

RZ rsCβ

= ++

Page 356: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

6

..

. .

111 1

iissC r

=+

si

<<< <

( ) ( )1

1 1

11 1 1 1

1 1 11s sC s s s

os s ssC r

R R r sC R r R r sLZ

R sC R r R sL

+ + += = =

+ ++

1 1where .sL C R r≡

i<

sR1C1r

1i0

11

1 1i issC r=

( )1 1If , s o sR r Z R r sL>> ≈ +

The ʺreflectionʺ process works

1 11

1 sCwith effective :rβ =

11 1

11

so

RZ rsCβ

= ++

Page 357: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

7

..

. .

<

( )1o sZ R r sL≈ +L1r

sR

sR1C1r

1i0

<

1i

Page 358: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

8

..

. .

i 2i

LC

112 2

isC r

⎛ ⎞+⎜ ⎟

⎝ ⎠

12

2 2i i

sC r=

<

<

<

2C2r

0

<<

Zi

Page 359: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

9

22

1 1i

LZ

sC sCβ+

= +

..

. .

i 2i

LC

112 2

isC r

⎛ ⎞+⎜ ⎟

⎝ ⎠

12

2 2i i

sC r=

<

<

<

2C2r

0

<<The ʺreflectionʺ process works

2 21

2 sCwith effective :rβ =

Page 360: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

10

22

1 1i

LZ

sC sCβ+

= +

..

. .

i 2i

LC

112 2

isC r

⎛ ⎞+⎜ ⎟

⎝ ⎠

12

2 2i i

sC r=

<

<

<

2C2r

0

<<2 2 2

1 1 1 11 negL

Z Ri sC sC sC r sC⎛ ⎞

= + + = −⎜ ⎟⎝ ⎠

1 1 1 1where and 2C 2 2 2RnegC C C r CL Lω

≡ + ≡

The ʺreflectionʺ process works

2 21

2 sCwith effective :rβ =

Page 361: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

11

..

. .

<<

2C2r

2i

LC

0

C

2i

1i negZ RsC

= − negR−

Page 362: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

12

..

.

sR1C1r

1i0

2C2r

LC

0

CL

1rsR

<<

<

<

2i

2i1i

negR−

Page 363: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

A detailed analysis can be done with the DT/CT

+

signal signalinput output

xiyi

zjv

0=

1oZ 2iZ

1vA 2vAie 12vo iAv e=

12The gain is given by the DT:ov

i

vAe

≡1

12 12 1

1

1y ni

i

i Tv v

TA A

+=

+

0The null return ratio / is an ndi calculation with the

output nulled. If is nulled, so is , so .o

ni y x v

o o x ni

T i i

v v i T=

= ∞

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

13

This implies that is infinite unless the signal can bypassthe injection point.

niT

Page 364: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

14

..

.

sR1C1r

1i0

2C2r

LC

0<<

<

2i

2i<

1i

ie ov

1vA

2vA 12= v iA e

o1Z2iZxi

yi

Page 365: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

15

..

.

sR1C1r

1i0

2C2r

LC

0<<

<

2i

2i<

1i

ie ov

o1Z2iZxi

yi

1vA

2vA

1

2 1

Nulled means that the box is unloaded, so the input voltage to the

box is the open‐circuit (oc) output voltage of the box. Thusy v

v v

i A

A A

1 212yi oc

v vvA A A=

so the DT becomes

2 1Also, / ,i i oT Z Z=

12

12 1 21

1 oi

ocv v v Z

Z

A A A=+

12= v iA e

Page 366: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

16

..

.

sR1C1r

1i0

2C2r

LC

0<<

<

2i

2i<

1i

ie ov

o1Z2iZxi

yi

1vA

2vA

1 21, 1, soocv vA A= =

212 1

1

1 where 1

iv i

oT

ZH A D T TZ

= = = = =+

iHe=

Page 367: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

We can figure out a lot about before doing asimulation.

T

1 has two poles, because it has two capacitances.oZ

1 2 1

By ʺmental frequency sweep,ʺ(0) , ( )o o sZ r Z R= ∞ =

1 1Since is flat at zero and infinite frequency, must have two zeros as well as two poles.

o oZ Z

21Also, iL

ZsC

=

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

17

21

Therefore, has three poles and two zeros.io

ZTZ

=

Page 368: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180dB

deg

max 244T = − o

7Mφ = o

: 1pLT C =

T

loop gaincrossoverfrequency 1

TH DT

= =+

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

18

The phase margin is positive, so the Follower is stable. However, is small, so has a large peak.

M

M Hφ

φ

Page 369: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For design, is to be considered a variable.LC

1Examine the effect of upon 1 / .L L oC T sC Z=

1Since is not inside , increasing does not changethe shape of either or ; decreases in inverseproportion to , but does not change at all.

L o L

L

C Z CT T T

C T

The decrease of results in lowered loop gaincrossover frequency:

T

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

19

Page 370: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180

dB

deg

max 244T = − o

7Mφ = o

40Mφ = − o

: 1pLT C = : 10pLT C =

T

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

20

Page 371: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180

dB

deg

max 244T = − o

7Mφ = o

40Mφ = − o48Mφ = − o

: 1pLT C = : 10pLT C = : 2200pLT C =

T

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

21

There is a range of for which the phase margin is negative, and the Follower is unstable.

L MC φ

Page 372: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1

A design strategy is to add sufficient dampingresistance to so that the maximum phase

lag is less than 180 by some desired phase margin.

d oR Zo

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

22

Page 373: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0 0

< <

sR1C1r

1i

2C2r

LC

<< 2i

2i1i

ie ov

dR

Damping resistance addeddR

o1Z2iZxi

yi

iHe=

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

23

Page 374: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180dB

deg

max 244T = − o

7Mφ = o

: 1pLT C =

T

loop gaincrossoverfrequency 1

TH DT

= =+

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

24

The phase margin is positive, so the Follower is stable. However, is small, so has a large peak.

M

M Hφ

φ

Page 375: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180dB

deg

T

1pLC =

0Rd =100Rd = Ω

T

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

25

Page 376: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

26

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180dB

deg

T

T

max 133T = − o

1pLC =

0Rd =100Rd = Ω1000Rd = Ω

The worst‐case phase margin thus occurs when is such that the crossover frequency is at thefrequency where is maximum:

L

c

CT f

T

Page 377: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

27

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-300

-180

-60.0

60.0

180dB

deg

T

T

max 133T = − oM 180 133 47φ = − =o o o

H

0.78pLC =

MWorst‐case 47 , and consequent greatest peaking in , occurs for 0.78p.LH C

φ =

=

o

Page 378: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

10k 100k 1Meg 10Meg 100Meg 1G 10G 100frequency in hertz

-8.00

-4.00

0

4.00

8.00

13

dB

loop gaincrossover

140 MHzcf =frequency:

( ) 1 / 2sin( / 2)c MH f φ=

M 47φ = o

Expanded scale:

0.78pLC =

( ) 2 .0 dBcH f =

v.0.1 3/07 http://www.RDMiddlebrook.com 16. Darlington Follower Instability

28

Page 379: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

EXAMPLE

17. THE INPUT FILTER PROBLEM OF A SWITCHED-MODE REGULATOR

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

1

Page 380: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

A different application of the EET is useful in design ofthe input filter for a switching regulator.

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

2

Page 381: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

ʺThe Input Filter Problemʺ was discussed in a 1976 paper:

R.D.Middlebrook, ʺInput Filter Considerations in Designand Application of Switching Regulators,ʺ IEEE IndustryApplications Society Annual Meeting, 1976 Record,pp. 366 ‐ 382.

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

3

Page 382: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Problem:How to design an input filter for a switched‐moderegulator without significantly disturbing its properties.

Conclusion:The output impedance of the input filter should be much less than cert

sZain line input impedances of the

regulator.

The design‐oriented inequalities can easily be establishedby use of the Extra Element Theorem.

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

4

Page 383: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

5

Page 384: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

6

Page 385: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

7

Page 386: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

8

Page 387: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

9

Page 388: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0

1

1

The EET for one extra element is

1

1

This is the same as the GFT for one injected test signal:

1

1where loopgain[with ] and loopgain[ 0]. and can be

sns

s d

n

sZZo oZi i Z Z

Tn

T

s s

d n

Z

u uu u

H H H DD

H Z H ZZ Z

=

∞ ∞

+=

+

+= =

+

= = =

found from and by test voltage injection at a source resistance 1 . Then,

and

n

z s s

d n n

T Te Z RZ T Z T

= = Ω

= =v.0.1 3/07 http://www.RDMiddlebrook.com

17.Switcher Input Filter Problem10

Page 389: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

11

..

. .

Y X

W

Vy Vx

IxIy

-

+

+

-Ez-+

- + VoEi+

-

GFTve

UoUi

X

X

Y

Y

sR

Values as in 1976 Paper Fig. 13

Page 390: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 200 500 1k 2k 5k 10k 20k 50k 100frequency in hertz

5.00

15.0

25.0

35.0

45.0

,

dB

ref1Ω

dZ

nZ

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

12

Page 391: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

13

..

. .

Values as in 1976 Paper Fig. 17, Filter B

sZ

Page 392: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 200 500 1k 2k 5k 10k 20k 50k 100frequency in hertz

5.00

15.0

25.0

35.0

45.0

3

dB

ref1Ω

dZ

nZ

sZ

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

14

Page 393: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

15

..

. .

Y X

W

Vy Vx

IxIy

-

+

+

-Ez-+

- + VoEi+

-

GFTve

UoUi

X

X

Y

Y

Page 394: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 200 500 1k 2k 5k 10k 20k 50k 100frequency in hertz

-30.0

-10.0

10.0

30.0

50.0dB

loopgain[ 0]sH Z∞ = =

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

16

Page 395: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 200 500 1k 2k 5k 10k 20k 50k 100frequency in hertz

-30.0

-10.0

10.0

30.0

50.0dB

loopgain[ 0]sH Z∞ = =

1

1 sd

ZZ

D =+

1

1 sn

n ZZ

D =+

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

17

Page 396: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100 200 500 1k 2k 5k 10k 20k 50k 100frequency in hertz

-30.0

-10.0

10.0

30.0

50.0dB

loopgain[ 0]sH Z∞ = =

1

1 sd

ZZ

D =+

1

1 sn

n ZZ

D =+

loopgain[with ]sH Z=

v.0.1 3/07 http://www.RDMiddlebrook.com 17.Switcher Input Filter Problem

18

Page 397: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

EXAMPLE

18. CURRENT-PROGRAMMEDSWITCHED-MODE REGULATOR

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

1

Page 398: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

2

RL.2

R43m

L1u

C200u

Rc1m

R210k

Ac*v(P)

Ac*v(P)/RL

R110k

R972megR3

1.5k

C110n

C4100p

Rf3.4m

E14

E2

G1-750u

16.86cA =

/ 84.3c LA R =

iv

cv

ov

P

iDvi

0.1D =

0.005

2 0.005 makes theline 84.3% compensatedE =

ii

iDi

Page 399: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

The power stage has an internal current loop and a voltage feedforward loop.

RL.2

R43m

L1u

C200u

Rc1m

Ac*v(P)

Ac*v(P)/RL

Rf3.4m

E14

E2

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

3

Strategy: absorb both loops into an equivalent power stage model, by Doing Some Algebra on the Circuit Diagram (Ch.2)

split the voltage and current modulation generators into three:

STEP 1

16.86cA =

/ 84.3c LA R =

iv

cv

ov

P

iDvi

0.1D =

0.005

ii

iDi

Since

2 1( ) i c fv P E v v E R i= − + −

Page 400: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

RL.2

6 2

R43m

L1u

1

C200u

Rc1m

7

AcE1Rf*i/RL

3

Rf3.4miDv

4

Ac*vc

Ac*vc/RL

5

AcE2*vi

Ac*vi/RL

AcE1Rf*ii

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

4

RL.2

6 2

R43m

L1u

1

C200u

Rc1m

7

3

Rf3.4m

4

Ac*vc

Ac*vc/RL

5

AcE2*vi AcE1Rf229miDv i

2L

c

DRA E

1

1 2

Since the voltage generator is proportional to the current through it, it can be

replaced by a resistance . Also, since the current generator / is proportional

to the voltage

c f

c f c i L

i

A E R i

A E R A E v R

Dv 2 across it, it can be replaced by a (negative) resistance / .L cDR A E−

( )21 1 0.843ci i

A EDv DvD

⎛ ⎞− = −⎜ ⎟⎝ ⎠

0.157 iDv=

1 1.145c f

L

A E Ri i i

Rβ≡ =0.237= −

Page 401: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

RL.2

Re236m

L1u

C200u

Rc1m

Ac*vc

Ac*vc/RL

AcE2*vi1 4

The consequence of the current loop is that it introduces a (lossless) damping resistance in series with and , to form an effective resistance :c f f eA E R R R R

iDv i

2L

c

DRA E

1 1.145c f

L

A E Ri i i

Rβ≡ =0.237= −

1 4(1 )e c fR A E R R≡ + +(1 67.4)3.4 3m m= + +0.236=

21 0.157ci i

A EDv DvD

⎛ ⎞− =⎜ ⎟⎝ ⎠

STEP 2

Normalize the element values in the filter (Ch. 5):

o1 11.2 70.7o o

Lf kHz R mCLC

ω ≡ = ≡ =

0.300 70.7 2.83o o Le c L

e c o

R R RQ Q QR R R

≡ = ≡ = ≡ =

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

5

Page 402: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

2

1

oe

RQ

oo

sRω

⎛ ⎞⎜ ⎟⎝ ⎠ o

oR sω⎛ ⎞

⎜ ⎟⎝ ⎠

oc

RQ

L oQ R

The voltage transfer function for this triple‐damped RLC filter was obtained in Ch. 12:H

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

6

Page 403: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

7

1c LQ Q

1c LQ Q

c LQ Q

H

Page 404: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

For the LM3495, however, the inequality 70.7 * 2.83 200 1 still holds, but the inequality 0.300 * 2.83 0.848 1 does not.

c L

e L

Q QQ Q

= = >>

= = >>

1c LQ Q

The result therefore becomes

( )( ) ( )1

1 211 1

111 11 1

1 1

oc

e Lo oe L

e L e L

sQ

s sQ QQ Q

Q Q Q Q

ω ω

+=

+ + ++ +

H

11 1where 0.300 2.83 0.271 and 0.459

2.181e L

e LQ Q

Q Q = = = =+

The of the denominator quadratic is (Ch. 4)tQ

( ) ( )11 0.400, 7.96e Lt e L tQ Q

acQ Q Q Q dBb

≡ = + = = −

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

8( )1ʹ 1 , ʹ 2.18 * 11.2 16.5e Lo o oQ Q f kHz kHzω ω≡ + = =

Page 405: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

0The power stage control‐to‐output voltage gain is / where 16.86.io c v c cv v A H A= = =

Insertion of numbers gives

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

91 100 10k 1Meg 100M

-120

-80.0

-40.0

0

40.016.5kHz, 9.80dB

17.77dB

( ) ( )/ 2

7922/ 2 / 21

0.400 16.5 16.5

117.77

1

skHz

cs skHz kHz

A H dBπ

π π

+=

+ +

8dB

792kHz

Simulation

(0)cA H

16.5kHz

Page 406: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

R210k

R110k

3

R972meg

10

R31.5k

C110n

C4100p

G1-750u

STEP 3

Error Amplifier

1 4The flat gain that sets the loop gain crossover occurs when is short, and open,so take this gain as reference (Ch. 3). The two poles are obviously well separated, so the gaincan be written by in

C C

spection as

( ) ( )1 31

4 3

1

1 1em

sC R

A AsC R

=+ +

where1

31 2

1 0.563 5.0emRA G R dB

R R= = ⇒ −

+

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

10

With substitution of numbers,

( ) ( )/ 210.61.06/ 2

151 1

e skHzMHzs

A dBπ

π

= −+ +

Page 407: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1 100 10k 1Meg 100Mf i h t

-60.0

-20.0

20.0

60.0

100

10.6kHz 1.06MHz

5.0dB−

eA Simulation

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

11

Page 408: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

STEP 4

1 100 10k 1Meg 100Mf i h t

-80.0

-40.0

0

40.0

80.0

3

10.6kHz

1.06MHz

16.5kHz

792kHz

The loop gain is:T

( ) ( ) ( ) ( )/ 2

7922/ 2 / 2 / 210.6 1

0.400 1.06/ 2 16.5 16.5

112.77

1 1 1

skHz

e cs s skHz

MHzs kHz kHz

T A A H dBπ

π π ππ

+= =

⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

crossover 28cf kHz=

Simulation

cA H

eAT

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

12

Page 409: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Since three poles close together determine the crossover frequency , there is no pointin trying to predict its value. Instead, the simulation shows it to be 28 .From the predicted corner freque

c

c

ff kHz=

ncies of , can then be calculated as:T T

( )281

1 1 1 10.4 16.5228

16.5

28 28 2890 tan 180 tan tan tan10.6 792 10601

T − − − −⎛ ⎞⎜ ⎟= − ° + − ° + + −⎜ ⎟⎜ ⎟−⎝ ⎠

( )90 70 180 66 2 2= − ° + ° − ° − ° + ° − °

134= − °

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

13

Page 410: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

This agrees with the simulation:

1 100 10k 1Meg 100Mf i h t

-180

-120

-60.0

0

60.0

134T = − °46Mφ = °

T

T

Simulation

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

14

Page 411: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

STEP 5: Closed‐loop gain G1 21

The closed‐loop gain where = 2 6.02 is the ideal closed‐loop

gain, and is the discrepancy factor (Ch. 10).1

R RG G D G dBR

TDT

∞ ∞+

= = =

=+

Since is a unique function of , can be evaluated at the loop gain crossoverfrequency in terms of the phase margin .M

D T Dϕ

In polar form,

1 11 1,

1 1 1j T

j TT T

TT T e DT e

∠− ∠= = = =

+ + +

( )M MIf the phase margin is , then at the crossover frequency whereT 1. Substitute in D :

Tϕ π ϕ−∠ = −

=

( ) ( ) ( )MM 2 2M M M M

1 1 1 11 cos sin11 1 cos sincf jj

Djee ϕπ ϕ ϕ ϕ ϕ ϕ

−−= = = =

− −++ − +

( ) MM 2

1 12 1 cos 2sinϕϕ

= =−

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

15

M

28

In the LM3495, 2 6.02 and 46 at the crossover frequency 28 . Hence,1.28 2.10 . These results are in agreement with the simulation using the

Intusoft ICAP/4 GFT Template

c

kHz

G dB f kHzD dB

ϕ∞ = = = ° =

= ⇒

Page 412: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1 100 10k 1Meg 100M

-60.0

-40.0

-20.0

0

20.0

1

6.02G dB∞ =

28cf kHz=

2.10dB

closed‐loop gain G

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

16

Page 413: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

17

RL.2

6 2

R43m

L1u

1

C200u

Rc1m

R210k

411

16.86*v(P)

84.3*v(P)

R110k

3R972meg

10

R31.5k

C110n

C4100p

Rf3.4m

13

E14

E20

G1750u

P

9

V20.1*i(V2)

Vi

Y X

W

Vy Vx

IxIy

-

+

+

-Ez-+

- + VoEi+

-

GFTve

UoUixgftGFTve

ui

vyvx

vo

vo

vxvy

ui

0.1*V(i)i

= 0

Model for simulation using the Intusoft ICAP/4 GFT Template.(No input filter)

Page 414: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Output voltage response to a 1v step in reference voltage

10.0u 30.0u 50.0u 70.0u 90.0u

-500m

500m

1.50

2.50

3.5017.5u, 2.48 volts

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

18

Page 415: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

STEP 6: Check for nonidealitiesThe ICAP/4 simulation also delivers the null loop gain :nT

1 10 100 1k 10k 100k 1Meg 10Meg 100M

-100

0

100

200

300

nT

T

Since 1 at all frequencies of interest, the nonidealities are negligible.nT >>

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

19

Page 416: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

STEP 7: Output Impedance

As seen in Ch. 7, for a ladder network such as

+iZ oZ

1Z

2Zie

o iv He=

the output impedance is

2

1

oe

RQ

oo

sRω

⎛ ⎞⎜ ⎟⎝ ⎠ o

oR sω⎛ ⎞

⎜ ⎟⎝ ⎠

oc

RQ

L oQ R

Here,

and is already known, soH

1oZ Z H=

11 1

/oe o e

sZ RQ Qω

⎛ ⎞= +⎜ ⎟

⎝ ⎠

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

20

Page 417: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1 100 10k 1Meg 100M

-60.0

-50.0

-40.0

-30.0

-20.0108 19.3e LR R m dB= ⇒ −

ʹ 16.5of kHz=

/ 37o ef Q kHz= 792c oQ f kHz=

1 60m dB⇒ −

Simulation

( )( ) ( )

( ) ( )/

211 1

1 1

1 111 1

c oo e

o oe Le L e L

s sQQ

o e Ls s

Q QQ Q Q Q

Z R Rωω

ω ω

+ +=

+ ++ +

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

21

Page 418: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Closed loop output impedance ofZ

1o

ofZZT

=+

1Since is already known, 1 and can be found by the methods of Ch. 6.1

T TT

++

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

221 100 10k 1Meg 100M

-80.0

-40.0

0

40.0

80.0

1

T

1 T+Simulation

Page 419: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

231 100 10k 1Meg 100Mf i h t

-80.0

-40.0

0

40.0

80.0

11 T+

open loop oZ

closed loop ofZ

Simulation

Page 420: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

100u 300u 500u 700u 900u

-200m

200m

600m

1.00

1.40Simulation 10 amp load current step

( ) 108 * 10 1.08e L LR R I m amp V∆ = =

open loop

closed loop

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

24

Page 421: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

RL.2

Re236m

L1u

C200u

Rc1m

Ac*vc

Ac*vc/RL

AcE2*viModel so far:

2L

c

DRA E

0.237= − iβ

21 ci

A EDvD

⎛ ⎞−⎜ ⎟⎝ ⎠

iv

iDviii

iDi1.145i=

STEP 8: Line‐to output TF

Since 0, the voltage and current modulation generators are zero:cv =

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

25

RL.2

Re236m

L1u

C200u

Rc1m

AcE2*viiDv

2L

c

DRA E

0.237= − iβ

21 ci

A EDvD

⎛ ⎞−⎜ ⎟⎝ ⎠0.157 iDv=

iv

iDviii

iDi1.145i=

Page 422: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

20The power stage line‐to‐output voltage gain is / 1 0.157c

co i v i i

A Ev v Dv H DHvD=

⎛ ⎞= − =⎜ ⎟⎝ ⎠

Insertion of numbers gives

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

261 10 100 1k 10k 100k 1Meg 10Meg 100M

-160

-120

-80.0

-40.0

0

8dB

792kHz

Simulation

( ) ( )/ 2

7920 2/ 2 / 21

0.400 16.5 16.5

1/ 42.85

1c

skHz

o i vs skHz kHz

v v dBπ

π π=

+= −

+ +

42.85dB−

Page 423: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

STEP 9: Line input impedance TF Zi

RL.2

Re236m

L1u

C200u

Rc1m

AcE2*viiDv

2L

c

DRA E

0.237= − iβ

21 ci

A EDvD

⎛ ⎞−⎜ ⎟⎝ ⎠0.157 iDv=

iv

iDviii

iDi1.145i=

Same model as for the line‐to‐output TF:

iZ 1iZ 2iZ

21

22

11 c

iLi A E

c D

ZDRZA ED

⎡ ⎤⎢ ⎥= −⎢ ⎥−⎣ ⎦

where 1 21

1i iZ Zβ

=−

in which

i2Z input impedance of the filter, which is already known.=

Since >1, the result can be writtenβ

( ) ( )22

22

1

1 1 ciL

i A Ec D

ZDRZA ED β

⎡ ⎤⎢ ⎥= − ⎢ ⎥

− −⎢ ⎥⎣ ⎦

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

27

Page 424: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

STEP 9: Line input impedance TF Zi

RL.2

Re236m

L1u

C200u

Rc1m

AcE2*viiDv

2L

c

DRA E

0.237= − iβ

21 ci

A EDvD

⎛ ⎞−⎜ ⎟⎝ ⎠0.157 iDv=

iv

iDviii

iDi1.145i=

Same model as for the line‐to‐output TF:

iZ 1iZ 2iZ( ) ( )2

22 2

1

1 1 ciL

i A Ec D

ZDRZA ED β

⎡ ⎤⎢ ⎥= − ⎢ ⎥

− −⎢ ⎥⎣ ⎦

2Since (0) 0.236 0.2 0.436,i e LZ R R= + = + =

[ ] [ ]21 0.436(0) 0.237 100 0.237 19 100 0.234 23.4 27.38

(1.146 1)0.1570.1iZ dB⎡ ⎤= − = − = − = − ⇒⎢ ⎥−⎣ ⎦

2Since ( ) ,iZ ∞ = ∞

[ ] [ ]21( ) 0.237 100 0.237 23.7 27.490.1iZ dB∞ = − ∞ = − = − ⇒

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

28

Conclusion: the current‐programming loop makes the filter input impedance look high, and the (negative) line input impedance is dominated by the term due to the line feedforward.

Page 425: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

Input impedance by the ICAP/4 GFT Template:iZ

10

RL.2

6 2

R43m

L1u

1

C200u

Rc1m

411

16.86*v(P)

84.3*v(P)

Rf3.4m

13

E14

E20.005

P

9

V20.1*i(V2)

0.1*V(i)i

vxvy

i

R61k

R51k

Y X

W

Vy Vx

IxIy

-

+

+

-Ez-+

Vo+

-

GFThe

UoUi IixgftGFThe

i

iZ

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

29

Page 426: s v o s µ o / s v o / v µ u v d Z ] } v v ] Z Á ] Z u ... · NDI & the GFT How can the DT be made to represent a feedback system? 6. Dissection Theorem (DT) signal signal input

1 100 10k 1Meg 100M

0

60.0

120

180

240

iZ

iZ180o

27.40dB 27.50dB

The result is in agreement with that predicted by the modified model.

v.0.1 3/07 http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

30