108
METHODS FOR THE ASSESSMENT OF AQUEOUS ORGANIC MATERIALS David W. Schnare Russel 1 F. Christman Frederi c K, Pfaender Department o f Environmental Sciences & Engineering University of North Carolina at Chapel Hill Chapel Hi 11, North Carol ina 27514 The work upon which this publication i s based was supported i n part by funds provided by the Office of Water Research and Technology, U. S. Department of the Interior, Washington, D. C., through the Water Resources Research Institute of The University of North Carolina, as authorized by the Water Research and Development Act o f 1978. Project No. A-087-NC Agreement No. 14-34-0001-7070

S. D. C., - NCSU

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: S. D. C., - NCSU

METHODS FOR THE ASSESSMENT OF AQUEOUS

ORGANIC MATERIALS

David W. Schnare Russel 1 F. Christman F rede r i c K, Pfaender

Department o f Environmental Sciences & Engineer ing U n i v e r s i t y o f Nor th Ca ro l i na a t Chapel H i l l

Chapel H i 11, Nor th Caro l i n a 27514

The work upon which t h i s p u b l i c a t i o n i s based was supported i n p a r t by funds p rov ided by t he O f f i c e o f Water Research and Technology, U. S. Department o f t h e I n t e r i o r , Washington, D. C., th rough t h e Water Resources Research I n s t i t u t e of The U n i v e r s i t y o f Nor th Caro l ina , as au tho r i zed by t h e Water Research and Development A c t o f 1978.

P r o j e c t No. A-087-NC

Agreement No. 14-34-0001-7070

Page 2: S. D. C., - NCSU

DISCLAIMER STATEMEIVT

Contents o f t h i s publication do not necessarily r e f l e c t the views and pol ic ies of the Off ice of Water Research and Technology, U. S. Department of the In ter ior , nor does mention of trade names or commercial products cons t i tu te t h e i r endorse- ment or recommendation for use by the U. S. Government.

Page 3: S. D. C., - NCSU

TABLE OF CONTENTS

Page

ABSTRACT ......................................................... i i i ACKNOWLEDGEMENTS ................................................ i v

LIST OF FIGURES ................................................. v

LIST OF TABLES ................................................... v i

SUMMARY AND CONCLUSIONS ......................................... v i i

................................................. RECOMMENDATIONS i x

INTRODUCTION .................................................... 1

SECTION ONE . W Discuss ion o f Cur ren t A n a l y t i c a l P rac t i ces ...... 3

Detec t ion Technologies ..................................... 3 E x t r a c t i o n Schemes ......................................... 9 D i f f e r e n t i a t i o n by S ize and Weight ......................... 21 ......................... Concentrat ion Methods ... ......... 22 F r a c t i o n a t i o n Schemes ...................................... 25 Summary .................................................... 32

SECTION TWO . M a t e r i a l s and Methods ............................. 33

Experimental Design ........................................ 33 Equipment and M a t e r i a l s .................................... 33 Experimental Procedures .................................... 46 Caro l ina Method ............................................ 50

SECTION THREE . Resul ts and Discuss ion .......................... 55

E x t r a c t i o n o f So lu tes f rom Water ........................... 55 Desorpt ion o f Solutes f rom the Resin ....................... 61 Concentrat ion o f Solutes by Sol ven t Evaporat ion ............ 65

REFERENCES ...................................................... 74

APPENDIX A

A Top ica l B ib l i og raphy ..................................... 70

Page 4: S. D. C., - NCSU
Page 5: S. D. C., - NCSU

ABSTRACT

Methods f o r t he Assessment o f Aqueous Organic Ma te r i a l s

XAD res ins have been evaluated w i t h a range o f known organic compounds

f o r poss ib le use i n a f r a c t i o n a t i o n method in tended t o comprehensively

analyze the organic contaminants present i n water. Among the parameters

i nves t i ga ted are the e f f e c t s on the e x t r a c t i o n e f f i c i ency of s o l u t e

p o l a r i t y , f l o w r a t e , pH, e l u t i o n so lven t , and the conta iner i n which the

e x t r a c t i o n and e l u t i o n a re c a r r i e d out . These s tud ies p rov ide a bas is f o r

a suggested procedure us ing XAD res ins t h a t can be r a p i d and e f f i c i e n t f o r

i s o l a t i n g a wide range o f mon-vo la t i le contaminants from water.

Using t h i s method, h igh recover ies a l l o w i s o l a t i o n and recovery of

organics i n i t i a l l y present i n sub p a r t per b i l l i o n concentrat ions. Futher-

more, water samples can be ex t rac ted i n t he f i e l d . E x t r a c t i o n o f water and

e l u t i o n o f the r e s i n can take p lace i n a s i n g l e vessel, which e l im ina tes

many handl ing and concent ra t ion problems a t tendant w i t h carbon adsorp t ion

methods. The batch desorpt ion c h a r a c t e r i s t i c a l lows f o r g rea te r recover ies,

and s p i k i n g o f the desorp t ion so l ven t can prov ide an i n t e r n a l standard

which a ids accurate and reproduc ib le quant i t a t i o n , two s i g n i f i c a n t improve-

ments over o t h e r suggested r e s i n methods. This method prov ides a s o l u t i o n

o f n o n - v o l a t i l e organics i n concentrat ions necessary f o r GLC o r GC/MS

i d e n t i f i c a t i o n and quant i t a t i o n .

iii

Page 6: S. D. C., - NCSU
Page 7: S. D. C., - NCSU

Acknowledgements

The research data presented i n t h i s r e p o r t i s based on t h e d i sse r ta -

t i o n o f David W. Schnare submit ted as p a r t i a l f u l f i l l m e n t o f t h e requ i re -

ments o f the MSPH degree i n t h e Department o f Environmental Sciences and

Engineering. This work was conducted under t he d i r e c t i o n o f D r . R. F.

Christman. Dr. Schnare i s p resen t l y associated w i t h t he Environmental

P ro tec t i on Agencies O f f i c e o f D r i nk ing Water i n Washington, D.C.

Page 8: S. D. C., - NCSU
Page 9: S. D. C., - NCSU

LIST OF FIGURES

Page

F igure 2-1 : Flow o f Organic So lu tes Through t he A n a l y t i c a l Procedures . . . . . . . . . . . . . . . . . . . . 3 4

4 5

47

F igure 2-2: The Schnare Tube . . . . . . . . . . . . . . . F igure 2-3: Scale Drawing of Junk Apparatus . . . . . . . .

F igure 3-1: Leakage vs. Loading f o r an 80 x 11.5 rnm XAD-2 Resin Column . . . . . . . . . . . . . . . . .

Page 10: S. D. C., - NCSU
Page 11: S. D. C., - NCSU

LIST OF TABLES Page

Tab1 e 1 . 1 : Approximate Sol ute/Sol vent Requirements f o r Various Methods o f Ana lys is . . . . . . . . . . . . . . 10

Table 1-2: Reported L i q u i d . L i q u i d E x t r a c t i o n Methods . . . . . . 13-14

Table 1-3: Recovery Data f o r Adsorbents 19-20 . . . . . . . . . . . . . . . Table 1-4: Reported Concentrat ion Techniques . . . . . . . . . . . 24

Table 1-5: I n v e s t i g a t i o n s Using Acid F r a c t i o n a t i o n . . . . . . . . 28

Table 1-6: L i q u i d Chromatography I n v e s t i g a t i o n s of Natura l Waters . . . . . . . . . . . . . . . . . . . . . . . 29

Table 1-7: Gas Chromatographic Separat ion and Detec t ion of Organic Ma te r i a l i n Water . . . . . . . . . . . . . . . 31

Table 2-1 : Gas Chromatographic Parameters . . . . . . . . . . . . . 41

Table 3-1 : Capacity o f the XAD-2 Resin t o Organic Solutes on an 80 x 11.5 mn Bed . . . . . . . . . . . . . . . . . . . . 57

Table 3-2: The E f f e c t o f Flow Rate on Recovery E f f i c i e n c y . . . . . 60

Table 3-3: Recovery E f f i c i e n c y w i t h Respect t o E l u t i o n Time and Mode o f Contact . . . . . . . . . . . . . . . . . . 63

Table 3-4: Recovery E f f i c i e n c y w i t h Respect t o Aromatic versus A l i p h a t i c Solutes . . . . . . . . . . . . . . . . . . . 64

Table 3-5: Recovery E f f i c i e n c y f o r m-Xylene w i t h Respect t o s o l v e n t s . . . . . . . . . . . . . . . . . . . . . . 66

Table 3-6: Recovery E f f i c i e n c y o f Ether Desorpt ion w i t h Respect t o P o l a r i t y and S o l u b i l i t y . . . . . . . . . . . . . . . 67

Table 3-7: Recovery E f f i c i e n c y o f Three XAD Resin Methods . . . . . 69

Page 12: S. D. C., - NCSU
Page 13: S. D. C., - NCSU

SUMMARY AND CONCLUSIONS

The f o l l o w i n g conclusions have been drawn from the i n v e s t i g a t i o n and

regard the f i v e quest ions de l i nea ted i n sec t i on two.

1. The Caro l ina Method i s an improvement over carbon adsorp t ion and

o the r r e s i n techniques due t o -- i n s i t u desorpt ion, reduc t i on o f r e s i n hand-

l i n g , and i n t e r n a l s tandard iza t ion which a l lows f o r reproduc ib le quan t i t a -

t i o n .

2 , With respect t o p rev ious l y pub1 ished methods, t he Caro l i na Method

appears t o be more comprehensive and q u a n t i t a t i v e .

3. Using the Schnare Tube, and XAD-2 r es in , t he Carol i n a Method w i 11

e x t r a c t from water h igh propor t ions o f exper imenta l l y d isso lved organ ic

compounds of w ide l y d i f f e r i n g p o l a r i t i e s and conf igura t ions a t p a r t pe r

b i l l i o n concentrat ions w i t h a 10 ml/min f l o w r a t e and under favorab le pH

cond i t ions .

4. The batch desorp t ion technique which d i f f e r e n t i a t e s the Caro l i na

Method from o the r e x i s t i n g r e s i n procedures increases recovery e f f i c i e n c i e s .

Flow r a t e s of approximately 10 ml/min a1 low very s t rong b ind ing o f some

n e u t r a l so lutes, e s p e c i a l l y a l i p h a t i c compounds, which may be p a r t i a l l y

m i t i g a t e d by so l ven t se lec t i on .

5. Losses due t o u l t r a - c o l d d r y i n g techniques and concent ra t ion by

so lven t evaporat ion can be accounted f o r through use o f an i n t e r n a l standard.

6. A1 1 organ ic so lu tes appear t o be adsorbed t o some ex ten t , b u t f l o w

r a t e o f loading, e l u t i n g so l ven t and method of e l u t i o n are impor tan t con-

s i de ra t i ons i n determin ing the amount t h a t i s u l t i m a t e l y recovered.

7. To do q u a n t i t a t i v e work i t i s necessary t o know r e s i n capaci t y

Page 14: S. D. C., - NCSU

and recovery e f f i c i e n c y f o r each s p e c i f i c compound o r c l ass o f compounds

you are a t tempt ing t o i d e n t i f y .

8. The technique can be very use fu l when the o b j e c t i v e i s t o quan t i -

t a t e known compounds, where recovery experiments can be done, and f l o w and

e l u t i o n parameters op t im ize so t h a t recover ies are known. For compounds

where t h i s i n fo rma t i on i s no t ava i l ab le , t h e concent ra t ion found represents

a minimum environmental l e v e l , b u t the ac tua l amount by which t h i s under-

est imates the r e a l concent ra t ion i s n o t known. Experimental da ta suggest

t h a t t he underestimates would be no more than by a f a c t o r o f 2-5.

Page 15: S. D. C., - NCSU

m s -r L 0 C, .I--

s 0 E C, s 4 C, 3 I-- - 0 a 0 6,

V) r: 8 -r C, 4 U ..- P

Q a rrJ

r .r V) aJ L

n z s 0

-C U L 4 w V) aJ L

a, L 3 C, 3

L L

Ti-

Page 16: S. D. C., - NCSU
Page 17: S. D. C., - NCSU

Ghri stman and H r u t f i o r d (1973) are rep resen ta t i ve o f t h e many i nves t i - ga tors t h a t have commented on the bas ic purpose o f research i n t o the poss i -

b l e hea l t h and environmental r i s k s t h a t may e x i s t i n n a t u r a l waters. They

s ta te : "The ab i 1 i t y o f p ro fess iona l panels t o recomnend water qua1 i ty

c r i t e r i a f o r p u b l i c water supp l ies i s severe ly l i m i t e d by a l ack o f s u f f i -

c i e n t l y comprehensive i n fo rma t i on on p o t e n t i

des i rab le cons t i tuents. 'I

One o f t h e p r i n c i p a l ob jec t i ves o f the

prov ide methods t h a t can be used t o assess t

a1 l y dangerous o r o therw ise un-

research presented here was t o

he types o f p o t e n t i a l l y harmful

organic cons t i t uen ts t h a t might be present i n water supp l ies and waste water.

The purpose o f t h i s work was t o begin eva lua t i on o f a method designed t o

p rov ide some knowledge about t he e n t i r e range o f organic compounds present

i n water, and i n what amounts. No s i n g l e method f o r t h i s purpose c u r r e n t l y

has been accepted. Several workers have r e f e r r e d t o the need f o r a method

o f t h i s type. Middleton (1973) : "Techniques f o r i d e n t i f y i n g i n d i v i d u a l

compounds a t low concentrat ions are becoming soph is t i ca ted , b u t no simple

and inexpensive method i s y e t a v a i l a b l e f o r r o u t i n e use. " T a r d i f f and

Deinzer (1973) : "There i s re1 a t i v e l y 1 i t t l e i n fo rma t i on about t h e i d e n t i t y

of organic compounds i n t he environment, p a r t i c u l a r l y i n d r i n k i n g water.

I n those cases where i d e n t i t i e s of some agents are known, t h e i r concentra-

t i o n s are not . " Ongerth -- e t a1. (1973): " I n an e f f o r t t o g a i n some i n s i g h t

i n t o the na ture of these s t a b l e organic residues, a d e t a i l e d review was made

of t h e l i t e r a t u r e . These e f fo r t s produce the d i s q u i e t i n g in fo rmat ion t h a t

Page 18: S. D. C., - NCSU

very l i t t l e work has been done to identify these organic constituents in

treated sewage or i n water supply sources and even less has been done to

determine the related health effects . . . . [Tlhe 1 i terature indicated only

six references i n which major e f for t s were made to i so la te and identify the

constituents in specific organic fractions i n water supply sources."

Robeck (in: Christman and Hputfiord, 1973) : "Of course, knowing the

occurrence of a chemical in water implies there i s an analytical method for

quantifying the substance. In r ea l i ty , however, especially with organics,

there i s no quick, reasonable way to measure certain c~mpounds.~~ Andelman

( in: - Christman and Hrutfiord, 1973): "The s t a t e of knowledge about the

incidence ... of organic matter i n drinking water can generally be character-

ized as most unsatisfactory, i f not alarming."

To construct and t e s t an analytical procedure requires knowledge of

existing technologies. The f i r s t section of th i s report will review what

has been done. Section two will describe the procedure selected, and

section three will discuss the resul ts . The underlying goal of th i s work

i s to construct and evaluate a method designed to extract, fractionate and

concentrate organic contaminants of water using known compounds represen-

ta t ive of those expected to be present in the environment.

Page 19: S. D. C., - NCSU

Sect ion I

Discussion o f Current A n a l y t i c a l Prac t ices

The nature o f organic ma te r i a l i n water ranges from very simple hydro-

carbons t o very complex syn the t i c and na tu ra l polymers. A n a l y t i c a l pro-

cedures designed t o i d e n t i f y these compounds began appearing i n the sc ien-

t i f i c l i t e r a t u r e very e a r l y i n the techno log ica l e ra ( S a v i l l e , 1917).

The basis o f the a n a l y t i c a l procedures discussed i n t h i s sec t i on l i e s

i n the c a p a b i l i t y t o de tec t organic molecules. The s e n s i t i v i t y of the de-

t e c t i o n methods create requirements f o r ex t rac t i on , concentrat ion, and i n

s m e cases f r a c t i o n a t i o n of the organic compounds i n i t i a l l y present i n water.

A review o f t he a v a i l a b l e de tec t i on methods w i l l p rov ide a framework f o r

d iscussion o f the ex t rac t i on , concentrat ion and f r a c t i o n a t i a n procedures

ava i lab le .

Detect ion Techno1 ogies

Detect ion o f a chemical compound i s always a measurement o f some

charac ter i s t i c o f the compound. E f the c h a r a c t e r i s t i c i s h i g h l y s p e c i f i c

t o the compound, de tec t i on w i l l prov ide i n fo rma t ion of h igh q u a l i t a t i v e

value and i n some cases pe rm i t p o s i t i v e i d e n t i f i c a t i o n of the compound.

Requirements imposed by de tec tor s e n s i t i v i t y and s p e c i f i c i t y determine what

p repara t ive technologies must be used. Many detec t ion technologies are

avai l a b l e t o the i n v e s t i g a t o r i n t e r e s t e d i n organic contaminants o f water.

Thei r cu r ren t uses and 1 i m i t a t i o n s are described be1 ow.

CCE - CAE - OCA : The weight o f the carbon compounds adsorbed and

e the r o r a lcohol ex t rac ted i s determined g r a v i m e t r i c a l l y and repor ted t o

Page 20: S. D. C., - NCSU

the nearest t e n t h o f a gram f o r carbon chloroform e x t r a c t (CCE) , carbon

a lcohol e x t r a c t (CAE), and organics-carbon adsorbable (0-CA). Th is method

prov ides very l i t t l e i n fo rma t i on about the nature o f t he organics ex t rac ted

s ince i t i s in tended as an i n d i c a t i o n o f t o t a l organics. EPA i s con t i nu ing

an i n v e s t i g a t i o n on the va lue o f these methods, and t h e i r most recen t f i nd -

ings were pub1 ished i n May 1975. For t he c u r r e n t method (0-CA) see Buelow

e t . a., 1973. -

Tota l Organic Carbon: Th is method d i f f e r e n t i a t e s organi c carbon f rom

ino rgan i c carbon. Malcom a. - a1. , (1971 ) have developed a s tandard ized method

f o r r o u t i n e sampling us ing commercial ly ava i l ab

i s 0.1 mg pe r l i t e r w i t h o u t p r i o r concent ra t ion

on1 ine , inst ream apparatus f o r i n d u s t r i a l use.

l e equipment. S e n s i t i v i t y

. Cohen has developed an

Manj i n v e s t i g a t o r s have

used s i m i l a r methods f o r mon i to r i ng of e f f luen ts (Bunch -- e t a l . , 1961;

Murtaugh and Bunch, 1965; Pa lu te r , 1973) or f o r determin ing breakthrough o f

carbon o r r e s i n beds ( T i l swor th , 1974). A r i n (1974) g ives an excel l e n t

review o f these methods f o r r o u t i n e mon i to r ing .

T i t r a t i o n / I n d i c a t o r Methods: These procedures i n v o l v e a s p e c i f i c

chemical phenonmenon such as oxygen use, p ro ton t rans fer , o r deco lo ra t i on

o f an i n d i c a t o r upon reduc t i on o f t he organic ma te r i a l t o another chemical

form. The f i v e day BOD t e s t i s i n t h i s category. Tsuchida and Matsura

(1974) suggest observat ion o f the l oss o f KMr04 c o l o r o f a low pH s o l u t i o n

f o r use as a simple method. Keiser (1928) measured t h e c h l o r i n e demand

assumed t o be from the organic con ten t o f t he water.

The t i t r a t i o n method measures res idua l c h l o r i n e content . Skopintsev and

Page 21: S. D. C., - NCSU

Kry l ova (1955) describes the standard dichromate method, one t h a t reduces

organic carbon. Color o f the r e s u l t a n t s o l u t i o n i s measured. Each of

these t e s t s may be diminished i n accuracy and value due t o i n t e r f e r i n g

ma te r ia l s . These methods may have value f o r s p e c i f i c app l i ca t i ons and

r o u t i n e moni tor ing, b u t reveal l i t t l e o r no th ing about t he nature o f the

organic cons t i tuents measured.

Voltammetry: Voltammetry can be used t o de tec t organic contaminat ion.

Afghan e t . a l . (1975) r e p o r t t h a t i n a t w i n c e l l p o t e n t i a l sweep apparatus

he was ab le t o de tec t nanogram q u a n t i t i e s of carbonyl compounds. No pre-

concent ra t ion o r separat ion was requi red. The value o f t h i s work, l i k e

o ther gross parameter methods, i s 1 i m i t ed by i t s i n a b i l i t y t o comprehensive-

l y i d e n t i f y organic contaminants. I t has some value as a mon i to r ing tech-

nique.

Energy absorpt ion and emission: As e a r l y as 1910, D iener t (1910) used

emission spectrometry t o i n v e s t i g a t e the na ture o f f l uo rescen t substances

I n surface water. Ochi and Okaichi (1973) used a s i m i l a r procedure t o

charac ter ize sea water. I n 1974, Gaevaya and Khesina (1974) were ab le t o

d i f f e r e n t i a t e f i f t e e n p o l y c y c l i c aromatic hydrocarbons i n octane a t 0.1 ppm

l e v e l s . However, Gaevaya's methods a re r e l a t i v e l y i nsens i t i ve , due t o com-

pound inter ference, the bas ic weakness of a l l spectrometr ic methods. To

ensure exactness i n i d e n t i f i c a t i o n , the compounds under i n v e s t i g a t i o n must

be i s o l a t e d p r i o r t o the spectrometry. For f luorescent compounds t h i s i s

t y p i c a l l y done by t h i n-1 ayer chromatography (TLC) (Segura and Gotto, 1974).

An analog of emission spectrometry i s absorp t ion spectrometry, The adsorp-

5

Page 22: S. D. C., - NCSU

t i o n spectrum of co lo red waters was used by Skopintsev and Kry lova (1955)

t o i n v e s t i g a t e humic acids. Datsko (1944) attempted t o develop the method

fo r q u a n t i t a t i v e work i n 1940. Both repor ted l ess than s a t i s f a c t o r y re -

su l t s due t o the many d t f f e r e n t and i n t e r f e r i n g compounds t h a t w i 11 absorb

i n the v i s i b l e band.

Mrkva (1969) abandoned the v i s i b l e spectrum f o r t he U l t r a v i o l e t (UV)

i n an attempt t o f i n d a more d i s c r i m i n a t i n g phenomenon. Analyzing a t t h ree

s p e c i f i c wavelengths, he unsuccessfu l ly attempted t o d i s t i n g u i s h var ious

humic ac ids. Huhn (1974) used s i m i l a r methods whi l e i n v e s t i g a t i n g

l i p o p h i l i c substances i n the recharge o f groundwater. UV spectrometry,

l i k e the v i s i b l e methods, i s a nonspec i f i c method. Balch -- e t a l . (1975)

has used t h i s technique f o r general moni tor ing. Operat ing qua1 i t a t i v e l y

when on l y one compound i s present, UV i s the de tec tor o f choice f o r h igh

pressure l i q u i d chromatography. I n such a system both q u a l i t a t i v e and

q u a n t i t a t i v e data can be recorded (Knox, 1975). There are, however, organic

compounds t h a t do n o t absorb w e l l i n the UV o r v i s i b l e spectrum. T u r b i d i t y

measurements should be inc luded i n t h i s subsect ion because they are of ten

conducted on the same inst rument upon which absorbance i s measured. Lee

and Wal den (1 970) used t u r b i d i t y t o charac ter ize kerosene i n e f f l u e n t s a f t e r

lengthy prepara t ive work. They repor ted s e n s i t i v i t i e s o f 10 t o 100 ppm.

M a l l e v i a l l e (1974) moved t o the i n f r a r e d energy band ( I R ) when i n v e s t i -

ga t i ng the carbon t e t r a c h l o r i d e e x t r a c t s o f sur face water a t t he th ree wave-

lengths t h a t a re c h a r a c t e r i s t i c o f alkanes, thereby at tempt ing t o develop

a method f o r the measurement o f hydrocarbons. Simard -- e t a l . (1951) a l so

working i n carbon t e t r a c h l ~ r i d e , i nves t i ga ted phenol s by concent ra t ing t h e i r

Page 23: S. D. C., - NCSU

attention a t the appropriate wavelength for C-OH absorption. Frisch and

Kunin (1960) and Ungar (1962) both used the fu l l IR band t o attempt to

characterize the organics that were fouling the anion exchange resins in

water treatment systems. J e l t s and Dem Tonkelaar (1972) compared gas

chromatography and infrared spectrometry for the determination of mineral

oi 1 in water. They favored T R because i t identified exactly the presence of

mineral oi 1 , and because of the relative non-volati l i ty of mineral oi 1.

Obremski (1974) analysed specific compounds such as dieldrin and aldr in a t

ug levels by IR. He did not describe how he separated one from the other.

If both were present, there would be extensive interference.

Quantitation by IR spectrometric detection i s subject to interference

just as i s vis ible and U V spectrometric methods. The solution to th is pro-

blem i s similar to the solution for U V work, pretreatment by chromatographic

procedure. For IR, gas chromatography lends i tsel f we1 1 . The interfering

solvent and solutes are we1 l separated, and IR work i s easi ly adapted to

the gas phase. In 1971 Brown - e t ,- a l . (1971) reported success w l t h both

support coated open tubular (SCOT) and packed column methods. In 1975

Katlafsky and Dietrich (1975) constructed and evaluated an online GC/IR tha t

required 200 ug of compound to produce a spectrum suff icient t o identify

the compound. With 20 ug functional groups could be ident i f ied, This i s

a sizable amount of material and concentration of 20 to 200 times i s re-

quired f a r identification of materials present a t ppb levels i n waters.

GLC Detectors: The most sensitve detection technology i s tha t used

w i t h GLC. Three basic detectors are in use, and are described in detail i n

the sc ien t i f ic l i t e ra tu re (McNair and Bonelli, 1969). Most sensi t ive,

Page 24: S. D. C., - NCSU

electron capture detectors a re able t o de tec t 0.1 picogram quant i t i es of

electron trapping compounds such as ha1 ogens, carbonyls and oxidized nitro-

gen compounds. Flame ionizat-ion detectors can de tec t 20 picograms of a l i -

phatic compounds. Thermal conductivity detectors can detect 10 micrograms

of most compounds. The detectors cannot d i f f e r en t i a t e between s imilar com-

pounds so a r e useful only a f t e r gas chromatography has been used t o sepa-

r a t e the consti tuents t o be ident i f ied .

Mass Spectroscopy: Mass spectroscopy (MS) i s perhaps the best current

detection technique. The spectrum of the unknown compound can be pr inted,

te levised, or transmited to a computer f o r comparison with spectra of known

compounds. I t has been suggested t h a t research on and practical applica-

t ion of such methods a re primary and paramount(Christman and Hrutfiord 1973;

Middleton, 1973). Hi t e s and Biemann (1972) and Arpino -- e t a1 . (1974) a l so

suggest HPLC/MS, b u t the major impetus has been i n the GC/MS area. These

expensive methods have been used primarily fo r research, a1 though use f o r

routine analysis has become more comnon in recent years ,

Early work on organics in water by MS was published by Melpolder et

a l . in 1953. Using hydrogen s t r ipping techniques, they examined the v o l a t i l e

f ract ion of organic contaminants in surface waters. In 1973, Burnham et

a1 . reported on two Iowa water supplies contaminated by t a s t e producing -

material , Evan's (1973) study of Clear Lake pollution by organics d i d make

use of a computer reference f i l e . Manka -- e t a l . (1974) characterized

organics in secondary eff luents by GC/MS/Computer, and Hellar -- e t a l . (1975)

reports on the future of routine monitoring with these methods. They suggest

t ha t a f i l e of about 50,000 compounds wi l l be available in the near future .

Page 25: S. D. C., - NCSU

Table 1-1 provides a sumnary o f t he d iscussion above. As t he data i n d i -

cate, any compound t h a t i s present i n water i n concentrat ions o f l ess than

25 ppb w i l l r equ i re some form o f concentrat ion p r i o r t o de tec t ion . T f

s p e c i f i c i d e n t i f i c a t i o n of the compound i s essen t i a l , then e x t r a c t i o n from

water i s a l s o requi red, thereby necess i ta t i ng analyses by UV, I R , V isual

and Mass spectrophotometry, u s u a l l y preceded by l i q u i d , t h i n l a y e r o r gas

chromatography.

Ex t rac t i on Schemes

With several de tec t i on methods ava i l ab le , a t t e n t i o n should be tu rned

t o concentrat ion schemes which have been developed t o p rov ide the masses

o f organic so lu tes needed t o be w i t h i n the de tec t i on l i m i t s o f the a v a i l -

ab le instruments. Typ ica l ly, so lub i 1 i t y c h a r a c t e r i s t i c s a re exp lo i t ed , b u t

some concentrat ion procedures are based on o the r phys ica l p rope r t i es o f

organic so l utes ,

Gas-st r ipp ing: Gas-st r ipp ing has been used e f f e c t i v e l y t o concentrate

low weight organic compounds o f the C1 t o Cg range. Perras (1973) develop-

ed a po r tab le technique t h a t ex t rac ted alkanes from Cg t o C6. The EPA re -

cognized the v o l a t i l e s method as developed by Be1 l a r and L ichtenberg (1974),

who repor ted recover ies o f 90 t o 95% f o r C5 t o Cg compounds. This method

was ab le t o e x t r a c t compounds up t o the C15 range a t 27% recovery. B e l l a r

suggests the method fo r those compounds l ess than two percent so lub le i n

water and w i t h b o i l i n g po in t s l ess than 150°C. High e x t r a c t i o n e f f i c i e n c i e s

fo r such compounds a re common. Using such s t r i p p i n g methods, Webber and

Burks (1972) ex t rac ted 95% of the methane and 97% of the butadiene present

Page 26: S. D. C., - NCSU

Table 1-1

APPROXIMATE SOLUTE/SOLVENT REQUIREMENTS FOR VARf OUS METHODS OF ANALYSIS

Maximum Sampl e Mln. Detectable Method Sensl t i v i ty Size Conc. Sol vent Ref.

GRAVf METRI C CCE/CAE 1 m!3

TITRATION

KMn04 2 Ug D i chromate 2 Ug

ELECTRODYNAMIC

Yo1 tammetry 25 ng E lec t rophores is -

OXYGEN DEMAND

BOD 100 ug

ABSORBANCE

TOC 15 ng T R 20 ug UV/VIS 20 ug

CHROMATOGRAPHY

GLC - EC 10 Pg GLC - FID 1 ng TLC 100 ng

MASS/ION RATIO Mass Spec. 50 ng

100%

0.1 ppm 0.1 ppm

25 P P ~ 50 PPm

100 ppm

1.5 ppm 20 pp th 10 PPm

10 P P ~ 1 PPm

0.2 ppm

50 PPm

N *

water water

water water

water

water N,NI* . N I

v o l a t i 1 e vo l a t i 1 e v o l a t i l e

N ,NI

*N = none, NI = n ~ n ~ i n t e r f e r i n g

Page 27: S. D. C., - NCSU

a t 20-30 ppm l e v e l s . Mieure (1973) ex t rac ted up t o 93% of the ch lo ro fo rm

present i n prepared waters.

Commonly, t h i s method i s used p r t o r t o gas-chromatography, I n 1953,

Melpolder -- e t a1 , (1 953) used gas-s t r ipp ing techniques i n con junc t ion w i t h

GC and mass spectrometry t o i d e n t i f y v o l a t i l e ~ present i n concentrat ions o f

0,01 ppm. I'n 1960, F r i s c h and Kunim (1960) found 0.72 ppm v o l a t t l e s by

t n f r a r e d spectrophotometry used i n 1 i n e w i t h gas s t r i p p i n g . Ploder (1974)

used a i r - s t r i p p i n g and a SCOT column t o f i n d compounds present a t 0.1 ppm

l e v e l s . A i r - s t r i p p i n g i s a va luable ad junc t t o gas chromatography. Grob

(1973) was a b l e t o i d e n t i f y 63 compounds a t concentrat ions as low as 2 ppb.

However, many i n v e s t i g a t o r s f e e l t h a t i d e n t i f i c a t i o n of compounds present

a t such l e v e l s i s n o t q u a n t i t a t i v e . Desbaumes and Imhof f (1972) attempted

t o m i t i g a t e t h a t compla int by running c a l i b r a t i o n curves w i t h each s e r i e s

of ex t rac t i ons , However, when they repor ted 0.01 ppb concent ra t ions o f

hydrocarbons i n f i e l d samples, they s p e c i f i c a l l y withdrew t h e i r statement

o f conf idence i n the accuracy o f t h e i r q u a n t i t a t i o n methods.

The at tempt t o counteract t he s o l u b i l i t y o f v o l a t i l e s w i t h s t r i p p i n g

techniques appears t o be successful , as Mori t a -- e t a1 . (7974) were ab le t o

i d e n t i f y 25 compounds us ing t h i s procedure. However, comparison w i t h

approaches t h a t take advantage o f so lub i 1 i ty v e r i f y t h a t t h e s t r i p p i n g

method has i t s 1 i m i t s . Hewes, Smith and Davison (1974) found t h a t ex t rac-

t i o n can compete w i t h s t r i p p i n g a t low r e l a t i v e v o l a t i l i t i e s .

l i q u i d L i q u i d Ex t rac t i on : L i q u i d e x t r a c t i o n i s the o l d e s t and per-

haps the most w ide ly used e x t r a c t i v e t o o l a t t he i n v e s t i g a t o r s d isposal .

Two bas ic parameters determine the e f f i c i e n c y o f these methods, the cho ice

Page 28: S. D. C., - NCSU

of so lvent and the e x t r a c t i o n apparatus.

Choice of so lvent e f f e c t i v e l y 1 i m i t s the ex t rac t i on , no ma t te r what

apparatus i s used. Far example, Goldberg -- e t a l . (1973) were ab le t o g e t

o n l y 4.80% o f the solute, 2-pentanol, from water us ing benzene. They repo r ted

the a b i l i t y t o ge t 110.35% o f i t out us ing trichlorotrifluoroethone. T h e i r

apparatus was a counter-current continuous f o u r stage e x t r a c t o r . Cooper and

Wheatstone (1973) were equa l l y successful by s e l e c t i n g methyl i sobuty l

ketone ( M I K ) f o r removal o f phenol from water. They repor ted 100% r e -

cover ies and suggested t h i s work fo r standard use.

The a t t r i b u t e s of a un i ve rsa l so lvent , use fu l i n a l l circumstances, i n -

clude: i m m i s c i b i l i t y w i t h water, p o l a r i t y s u f f i c i e n t f o r e x t r a c t i o n o f

ac ids, as w e l l as r e l a t i v e l y nonpolar a l i p h a t i c s and aromatics, and the

a b i l i t y n o t t o mask s o l u t e compounds du r ing detect ion. Although no s imple

compound has been found t h a t i s bes t i n a l l cases, some standard so lvents

a re i n use which approximate these requirements. For example, hexane has

been used f o r a l l types o f work from i d e n t i f i c a t i o n o f p e s t i c i d e s and PCB's,

t o d iese l and outboard motor o i l , hydrocarbons, l i g n o s u l f o n i c s and l i p o p h i l i c s

Ether i s o f t e n used f o r pes t ic ides , PCB's, and many o ther compounds, Chloro-

form i s the so lvent f o r the CCE method, and has been used f o r o the r work as

w e l l . Table 1-2 i s a sho r t l i s t o f i n v e s t i g a t i o n s w i t h data on solvents,

so lutes, recover ies and sample sizes. This l i s t i s a l s o a qu ick e n t r y i n t o

the l i t e r a t u r e on l i q u i d - l i q u i d ex t rac t i on .

There are two basic approaches t o e x t r a c t i o n w i t h l i q u i d solvents,

batch e x t r a c t i o n and continuous ex t rac t i on . The purpose o f both methods i s

t o mix the so lvent w i t h the sample water op t im iz ing t r a n s f e r o f organic

Page 29: S. D. C., - NCSU

Table 1-2

REPORTED LIQUID - LIQUID EXTRACTION METHODS

Volumes Conc. Recovery Reference Date Sol vent Smpl /Slvnt Factor % Sol u te Method

Kawa hara 1967

Goldberg 1971

Kahn

Headington C3

Hoa k

Luessem

Bornef f

Cooper

Eichel berger

EPA

Harvey

Hughes

Je l t s

hexane hexane-benzene

hexane , benzene CCl4 C2C13F3

ether

benzene

M I K

l i q . butane

benzene

M I K

ether, hexane

t e t r a l

aceton

hexane

CC14

i n

i tri l e

40

Var. 75.6

Var . ----

25

---- 271 7

1

16.6

500

260

3 0

2 0

d i e l d r i n , endr i n

1 Oppm toluene, 2-pentanol

lppb a l d r i n

lOpprn o i l

1 OOpprn phenol

- -

1 Oppt PAH

lOOppb phenol

lOppb pest.

various

l p p t PCB's

toxaphene

lppm o i l

batch

mu l ti stage con t i nuous

continuous

batch

continuous

batch

batch

batch

batch

batch

batch

batch

batch

Page 30: S. D. C., - NCSU

s U C, la n

aJ E aJ L h n C, P P 0 V)

I I I

Ln

h C

S 0 cu \ C

In

M

a, s aJ a u C w h L -(= 0 G - als E U

cu h m C

V) aJ C, . r I

Page 31: S. D. C., - NCSU

so lu tes i n t o the so lvent according t o so lub i 1 i t y p r i n c i p l e s , The advantage

of a continuous e x t r a c t i o n device i s t h a t Par more water can be ex t rac ted

w i t h the same amount o f so lvent used i n most batch methods. The basic d i s -

advantage i s t h a t contac t t ime between so lvent and sample can be much less

than batch methods. Ni t h appropr ia te f l ow ra tes , t h i s disadvantage can

be overcome. However, l a rge volumes of sample water a re d i f f i c u l t t o t rans-

p o r t , and the glassware and a u x i l l a r y heat ing o r coo l i ng equipment requ i red

genera l l y p r o h i b i t f i e l d ex t rac t i on .

Solvent e x t r a c t i o n i s useful f o r two reasons, i t removes water from

the cha rac te r i za t i on process, and concentrates the organic solutes, an

essen t i a l f o r many de tec t i on techniques. The so l ven t volume i s u s u a l l y

f u r t h e r reduced from t h a t volume necessary f o r e x t r a c t i o n by evaporat ion

procedures which w i l l be d e a l t w i t h i n f u l l i n a subsequent sect ion. Con-

s ide r ing on l y the e x t r a c t i o n process, concentrat ion nea r l y always takes

place. One agency t h a t has placed great conf idence i n l i q u i d e x t r a c t i o n i s

the EPA. One l i t e r o f New Orleans d r i n k i n g water was ex t rac ted w i t h two m l

o f t e t r a 1 i n . However, the recover ies were n o t as h igh as obta ined us ing

the carbon adsorpt ion method (CAM), so there are no repor ted e f f i c i e n c i e s

(US-EPA, 1974). Another ambit ious method was repor ted by Bornef f and

Kunte (1969). They ex t rac ted 500 l i t e r s of water w i t h 18 l i t e r s o f benzene,

reproduc ib ly e x t r a c t i n g 10 p p t o f the po lynuc lear aromatic hydrocarbons

(PAH) present. Vei t h and Lee (1974) were ab le t o e x t r a c t PCB's a t s i m i l a r

concentrat ions w i t h 400 m l hexane and 1.6 l i t e r s o f sample water.

Two bas ic conclusions can be made regarding l i q u i d - l i q u i d ex t rac t i ons :

(1 ) proper so lvent se lec t i on s t r o n g l y in f luences e x t r a c t i o n e f f i c i e n c y ; and

(2) recovery of a p a r t i c u l a r so lu te can on ly be rough ly est imated unless

Page 32: S. D. C., - NCSU

recovery e f f t c i e n c y i s de tem ined by i n v e s t i g q t i ~ n s w l t h t h a t so lu te .

Adsorpt ion: By 1916 water s p e c i a l i s t s had a l ready recognized and pub-

1 i shed conclus ions about the absorp t ive qua1 i t i e s of var ious adsorbents , i n p a r t i c u l a r w i t h respect t o c o l o r ma te r i a l s o f organic o r i g i n ( ~ a v i l l e ,

1917). I n 1940, Lemaire (1940) publ ished a rev iew of s y n t h e t i c adsorbents.

That rev iew d isc losed the pr imary research i n t e r e s t s as removal of organics

from water. Such work has cont inued (Luh and Baker, 1971 ; D u f o r t and Rud,

1972; Orhme and Mar t ino la , 1973; Ohtani , 1974; Shevchenko -- e t a1 . , 1974;

Love e t a1 . , 1975).

Removal o f organics from water by adsorp t ion onto var ious r e s i n s and

polymers does n o t o f necess i ty presume an a b i l i t y t o desorb them f rom the

adsorbent. Th i s presumption, if v a l i d , would a l l o w methods t o be designed

t o recover the ex t rac ted m a t e r i a l s f o r t h e purpose o f ana lys is .

I n August of 1951, Brause, Middleton and Walton (1951) descr ibed a

method f o r the e x t r a c t i o n and recovery o f organic m a t e r i a l s u s i ng carbon

adsorpt ion and e the r ex t rac t i on . I t was t h i s work t h a t has evolved i n t o

t he standard method f o r e x t r a c t i o n o f organics by adsorpt ion. The c u r r e n t

method (organics-carbon adsorbable, 0-CA) i s used by EPA, and i s f u l l y de-

sc r ibed by Buelow, e t a l . (1973).

Carbon adsorp t ion i s n o t w i t h o u t t echn i ca l weaknesses. I n 1962, Hoak

demonstrated t h a t desorp t ion was l e s s than q u a n t i t a t i v e , and t h a t compounds

may change chemica l l y w h i l e adsorbed. I n 1965, Booth, Eng l i sh and McDemott

( 1965) "conf irmed t h a t act ivated-carbon columns , even wi t h the g r e a t e s t

p r a c t i c a l con tac t t imes, do n o t adsorb a l l organic ma t te r present . " More

recen t l y , Pahl, A l len, Mayhan and Ber t rand (1973) publ ished a s e r i e s o f

Page 33: S. D. C., - NCSU

a r t i c l e s which show t h a t there i s nQ reasonable method t h a t q u a n t i t a t i v e l y

desorbs a l l organics from carbon. The data on chemical reactivity o f

ac t t va ted carbon and poor desorpt ion capabi 17 ty when us ing 1 t I n s t i g a t e d

ser ious research i n t o o ther adsorbents.

The l o g t c a l replacement f o r carbon would be an organic s o l i d t h a t i s

no t reac t i ve , t h a t would adsorb as w e l l , and would desorb b e t t e r . Ton ex-

change res ins do n o t meet these c r i t e r i a , bu t h i s t o r i c a l l y were the nex t

adsorbent t o undergo in tense i nves t i ga t i on . The i n v e s t i g a t i o n was of s h o r t

du ra t i on as i t was found t h a t the neu t ra l compounds do no adsorb quan t i t a -

t i v e l y (F r i sch and Kunin, 1960) and the p o l a r ones do n o t desorb quan t i t a -

t i v e l y ( P e t r a r i v -- e t al . , 1969), even w i t h appropr ia te pH co r rec t i on . It i s

assumed t h a t those forces which encourage s o l u t i o n are n o t s t rong enough

t o compete w i t h the i o n i c forces o f d i ssoc ia ted ac ids and bases.

The pro1 i f e r a t i o n o f so l i d ma te r i a l s from a growing chemical and p las-

t i c s i ndus t r y have begun t o p rov ide candidates f o r a b e t t e r adsorbent.

Three groups have i nves t i ga ted polyurethane foam (Bedford, 1974; Gesser - e t

a., 1971 ; Musty and Nickless, 1974). They repor ted recover ies o f 95-100%

f o r pes t i c i des and PCB's w i t h appropr ia te pH cor rec t ions . There has n o t

been extensive f i e l d tes t i ng , however, and Bedford (1974) i n d i c a t e d t h a t

the foams f a i l r a p i d l y i n r e l a t i v e l y t u r b i d waters.

Tenax, a r e c e n t l y described adsorbent i s c h a r a c t e r i s t i c o f t h e na t i ona l

concern f o r removal and i d e n t i f i c a t i o n o f organics i n water. I t was

developed s p e c i f i c a l l y f o r t h a t purpose. Leoni -- e t a l . (1975), publ ished re -

cover ies of 90% and b e t t e r f o r pes t i c i des and PAH us ing t h l s r e g i s t e r e d

product. I t i s the second i n a growing generat ion o f commercially produced

Page 34: S. D. C., - NCSU

adsorbents designed t o rep lace carbon. The f f r s t , aqd t h e one used i n t he

research undertaken by the author, i s an Amberl t t e product c a l l e d XAD r e s i n ?

There are var tous types of t h i s mac ro re t i cu la r res in , and the cha rac te r of

the one used t s discussed immedtately fo l lowtng Table 1-3. Recoveries us-

f ng XAD a re c o n t i n u a l l y repor ted as near 100% (Bastos -- e t a1 . , 1973;

Burnham e t a1 . , 1972, 1973; Kelsey and Mosgatel l i , 1973; Musty and Nick1 ess , 1974; R i l e y and Taylor , 1969).

An example o f a new d i r e c t i o n i n adsorbent development i s t h e work

Ah1 i n g and Jensen (1970) have done w i t h what has here to fo re been used as

gasmchromatographic s o l i d and l i q u i d phases. They used 10% carbowax and

30% undecane on Chromasorb W and repo r ted up t o 100% recover ies f o r p e s t i -

c ides and PCB's. Table 1-3 descr ibes some o f the l i t e r a t u r e on adsorbents.

XAD-2 Mac ro re t i cu la r Resin: The so l i d adsorbant used throughout t h i s

i n v e s t i g a t i o n i s the mac ro re t i cu la r r e s i n XAD-2, an

Rohm and Hass Company, Ph i lade lph ia , Pennsylvania.

styrene-divinylbenzene (DVB) co-polymer.

I n 1965 research w i t h t h i s r e s i n i n d i c a t e d an

Amberl i t e produc t o f

The r e s i n i s a po l y -

ncrease i n en t ropy f o r

the adsorp t ion o f organic so lu tes t o t h e copolymer (Schneider, -- e t a l . , 1965).

Schneider descr ibed ' i cebergs ' o f f a t t y ac ids i n water being broken up and

adsorbed by t h e r e s i n . The bes t source f o r in fo rmat ion about XAD-2, and

o ther s i m i l a r res ins , remains an a r t i c l e by Gustafson and Paleos (1971).

They suggest Van der Waal's fo rces as the impor tan t chemical phenomenon

exp la in ing adsorpt ion. It remains unc lear i f phys ica l s i z e o f organics

so lu tes a f f e c t s adsorp t ion s i g n i f i c a n t l y .

The copolymer i s formed i n t o spheroids o f va ry ing mesh s i ze . Each

Page 35: S. D. C., - NCSU
Page 36: S. D. C., - NCSU

Table 1-3 Continued

Sampl e Vol ume Conc . % Ref. Date Adsorbent Source Smpl/Slvnt Solvent Factor Recovery Solute

Leon i

Burnham

Harvey

Kami ku bo

Musty N 0

Richard

Ripley

Bas tos

Kel sey

Junk

EPA

Tenax

XAD2/7 XAD 2

XAD2

XAD1/2

XAD 4 XAD 2 XAD 8

XAD 2

XAD 1

XAD 2

XAD 2

XAD 2

drnk wtr

river grnd wtr

ocean

pure wtr II

II

r iver

ocean

Urine

Urine

pure wtr

XAD2,4,7,8 pure wtr

e the r

methanol e ther

acetoni t r i l e

methanol

hexlether I 1

I 1

acetoni tri 1 e

methanol

e ther

methanol

e ther

chloroform

1000 85-100 lppb pest , PAH

1000 97 .37ppb neutrals 10000 90 lppb var.

1 00 lOppt chlororg.

100 neutrals . 100 lppb PCB 45-71 11

28 11

=to l i q . extn lppb pest

100 pest . 81 -1 00 aci ds/bases

- chl orpromazi ne

100 var. org.

40- 90 var. org.

Page 37: S. D. C., - NCSU

sphere I s 'open l a t t t c e d ! which prov ides f o r Very h igh surface area, com-

pared t o t r a d l t i o n a l c r y s t a l 1 i n e res ins .

D i f f e r e n t i a t i o n by Size and Weight

One approach t o t he ana l ys i s of organics i n water w I l l n o t P i t appro-

p r t a t e l y i n t o the proscr ibed sec t ions on ex t rac t i on , concentrat ion, f rac-

t i o n a t l o n and de tec t i on because i t invo lves a l l o f these processes. That

approach invo lves c e n t r i f u g a t i o n and f i l t r a t i o n . The terms c e n t r i f u g a t i o n

and f i l t r a t i o n each i n d i c a t e a c lass o f methods. C e n t r i f u g a t i o n can be

batch o r cont inuous f low; i t can be v a r i e d t o separate by weight and/or

s i z e down to , b u t no t u s u a l l y i nc lud ing , c o l l o i d a l s izes. T t can be used

alone o r i n a t r a i n i n c l u d i n g preceding f i 1 t r a t i o n devices. F l l t r a t i o n

t y p i c a l l y removes m a t e r i a l s o f 0.45 micron diameter o r g rea ter . Below -

0.45 microns, the t e r n u l t r a - f i l t r a t i o n i s usual l y app l ied . As g rea te r

s e l e c t i v i t y i s desired, t he i n v e s t i g a t o r begins t o encounter reverse

osmosis (RO) tbchniques and ge l permeation; and a t some p o i n t , o n l y gases

pass t h ~ o u g h the media (perevaporat ion) .

The u t i l i t y o f these methods depends t o a l a r g e degree upon the i n -

t e n t o f the researchers. I n v e s t i g a t i o n of secondary and pr imary e f f l u e n t s

have p u t major emphasis on d i f f e r e n t i a t i o n by s i z e o r weight (Groves, 1974;

R i c k e r t and Hunter, 1967; EPA, 1971 ). Charac ter iza t ion o f o rgan ics i n

e f f l uen ts has been conducted by c e n t r i f u g a t i o n (Rebhun and Manka, 1971),

reverse osmosis (Gurtz, 1967; Reuter, 1973), and ge l permeation (Chudoba

e t a l . , 1973; Manka e t a l . , 1974). T a r d i f f and Deizner (1973) used RO and --

perevaporat ion t o concentrate organics found i n d r i n k i n g water . H a l l and

Lee (1976), Varshal e t a l . , (1974) and M i g a l a t i l and Pushkarev (1973) i n -

Page 38: S. D. C., - NCSU

vestigated ~ r g a n i c s i n natural wqters using RO and gel permeation.

There i s l i t t l e data on the efficiency of these methods. Yarshal

e t a1 . , (1 974) reported t h a t during fractionation by permeation techniques --

l ess than for ty percent of the organtcs were los t , Reuter (1973) indicated

that 150 mg/l total carbon permeated a RO apparatus designed to remove .

organics from primary effluent waters. This i s an inordinately large con-

centration i n a supposedly clean effluent and belies the inefficiency of

one RO apparatus.

A t best, these methods provide fractions that must be subjected to

further fractionation or extraction before being amenable to identifica-

tion of organic constituents. Reports have not been published on a compre-

hensive system of methods designed to get a l l components of the organic

fraction in waters. These methods do not specify much more than s i ze of

the components unless the methods are followed by more sensit ive detectors

Concentration Methods

Concentration usually takes place a t every step of a search for organ

in water, However, some steps are designed to do only the task of concen-

t ra t ion. This i s necessary because most organics are present i n natural

waters in low concentrations relative to the amounts needed by the detec-

tion methods.

Concentration genera1 ly exploits the character is t ic sol ubi 1 i ty and

volati 1 i ty of substances in solution. Plumb and Lee (1973) concentrated

organics by vacuum d i s t i l lation of raw waters. The assumption i s t h a t the

solubi l i ty of the organics i s so great that a t low temperatures and pres-

sures, the loss of mass from the d i s t i l l a t ion flask i s predominately water.

Page 39: S. D. C., - NCSU

Some organic l o s s may occur through formation of azestropes, however the

success of vacuum d i s t i 11 a t i o n has been shown by Kuninobu and, Mori kawa (1974).

They d t s t l l l e d 300 m l water t r e a t e d w l t h 0.115 eq. Ca(OH)2 t o 50 m l and r e -

covered 99.995% of t he formaldehyde t h a t was placed t n s o l u t i o n .

For water samples con ta in ing l e s s so lub le organtcs , such recover ies

should n o t be expected. f n non -quan t i t a t i ve work Rebhun and Manka (1971)

and Katz e t a l . (1972) used t h i s method t o concentrate e f f l u e n t contaminants.

I n bo th cases, p r e c i p i t a t e s formed and were red isso lved i n an organic so lvent .

Other work o f t h i s nature i s i n d i c a t e d i n Table 1-4.

S i m i l a r methods o f concent ra t ion are used when organic compounds have

been concentrated i n organic so lvents. I n t h i s case, an a d d i t i o n a l

p roper ty a ids the process, General l y , organic so lven ts have lower bo i 1 i ng

p o i n t s than the so lu tes being i nves t i ga ted so 1 ower temperatures a re r e q u i r -

ed. This a l l ows simple d i s t i l l a t i o n , l eav ing the so lu tes i n t he o r i g i n a l

f l ask i n a concentrated form. Many methods and appara t i i have been develop-

ed t o e f f e c t such d i s t i l l a t i o n . The method o f choice, as descr ibed i n t h e

publ ished 0-CA method (Buelow -- e t a l . , 1973) and o t h e r work (Junk -- e t a l . ,

1974) i s use of the Kuderna-Danish (KD) evaporator. Developed i n a Denver

l a b i n 1951, i t has been used ex tens i ve l y , and i t s e f f i c i e n c y has been i n -

ves t i ga ted a t l eng th (Gurtz, 1967). Gunther e t a1 . , (1951) were ab le t o

concentrate p e s t i c i d e s i n s o l u t i o n by reducing volumes from 200 m l t o t h ree

m l w i t h recover ies of 80-84%. Goldberg -- e t a l . , (1973) found t h a t such r e -

cover ies a re n o t rou t i ne , and t h a t depending upon evaporat ion r a t e and

f i n a l volume, recover ies a r e from 26-72%. They suggested so l vent volume

reduc t i on t o o n l y 50111 from 500. Junk -- e t a l . (1974) found t h a t evapora-

Page 40: S. D. C., - NCSU

Table 1-4

REPORTED CONCENTRAT FON TECHNTQUES

Conc. % Ref. Date Solvent Solutes Method Factor Recovered

P I umb

Ka t z

Rebhun

Kuni nobu

Muel 1 e r

Bunch

Black

Baker

Gunther

Go1 dberg

Junk

n a t w t r

e f f l u e n t

e f f l u e n t

pure w t r

pure w t r

e f f l u e n t

n a t w t r n a t w t r

pure w t r

org. so l .

org. so l .

org. so l .

var ious vac d i s t

var ious vac d l s t

var ious vac d i s t

formaldehyde d i s t i 1.

o rg ac ids evap

var ious vac evap

f u l v i cs evap f u l v i c s f reeze

var ious freeze

org. s u l f i t e KD*

var ious KD

var ious KD

- - -

6x

-

20x

151x 7 5x

var.

66x

1 ox

41 x

* KD = Kuderna-Danish

Page 41: S. D. C., - NCSU

t i o n r a t e has no e f f e c t prqy ided i t i s matntqined w t t h i n t he range of 0.5

t o 2 ml/mtn, They d t d suggest t h a t t h e shape of the concentpatron vessel

i s c r i t k a l , and, ustng a specfa1 f l a s k constructed from a 50 m l round

bottom f l a s k and a tapered cen t r i f uge tube, obta ined recover ies o f no

l ess than 93% w h i l e concent ra t ing from 25 m l t o 0.6 ml ,

A second concent ra t ion technique 1s c r y s t a l 1 i z a t i o n . I n c u r r e n t work,

the so lven t i s f rozen out , l eav ing the so lu tes i n t he remaining water and

i n h igh concentrat ion. Black and Christman used t h i s method i n 1963,

f reez ing ou t water i n a l a r g e drum. Water volume was reduced from 40

ga l lons (151 L. ) t o one l i t e r . Recovery e f f i c i e n c i e s were n o t repor ted.

The American w i t h t he g rea tes t experience i n f reeze concent ra t ion i s

Robert Baker. He pub l i shed a se r i es o f f o u r papers e n t i t l e d "Trace Organic

Contaminant Concentrat ion by Freezing1' (Baker, 1967a; 1967b; 1969; 1970).

Using a r o t a t i n g f l a s k and cascade o r mu l t i s tage techniques, many l i t e r s

of water can be concentrated t o a f i n a l volume o f no l ess than 30 m l w i t h

recover ies o f up t o 100%. Factors t h a t i n t e r f e r e w i t h the process i n v o l v e

the presence o f inorgan ic s a l t s i n so lu t i on . No good s o l u t i o n t o t h a t

problem was i d e n t i f i e d .

F rac t i ona t i on Schemes

F rac t i ona t i on i s use fu l as i t f a c i l i t a t e s t h e de tec t i on process by

p e r m i t t i n g b e t t e r separat ion o f t he components present and removal o f i n t e r -

ferences. For example, 66 separate organic compounds were discovered i n

the New Orleans water supply i n a search conducted by EPA (1974). Most

of these compounds were i d e n t i f i e d by gas chromatography. No one column

can adequately separate a1 1 m a t e r i a l s present. However, i f , f o r example,

Page 42: S. D. C., - NCSU

only acids were present, a column can be used so t ha t excel lent separation

of acids wil l occur. A dtstTnct separation i s important i f detection i s

fur ther reftned by mass spectrometry, infrared spectrometry, or UY spectro-

metry.

Acid Fractionation: The character of organtc compounds may be der

scribed by functfonal groups such as amines, carboxylic acids , e s t e r s and

so on. They may a l so be described by s t ructural charac te r i s t i cs , f o r ex-

ample a1 kanes, alkenes, alkynes, aromatics and so on. In acid f ract iona-

t ion procedures organics are divided in to strong acids , weak acids and

phenolics, neutra ls , weak bases, strong bases, and amphoterics. This i s

accomplished by pH adjustment and extraction. The c l a s s i c work on t h i s

method i s t h a t of Shriner and Fuson ( i n : - Malcolm -- e t a l . , 1971). The method

r e l i e s on the par t i t ioning of organic species between an acid o r a l k a l i i

water phase and an organic solvent phase. As pH i s varied the non-polar

(unionized) species dissolved in the organic solvent while the polar (ion-

ized) species remain in aqueous solution. Neutrals migrate in to the organic

solvent with very wide ranges of pH.

The appeal of t h i s method l i e s in i t s wide appl icabi l i ty . A pH adjust -

ment can be made pr ior t o the extraction of water, thereby causing se lec t ive

extraction (Bark -- e t a l . , 1972; Bunch -- e t a l . , 1961; Rebhun and Marka, 1971).

The adjustment can be done pr io r t o use of an adsorbent (Junk e t a l . , 1974).

A pH adjustment can faci 1 i t a t e se lec t ive desorption of adsorbents (Bastos

e t a l , 1973; Burnham e t a1 , 1972, 1973; Christman and Hrutfiord, 1973; Hoak, --

1962; Laqua, 1973; Tard

scribed, the f rac t iona t

i f f and Deizner, 1973). Or as Shrlner and Fuson de-

ion can be done a f t e r extractton o f waters o r ad-

Page 43: S. D. C., - NCSU

sorbents (Kawahara e t a1. , 1967; Ma1 colln e t a1. , 1971).

An important c l a s s i f j c a t t o n system t h a t was developed p r i o r t o comon

use o f gas chromatography and mass spectrometers i nvo l ves the a c i d f r a c t i o n

of the above method. I n v e s t i g a t i o n s on the nature of c o l o r i n water r e -

s u l t e d i n t he determinat ion of the percentage o f organic m a t t e r i n each of

th ree subgroups w i t h i n the a c i d f r a c t i o n . These are known as the gener ic

groups f u l v i c ac ids, hymatomelanic ac ids and humic ac ids. Table 1-5 i s

a s h o r t 1 i s t i n g o f research t h a t has used the a c i d f r a c t i o n a t i o n method.

Chromatographic F rac t i ona t i on : Another method used t o separate

organic so lu tes i n t o groups o r i n d i v i d u a l components i s chromatography.

Four types o f chromatography a re i n wide use, gas, l i q u i d , h igh pressure-

l i q u i d , and t h i n - l a y e r . Each o f t he methods e x p l o i t compound s p e c i f i c

p a r t i t i o n c o e f f i c i e n t s between a c a r r i e r so l ven t o r gas and a s o l i d suppor t

coated w i t h a l i q u i d phase. P a r t i t i o n i n g may be on the bas is o f s o l u b i l i t y ,

adsorpt ion, molecular c o n f i g u r a t i o n and/or molecular weight.

L i q u i d chromatography (LC), and i t s successor, h igh pressure 1 i q u i d

chromatography (HPLC), a re va luab le f r a c t i o n a t i o n methods. However t h e de-

t e c t i o n techniques t y p i c a l l y used i n con junc t ion w i t h LC/HPLC a re n o t

spec i f i c . To improve s p e c i f i c i t y , Knox (1975) dep i c t s t he r o l e o f HPLC as

a p repa ra t i ve method f o r mass spec t ra l analys is . He repo r t s t h a t such

methods can separate 0.1 t o 1.0 mg s o l u t e pe r gram o f packing, and i s use-

f u l f o r separa t ion o f compounds o f g rea te r than 1000 malecular weight.

Both Knox and Saika (1970) have repor ted t h a t c e r t a i n organics adsorb s t rong-

l y onto some column packing m a t e r i a l s reducing the u t i l i t y of the method.

Because the c a r r i e r phase i s l i q u i d , pumps are r o u t i n e l y employed.

Page 44: S. D. C., - NCSU

Table 1 ~ 5

Ref. Date Smple FraCti ~ n s vethod

Bastos 1973 Urlne acid-neutral , se lec t ive desorp'n of XAD base-neu t r a l w/HCl/ether then borax/HCC13

Laqua . 1973 drnk wtr a1 1 SF* f rac . of e the r ex t rac t of various adsorbents

Tardiff 1973 drnk wtr a l l se lec t ive desorp'n of XAD

Hoa k 1962 drnk wtr a1 1

Christman 1973 drnk wtr a1 1

SF frac . of e ther ex t r ac t of carbon

suggests se lec t ive desorp'n of XAD

Burnham 1972 d r n k wtr neutrals sel ec t ive desorp' n of XAD 2/acid +base discarded

Junk 1975 drnk wtr a1 1

Brause 1951 surf wtr a1 1

Kawahara 1967 surf wtr a l l

pH adjustment p r io r t o XAD adsorption

SF frac . of e ther ex t rac t of carbon

SF f rac . of e ther ex t rac t of carbon

Bark 1972 e f f luen t bases ex t r ac t ' n of pH adj. water

Rebhun 1971 eff luents a l l

Bunch 1961 e f f l u e n t s a l l

SF f rac . of e ther ex t rac t of vac. evap'd concentrate

SF f rac . of e ther ex t r ac t of vac. evap'd concentrate

Black 1963 colored wtr acids fulvic/hymatomelanic/humic

?SF = S h i n e r and Fuson

Page 45: S. D. C., - NCSU

The pressure es tab l i shed t n t r ~ d u c e s f u r t h e r compl i c a t f ~ n s upon i n j e c t q r

design. f f used @tR a de tec to r as a charactepTzat ion apparatus, HPLC

tends t o have h igh background noise t o pumps and i n j e c t a r s (Ber ry and

Kargen, 19731, q l though recent devel o p e n t s t n f n j e c t o r qnd de tec to r de-

sf gn Rave e l trninated many of these d i f f i c u l t i e s . HPLC o f f e r s extremely

RSgR t h e o r e t i c a l separat ing c a p a b i l i t y which has l e d t o increased app l i ca-

t l o n of t h i s technique, Ohtani r o u t i n e l y separated xy lene isomers, a t ask

poss ib le a t h igh e f f i c i e n c y on l y by LC o r GLC. Lee and Chang (1975) de-

v i sed a scheme o f repeated chromatography w i t h a combination o f var ious

absorbents, s t a t i o n a r y phases and e l u ten ts . I t i s noteworthy t h a t they

fee l t h e i r methods a re too ted ious and long f o r general work. Table 1-6

l i s t s some o f the recent work i n LC and HPLC on organics i n water.

Table 1-6

LIQUID CHROMATOGRAPHY INVESTIGATIONS OF NATURAL WATERS

Ref. Date Method Support So lu te

C hu 1973 HPLC XAD 2 S tero ids , Phenols

Lee 1975 HPCC var ious F lavo r Compounds

J o l l y 1973 HPLC - Trace org. i n n a t waters

H i t e s 1972 LC - Org. compounds i n Charles R ive r

Koe h 1 1974 LC - 39 amino ac ids

Plumb 1973 LC sephadex Org, compounds i n na t waters

Zai ka 1970 LC po lys ty rene Org. compounds i n n a t waters

H a l l 1974 LC - Org. ma t te r t n Lake water

Ohtani 1974 LC z e o l i t e s xylene t n e f l u e n t s waters

Page 46: S. D. C., - NCSU

Gas-1 i q u i d chromatography [GLC o r ($1 provides ma,rkedl y b e t t e r

separat ion cqpabfl f ty than standard, non pressur f zed, LC, and cornparable

t o HPLC, Sample s izes are reduced t o micro1 t t e r l e v e l s because de tec to rs

used w i t h GLC are capable o f responding t o nanogram and picogram q u a n t i t i e s

of s o l u t e mass, GLC i s most o f t e n l i m i t e d by the v o l a t i l i t y o f t he sample

compounds. Soph is t i ca t i on o f column design cont inues t o increase t h e

c a p a b i l i t y o f the technique. Urov -- e t a1 . (1974) repor ted the use of a

column which separated anthracene and phenanthene, two representa t ives of

the polynuclear aromatic hydrocarbon (PAH) fami ly t h a t are normal ly con-

s idered h igh b o i l e r s and u n l i k e l y t o v o l a t i l i z e . I n o ther cases where

v o l a t i l i t y i s low, d e r i v a t i v e s can be formed which a l l ow use o f GLC methods.

Table 1-7 i s a s h o r t compi la t ion o f repo r t s on organics i n water separated

and detected us ing the gas chromatograph. Note t h a t two bas ic e x t r a c t i o n

procedures a re used p r i o r t o gas chromatography, purg ing and so l ven t ex-

t r a c t i o n .

Th in- layer chromatography prov ides an a1 t e r n a t i v e t o GLC when h igh

b o i l e r s a re under i nves t i ga t i on . For example, Bornef f and Kunte (1 969)

developed a method fo r i d e n t i f i c a t i o n o f over f i f t e e n PAH. Th in- layer a l -

so prov ides a technique f o r r e p e t i t i v e t e s t i n g requirements. Thideman

(1974) has repor ted on coated f o i l s f o r the de tec t ion o f i n s e c t i c i d e s and

pes t ic ides . Atanus (1974) repor ted t h a t the Chicago Me t ropo l i t an San i ta ry

D i s t r i c t used a TLC method f o r d a i l y t e s t i n g o f waters containing hexane

solubles. Aly (1 968) suggests TLC fo r r o u t i n e i d e n t i f i c a t i o n o f phenols.

Although separat ion i s e x c e l l e n t f o r some compounds, the de tec t i on o f those

compounds f o l l o w i n g TLC i s n o t as s e n s i t i v e as those used w i t h HPLC of GLC,

Page 47: S. D. C., - NCSU

Table 1 ~ 7

Ref,, , , , , €)It!. . , " , Source , , , , . , Solute Concentrattan Method

P l oder

Perras

M I eu re

Des baumes

Be1 l a r

Cooper

Goma

Jel t s

Kawa hara

Lamar

Muel 1 e r

Nurtaug h

Smi th

Van Hyssteen

Urov

1974 surf wtr

1973 ocean

1973 surf wtr

1972 effluent

1974 surf wtr

1973 effluent

1971 nat wtr

1972 nat wtr

1971 surf wtr

1963 surf wtr

1958 surf wtr

1967 eff 1 uent

1971 - 1970 pure wtr

1974 -

C#C13 Headspace purge

hydrocarbons Purge

HCC1 ,phenol Pu rge

hydrocarbons Purge

volati l es Pu We

phenol s MBK extr 'n

hydrocarbons surfacant emulsion

mineral o i l n i trobenzene ext r ' n

phenols, acids CAM ex t r ' n

acids butane ex t r ' n

acids ether ex t r ' n

s te ro ls hexane extv-' n

a1 i phati c ci ami nes - f a t ty acids none

anthracene -

Page 48: S. D. C., - NCSU

and q u a n t i t a t t o n i s very d i f f i c u l t ~ i t h ~ u t r e m ~ v i n g the solutes from the

t h i n layers and sub jec t ing them t o add i t i ona l a n a l y t i c a l techniques.

Th is review po in ts o u t t h a t n o t enough 1s knawn about, n o r a re appro-

p r t a t e methods ava i l ab le f o r , the t d e n t i f i c a t i o n o f h igh molecular weight ,

organic compounds t h a t may be t n water - compounds t h a t a re assumed t o

cause c o l o r and f i 1 t e r clogging. However, f o r many compounds, e s p e c i a l l y

those being manufactured and deposited i n water resources, a l e g i t i m a t e

t r a i n o f processes may be constructed which a l lows accurate i d e n t i f i c a -

t i o n and quant i t a t i on.

Page 49: S. D. C., - NCSU

Sectl'on T I

Experimental Design

The under ly ing goal o f t h i s work was t o develop and evaluate a

method designed t o ex t rac t , f r a c t i o n a t e and concentrate organic contami-

nants o f water us ing known compounds representa t ive o f those expected t o

be present i n the environment. Under i n v e s t i g a t i o n i s an XAD r e s i n pro-

cedure c o n s i s t i n g o f f i v e steps. F igure 2-1 i nd i ca tes the f l o w of the

organic so lu tes through t h i s procedure.

F ive quest ions requ i red i n v e s t i g a t i o n : (1 ) What i s t h e p o t e n t i a l o f

t h i s procedure f o r l a b and f i e l d a p p l i c a b i l i t y , f o r reduc t ion i n handl ing

o f l i q u i d s and so l i ds , and when there are l a r g e numbers of analyses?

(2) What i s the experimental assessment o f p rev ious l y publ ished methods

t h a t approximate t h i s new XAD procedure? (3) What i s the a b i l i t y o f t h i s

procedure t o e x t r a c t organic solutes, espec ia l l y w i t h respect t o the

vary ing nature of the so lu tes and the range o f poss ib le f l o w ra tes through

the r e s i n ? (4) What i s the a b i l i t y of a so lvent o r so lvent m ix tu re t o re -

move adsorbed organic so lu tes? (5 ) What i s the e f f e c t o f u l t r a - c o l d dry-

i n g techniques and concentrat ion by so lvent evaporat ion, and can losses

dur ing these steps be accounted f o r i n a systematic way?

The d e s c r i p t i o n of ma te r i a l s and equipment fo l lows, w i t h the descr ip-

t i o n of the experimental procedures concluding the sect ion.

Equipment and Ma te r ia l s

Macrore t icu la r Resin: XAD-2 res in , described i n sec t i on one, i s

shipped i n p l a s t i c g a l l o n b o t t l e s , and i s saturated w i t h water. New r e s i n

Page 50: S. D. C., - NCSU
Page 51: S. D. C., - NCSU

and used res in , kept separate, are s tored under water. As received the

r e s i n i s contaminated and must be cleaned before use. Both new and used

res ins are cleaned by a method cons is t ing o f a c i d and base washing,

fol lowed by a ser ies o f ex t rac t i ons (Soxhlet apparatus), us ing methanol,

acetone o r a c e t o n i t r i l e , and ether, i n t h a t order, and each fo r e i g h t

hours. The r e s i n i s then washed w i t h methanol under which i t i s s tored I n

ground glass stoppered f l a s k s , and r e f r i g e r a t e d . E lec t ron capture-GC has

detected some contaminants t h a t remain on used r e s i n i n s p i t e of the

c leaning procedure, and t h a t were ex t rac ted from the r e s i n w i t h the e ther

used i n the experiments. It i s unclear whether these cantaminants were

on the r e s i n o r i n the solvents. FID-GC d i d no t de tec t any contaminants

remaining on the r e s i n a f t e r c leaning us ing the above procedure. It i s

suggested t h a t any contaminants remaining on the r e s i n w i l l n o t i n t e r -

f e r e w i t h FID-GC charac ter iza t ion , bu t t h a t they can p o t e n t i a l l y a f fec t

the qua1 i t y o f GC/MS analys is . Since the contaminants on ly appear on used

res ins, new res ins may be a requirement f o r r o u t i n e uses. Add i t iona l work

may be requ i red t o produce a c leaning procedure capable o f removing a l l

contaminants from used res in , a1 though t h e procedure g iven above produces

a r e s i n adequate f o r most app l ica t ions . Only new res in , app rop r ia te l y

cleaned, was used i n the work described by t h i s repor t .

P r i o r t o use, the methanol, under which the r e s i n s are stored, must

be replaced by water. I t was discovered t h a t some e the r a l so remains on

the res in , and adding water q u i c k l y r e s u l t s i n the format ion o f a very

small e ther f r a c t i o n . The methanol and e ther are removed by washing 200

m l o f water through the r e s i n i n the experimental e x t r a c t i o n column w i t h

Page 52: S. D. C., - NCSU

g r a v i t y . The e the r f r a c t i o n t h a t c o l l e c t s a t t he top of the column i s

f lushed o f f by g e n t l y over f i l l i n g the column w i t h water. Experimental

e x t r a c t i o n columns, once f i l l e d w i t h r e s i n and washed w i t h water, can be

s to red i n a sealed cond i t i on f o r reasonable per iods o f t ime, (up t o a

week) and may be c a r r i e d i n t o the f i e l d f o r on-s ight ex t rac t i on . Columns

t o be s to red f o r more than a day should be r e f r i g e r a t e d t o reduce the

p o s s i b i l i t y o f contaminat ion by m ic rob ia l ac t ion . Appendix A prov ides a

comprehensive t o p i c a l b ib1 iography o f the 1 i t e r a t u r e on XAD res ins .

Solvents: Three solvents a re used i n the procedures described below;

water, d i e t h y l e t h e r and acetone. Water, used t o d i sso l ve the organic

solutes, i s Chapel H i l l tap water t r e a t e d by a c t i v a t e d carbon f i l t r a t i o n

fo l lowed by c a t i o n i c and an ion ic exchange columns. The t reatment i s a

commercial product c a l l e d U l t rapure Water Systems, mainta ined by Hydro

Serv ice & Supplies, Inc. , Durham, N.C. There a re no d iscernable ha logenab

ed organic compounds present i n the waters as determined by EC-GC.

S e n s i t i v i t y o f t h a t de tec t i on system i s 10 ppb f o r ch lo ro form and a 1 u l

water i n j e c t i o n . Solvent e x t r a c t i o n o f one l i t e r o f water w i t h 200 ml

ether , reduced t o 1 ml by KD, i nd i ca ted the presence o f no compounds.

Detect ion was by FID-GC, s e n s i t i v e t o 10 ng o f 3,4-dimethoxy acetophenone

w i t h a 1 u l i n j e c t i o n . This suggests t h a t no d iscernable organic compounds

were present a t concentrat ions above 10 ppb. The pH o f the water, de te r -

mined by Fisher , ACCumet Model 420 D i g i t a l pH/ion meter averaged 6.91 w i t h

a standard dev ia t i on of 0.12 over a 10 month per iod.

D ie thy l e ther , (C2H5)20, was used as a desorpt ion solvent . I t i s re -

l a t i v e l y i n s o l u b l e i n water, d issolves organic compounds w i t h a wide range

Page 53: S. D. C., - NCSU

of polar i t ies , i s readily volatilized, and does not freeze a t -70°C.

Absolute di ethyl ether (anhydrous) was purchased from ei ther Matheson

Coleman and Be1 1 Manufacturing Chemists or Ma1 linckrodt, Inc. The sol-

vent was red is t i l led in a glass apparatus a t a slow ra t e , and stored in

extracted tinned cans with teflon cap l iners . The d i s t i l l a t e tha t came

over from 34.6 -35.Z°C was retained. Purity was determined by FID-GC.

A t 80°C, w i t h an OW 101 column, only one peak i s recorded (74 sec.) . A t

225°C with a porapack QS column, four peaks are recorded a t 10,19,39 and

56 seconds. The major peak i s a t 39 seconds and contained onver ninety-

nine percent of the total peak area.

Pesticide quality acetone, (CH3COCH3) was used to dissolve and d i lu te

organic compounds prior to dissolution of them in purified water, and i s

used w i t h ether for desorption. The solvent was purchased from Matheson

in dark glass one gallon bottles w i t h teflon lined caps. Purity was

determined by FID-GC. A t 100°C, with an BV 101 column, one peak i s re-

corded a t f i f t y seconds,

Organic Solutes: Eleven organic compounds were used to evaluate

the extraction scheme. Two other organic compounds were used as internal

standards to determine efficiency of the freezing and concentrating step.

(1) Anthracene, C I 4 H l 0 , M.W. 178.23, a solid a t room temperature, was

purchased from Eastman Chemicals. Flat white crystals typically 2-1 5 mm

in diameter, the chemical was dissolved in ether and analyzed for purity

by FID-GC. On OV 101 a t 218°C one sharp peak was detected a t 345 seconds.

( 2 ) 3,4-Dlmethoxy-acetophenone , CIOH1 M.W. 180.20, a solid a t

room temperature, was purchased from Aldrich Chemical Co. Transparent

Page 54: S. D. C., - NCSU

prisms of varying s i z e s , the c ry s t a l s tended t o aggregate i n to opaque

chunks. Puri ty was determined by FID-GC. A t 180°C w i t h OV 101 one sharp

peak was detected a t 352 seconds.

(3 ) Benthiazole, C7H5NS, M.W. 135.19, a l iquid a t room temperature,

was purchased from Aldrich. The pur i ty of the c l e a r l iqu id , having a

f a i n t almond odor, was determined by FID-GC. A t 150°C w i t h an OV 101

column, one very sharp peak was detected a t 230 seconds.

( 4 ) m-Xylene, C8H10, M.W. 106.17, a l iquid a t room temperature, was

purchased from Aldrich. The s l i g h t l y amber l iquid was d i s t i l l e d , and then

stored i n a g lass bo t t l e . The f ract ion from 136.5 - 137°C was c l ea r and

produced a l i g h t mothball odor. Puri ty was determined by FID-GC. Program-

ing a t 4"/rnin from 45°C t o llO°C w i t h an OV 101 column, three peaks were

observed a t 403, 688 and 724 'seconds. The second peak accounted f o r near- -

ly a l l of the peak area . Chromatography of 300 ng of the d i s t i l l a t e , in

e t he r , w i t h a porapack QS column a t 225OC, produced a s ing le peak a t 358

seconds.

(5) o-Xylene, C8tt l0, M.W. 106.17, a l iquid a t room temperature, was

purchased from Eastman Chemicals. The c l ea r l iqu id , s tored in a brown glass

bo t t l e , produced a s ing le peak by FID-GC w i t h a porapack QS column a t 225OC.

Retention time was 272 seconds.

(6 ) p-Xylene, C8Hl0 , M.W. 106.17 a l iquid a t room temperature, was

purchased from Eastman Chemicals. The c l ea r l iqu id , s tored i n a brown

glass bo t t l e , produced a s ing le peak by FID-GC w i t h a porapack QS column

a t 225°C. Retention time was 241 seconds.

(7 ) Toluene, C7H8, M.S. 92.13, a l iqu id a t room temperature, was pur-

Page 55: S. D. C., - NCSU

chased from A l l i e d Chemicals. The c l e a r l i q u i d , s to red i n a brown b o t t l e ,

produced a s i n g l e sharp peak by FID-GC w i t h a Porapack Q column a t 215°C.

Retent ion t ime was 86 seconds.

(8) Ethy l Benzene, C8H10, M.W. 106.17, a l i q u i d a t room temperature,

was purchased from Aldr ich . The c l e a r l i q u i d , s to red i n a brown glass

b o t t l e , produced a s ing le sharp peak by FID-GC w i t h a Porapack Q column a t

215°C. Retent ion t ime was 160 seconds.

(9 ) Cumene, [i sopropyl benzene] CgH1 2, M. W. 120.20, was purchased

from Aldr ich . The c l e a r l i q u i d , s to red i n a brown glass b o t t l e , produced

a s ing le sharp peak by FID-GC w i t h a Porapack Q column a t 215°C. Reten-

t i o n t ime was 284 seconds. Cumene was used as an i n t e r n a l standard w i t h

the xylene isomers.

(10) 3-Methyl Butanoic Acid, [ i s o - v a l e r i c ac id] C5H1002, M.W. 102.13,

a l i q u i d having a pungent stench was purchased from Eastman. P u r i t y was

determined by FID-GC. A t 125°C w i t h a Porapack Q column, one sharp peak

was observed a t 400 seconds.

(11) n-Nonane CgHZ0, M.W. 128.26, a l i q u i d a t room temperature, was

obtained from Aldr ich . Used as an i n t e r n a l standard w i t h i s o v a l a r i c

acid, toluene, e t h y l benzene and cumene, the c l e a r l i q u i d was n o t red i s -

t i l l e d . A t 215"C, w i t h a porapack Q column, a sharp peak was observed a t

501 seconds. No i n t e r f e r i n g peaks were observed a t the r e t e n t i o n times

f o r the experimental compounds.

(1 2) n-Hexadecane, C16H34, M. W. 226.45, a 1 i q u i d a t room temperature,

was obtained from Aldr ich . Used as a so lu te and an i n t e r n a l standard w i t h

.; anthracene, 3,4-dimethoxy-acetophenone, and Benzothiazole, the c l e a r 1 i q u i d

Page 56: S. D. C., - NCSU

was n o t r e d i s t i l l e d . A t each of the fo l low?ng temperatures, o n l y one peak

was observed, and no in te r fe rence peaks were observed a t the e l u t i o n s t imes

o f the compounds under i nves t i ga t i on : 150°C-603 sec. , 180°C-451 sec. ,

21 0°C-207 sec ,

(13) n-Octadecane, C18H38, M.W. 254.5, a s o l i d a t room temperature,

was obtaf ned from A ld r i ch . Used as an i n t e r n a l standard w i t h hexadecane,

the opaque s o l i d was no t pu r i f i ed . A t 210°C w i t h a OV 101 column, a s i n g l e

peak was observed a t 620 seconds.

Gas Chromatography: Determinations of concentrat ions of organic

so lu tes i n both water and e the r were determined by flame i o n i z a t i o n gas

chromatography (FID-GC) . A Perk i n Elmer Model 900 gas chromatograph

coupled t o an I n f o t r o n i c s e l e c t r o n i c d i g i t a l i n t e g r a t o r Model 208 and a

Westronics s t r i p c h a r t recorder was used t o de tec t organics present a t

p a r t per mi 11 i o n concentrat ions w i t h one micro1 i t e r i n j e c t i o n s . Table 2-1

i nd i ca tes t y p i c a l GC parameters and columns used throughout the exper i -

mentat ion.

S e n s i t i v i t y o f GC was determined fo r each s o l u t e by ana lys is o f an

e the r d i l u t i on ser ies o f au thent ic standard compounds. Accuracy was

determined fo r each s o l u t e a t the same t ime by repeated i n j e c t i o n s of

known amounts. Peak he igh t and i n t e g r a t o r p r i n t o u t s were used f o r quan t i t a -

t i o n by comparison w i t h the peak heights and p r i n t o u t s o f standard d i l u t i o n s

analysed a t the same time. This method, al though more t ime consuming, was

more r e l i a b l e than i f a c a l i b r a t i o n curve was used. This i s j u s t i f i e d be-

cause no one compound received enough a t t e n t i o n t o b u i l d an excep t i ona l l y

s tab le c a l i b r a t i o n curve, a t best, an even more t ime consuming procedure.

Page 57: S. D. C., - NCSU

Table 2-1

GAS CHROMATOGRAPH1 C PA

Gas Chromatograph Column Temperature

In jector Temperature Mani f 01 d Temperature Detector Carrter Gas Carrier Flow Rate Hydrogen Pressure Air Pressure Operation Mode

Columns

Sol id Support Stat ionary Phase Column Ma t e r i a1 : Column Plugs Length Outside Diameter Inside Diameter Theoretical Pla tes ( N )

Benzothiazole dimethoxyacetophenone A n t hracene

I I Sol id Support Stat ionary Phase Column Material Column Plugs Length Outs i de D i ame t e r Inside Diameter Theoretical Pla tes (N)

iso-valer ic acid

I11 Sol id Support Stat ionary Phase Column Material Column Plugs Length Outside Diameter Inside Diameter Theoretical Pla tes (N)

m-Xylene

Perkin Elmer Model 900 Operated isothermally a t tempera- tu res from 150' t o 225T Ten degrees g rea te r than column Twenty degrees g rea te r than column Flame ionization Nitrogen (Zero Grade Gas) 45 ml/mi n 22 PSIG 30 PSIG Single Column (uncompensated

Chromasorb W , 60-80 mesh 10% ov-101 S ta in less Steel Si 1 ani zed G I a s s Wool 1 .8 m 3.17 mm 2.0 mm

1617 1129 3481

Porapack Q, 50-80 mesh None S ta in less Steel Si 1 ani zed Glass Wool 1.8 m 3.17 mm 2.0 mm

Porapack QS, 50-80 mesh None S ta in less Steel Silanized Glass Wool 1.8 m 3.17 mm 2.0 mm

455

Page 58: S. D. C., - NCSU

Although r e t e n t i o n time, i n seconds, were der ived from the i n t e g r a t o r p r i n t -

out , q u a n t i t a t i o n was done by peak he igh t measurements. The peak he igh ts

were se lec ted over the i n t e g r a t o r on the bas i s o f dev ia t i on o f q u a n t i t a t i o n .

Using reference s o l u t i o n of xylene, standard dev ia t i on o f peak he igh ts was

determined t o be approximately f i v e percent o f a h a l f scale d e f l e c t i o n .

The var iance increased f o r smal ler de f l ec t i ons , so a t tenua t i on was ad jus t -

ed t o p rov ide l a r g e scale de f l ec t i ons .

Standard dev ia t i on of the i n t e g r a t o r p r i n t o u t was greater than t e n

percent f o r t he maximum s e n s i t i v i t y requ i red by the experimentat ion,

Retent ion t imes and detec tor response va r ied s l i g h t l y from day t o

day, b u t was m i t i g a t e d by the q u a n t i t a t i o n technique t h a t depended upon

standard d i l u t i o n ser ies i n j e c t i o n s i n teg ra ted w i t h experimental i n j e c t i o n s .

S e n s i t i v i t y o f the GC d i d n o t appear t o change over t h e pe r iod o f expe r i -

mentat ion w l t h the except ion of when the gas t r a i n was open f o r a p e r i o d

o f approximately a month. The detec tor was cleaned, and s e n s i t i v i t y r e -

turned,

The g lass i n j e c t o r l i n e r s were a c i d cleaned when they appeared d i r t y

upon v i sua l insepct ion. Leaks and contaminat ion of the column d i d n o t

appear t o occur, and were c o n t r o l l e d by c a r e f u l assembly o f the gas t r a i n

and adequate baking o u t of the columns before use. Columns t h a t remained

i n the GC f o r long per iods o f t ime were kept a t temperatures above t h a t

a t which they were operated, b u t below t h e i r maximum recommended l e v e l s .

Septums were replaced f requent ly , u s u a l l y upon gross l o s s o f s e n s i t i v i t y .

With the except ion o f when the detectors were cleaned, t h i s took car6 o f

any losses i n s e n s i t i v i t y . Septums were ex t rac ted w i t h acetone p r i o r t o

use, a p r a c t i c e t h a t began immediately a f t e r gross i n te r fe rence was caused

Page 59: S. D. C., - NCSU

by an apparently clean and new septum. No problems were noticed af te r

th i s practice began. l'njection of pure ether or water was used to indi-

cate lack of column of septa contamination prior to quantitation of experi-

each sample

standard di

the samples

mental aliquots.

Approximately 1.0 micro1 i t e r of each sample, measured and recorded

accurately to 0.05 ul was injected onto the column. To insure accuracy,

was injected a t least twice. Typically, injections of the

lution that would most nearly approximate the peak heights of

were made af te r every three or four sample injections.

Equipment: The cold sink required for drying of the solvent prior

concentration i s an upright Kelvanator Series 100 Ultracold Freezer. The

temperature of the freezer i s maintained a t -70°C. The freezer i s opened

two to s ix times a day. Such frequent use allows ice formation on the

shelves and doors. A1 l flasks or containers placed into the cold sink

were covered with aluminum fo i l to prevent contamination.

A steam bath i s used t o evaporate the solvent during the concentration

step. A Fisher Thermix hot plate provided heat and a support for an eigh-

teen cm. diameter by 12 cm. deep copper steambath, w i t h concentric ring

cover. Heat to the evaporator was controlled by use of the concentric ring

cover. The hot plate was placed on maximum temperature and non re-adjusted.

Desorption of the solute occurs while the resin i s shaken w i t h ether

within the extraction glass column. The column, described below, i s shaken

by a Burrel Wrist-Action Shaker. This apparatus can be adjusted to shake

twelve tubes through a l l degrees from vert ic le t o horizontal. I t was used

in the horizontal position only.

Page 60: S. D. C., - NCSU

Glassware: Various pieces o f standard l abo ra to ry glassware were used.

These vessels a re i nd i ca ted i n the experimental methods sect ion. One i t em

was designed and manufactured s p e c i f i c a l l y f o r the r e s i n work. The r e s i n

column has been designated the Schnare Tube, and was designed i n our

labora tory . Th is tube i s g lass and s t a i n l e s s s tee l mesh as i n d i c a t e d i n

f i g u r e 2-2. O f p a r t i c u l a r s ign i f i cance are the two capping arrangements.

As i n d i c a t e d i n the f igure , the tube can be capped w i t h pe r fo ra ted con-

nectors c o n s i s t i n g of t e f l o n washers and a per forated cap which seals the

washer onto the tube and around the connect ing tubing. The tube can a l s o

be closed completely w i t h so l i d caps and t e f l o n l i n e r s . The t e s t tubes

and capping apparatus are French products f rom Sov i re l . The s t a i n l e s s s t e e l

screen i s approximately 100 mesh. The Schnare tubes were constructed by

U n i v e r s i t y Glassware, Carrboro, North Carol ina.

While t h i s device prov ides a convenient method f o r doing the adsorp-

t i o n and e l u t i o n of organics from XAD res ins , many o ther column arrange-

ments are poss ib le t h a t should y i e l d comparable r e s u l t s . The most s i g n i f i -

cant cons idera t ion i s t o p rov ide adequate mix ing of t he r e s i n w i t h the

e l u t i n g so lvent t o achieve maximum removal of adsorbed organics from the

res in .

A l l glassware used was scrubbed w i t h h o t water and Alconox detergent,

r i nsed w i t h tap water, acetone, then carbon f i l t e r e d deionized water. A f t e r

d ra in ing , the glassware i s l e f t f o r a t l e a s t e i g h t hours i n an oven main-

ta ined a t 20Q°C. A f te r dry ing, vessels and tubes are capped w i t h aluminum

f o i l u n t i l used.

Page 61: S. D. C., - NCSU

Figure 2-2

THE SCFF$ARJ3 TUBE

Page 62: S. D. C., - NCSU

Experimental Procedures

S i x groups o f experiments were conducted i n l i n e w i t h t h e f i v e ques-

t i o n s p rev ious l y described: (1) t e s t i n g o f the XAD adsorp t ion method as

repo r ted by Junk e t a l . (1974), (2) t e s t i n g of the Caro l ina method as

developed by the authors, (3 ) de termina t ion of the load ing c a p a c i t i e s o f

the r e s i n , (4 ) de termina t ion o f t he i n f l u e n c e o f p o l a r i t y on recovery

e f f i c i e n c y , (5) determinat ion o f t he i n f l uence o f molecular c o n f i g u r a t i o n

on recovery e f f i c iency , and (6) de termina t ion of t he i n f l u e n c e o f so l ven t

s e l e c t i o n and con tac t t ime on desorpt ion e f f i c i e n c y .

Iowa Method: The Iowa method was used as repor ted by Junk -- e t a1 . (1974) w i t h one mod i f i ca t i on . An i n t e r n a l standard was used t o determine

e f f i c i ency o f the f r e e z i n g and concent ra t ion steps. Essent ia l l y , the

method fo l lows t h e f low diagram i n F igure 2-1 w i t h the except ion t h a t de-

s o r p t i o n i s n o t a ided by shaking o f the res in . F igure 2-3 i s a sca le draw-

i n g of the Junk apparatus. I t was cons t ruc ted i n our l a b o r a t o r y accord-

i n g t o 1 i t e r a t u r e s p e c i f i c a t i o n s .

The referenced a n a l y t i c a l procedure lacks some important comments

about anomolies o f the method. To insure t h a t t he re i s no confusion about

what was done w h i l e us ing the Iowa method, the fo l l ow ing notes p rov ide

clarification on the nature of the anomolies, and the steps taken t o over-

come them,

Column preparat ion: During column preparat ion, a methanol sa tu ra ted

column o f r e s i n i s doused w i t h water. The heat o f s o l u t i o n o f methanol i n

water i s s u f f i c i e n t l y h igh t o cause gas bubble formation i n and around the

beads o f the r e s i n . These evacuated po r t i ons o f t he column remain f r e e

Page 63: S. D. C., - NCSU

Figure 2-3

Scale drawing of Junk apparatus ( 9 4 ) . A - pure inert gas pressure source; B - cap; C - 2 l i t e r reservoir; D - 24/40; E - silanized glass plugs; F - 0.6 cm I . D . x 10 cm column of XAD-2 20-60 mesh; G - PTFE stopcock.

Page 64: S. D. C., - NCSU

of water no mat te r what amount i s f lushed downward through the column.

This i s an undesi rable cond i t i on s ince n o t a l l t he r e s i n i s being used, and

therefore the capac i ty of the r e s i n bed i s lowered. Fur ther , there may be

channelization of t he f low of l i q u i d through the column which m igh t qu ick-

l y m i t l g a t e the u t i l i t y of the column as the adsorpt ive sur face area o f t he

channel may be r a p i d l y f i l l e d . Two procedures can be used t o i nsu re a

sa tura ted column f ree o f gas fil l e d voids. The column may be tapped w i t h

a rubber t i p p e d s t i r i n g rod. This w i l l j a r gas bubbles f r e e from t h e i r

p o s i t i o n as the r e s i n beads rearrange themselves. This i s t ime consuming.

A second method i s quicker , b u t requ i res more e labora te preparat ion. A

back f lush ing o r upward f low of water through the column q u i c k l y f r e e s

trapped bubbles, The r a p i d reverse f low tends t o send the e n t i r e column

o f r e s i n o u t the top of the glassware, so a pumping motion impar t i ng pulses

of reversed f low water i s suggested, al though a very gen t l e reverse f l o w

f o r a longer t ime works as w e l l . Th is takes about one and one h a l f minutes

A f t e r the column i s completely saturated w i t h water, th ree 20 m l p o r t i o n s

o f pure water a re appl ied. A very uniform column, w i t h l a r g e beads on the

bottom i s the r e s u l t o f t h i s change i n procedure.

Sample preparat ion: The Iowa method suggests adding organic so lu tes

d i l u t e d w i t h e t h e r o r methanol. Adding e the r t o a r e s e r v o i r o f water

tends t o t rans fe r the organic so lu tes i n the water i n t o the e the r l a y e r

t h a t i s f l o a t i n g around on the top of the water. When attempted, i t was

found t h a t t he e ther f r a c t i o n never d i d reach the column, b u t was he ld up

a t the c o n s t r i c t i o n s o f the glassware. When the resevo i r was washed w i t h

water, the e the r f r a c t i o n r e f l o a t e d and again s e t t l e d on the w a l l s o f t he

Page 65: S. D. C., - NCSU

glassware, Acetone was used t o aid dilution of the organic solutes in

water.

With simple injection of the solute into a calm reservoir, mixing

takes place very slowly. When anthracene was injected into the reservoir,

i t immediately came out of solution and gradually f e l l o u t onto the reser-

voir walls. Such an experimental procedure does not simulate natural

Waters containing dissolved organic compounds. Because of the construc-

tion of the apparatus, mixing of the reservoir could n o t be done.

Column Extraction: Extraction of the water was not different from

that described by Junk. However, washing the walls of the reservoir with

20 ml of pure water three times can only be done effectively i f the re-

servoir i s removed from the column and the water agitated within the

vessel. Removal of the reservoir a1 lows some of the organic material tha t

collected on the constrictions around the joint to drip off or evaporate.

When the reservoir i s l e f t in place, not even three washings will adequate-

ly wash the ent i re reservoir surface area.

Elution: Washing of the reservoir walls with two ten ml portions of

ether was found to be inadequate. Large crystals of anthracene were l e f t

on the walls of the reservoir a f t e r t h i s step. The assumption tha t ether

poured into a drained, b u t water saturated, column of XAD-2 resin will mix

well i s also invalid. A t no point did the ether flow past the f i r s t glass

wool plug, Furthermore, no more than two or three drops of the ether ever

passed through the column in less than ten minutes with the stopcock fu l ly

open. A nitrogen head had to be applied t o push the ether t h r o u g h the

column. Rarely d i d more than 10 ml of ether ever get collected, wlth or

without a nltrogen head.

Page 66: S. D. C., - NCSU

Carol i n a Method

Column Preparat ion: The apparatus used f o r removing t r a c e organi cs

from water i s shown i n f i gu re 2-1 and 2-2. With the siphon and top tub-

i n g adaptor detached, the lower tub ing adaptor i n p lace and c losed o f f ,

p u r i f i e d water s u f f i c i e n t t o cover the mesh i s al lowed i n t o the column.

If the water does n o t move through the mesh, ten t o f i f t e e n pumping

squeezes on the lower tub ing w i l l f o r ce trapped a i r o u t o f the lower por-

t i o n of the rese rvo i r . P u r i f i e d XAD r e s i n i n a methanol s l u r r y i s added

u n t i l an 80 mrn column bed i s formed. An etched r i n g on the column i n d i c a t -

ed the proper he igh t . Add i t i on o f the r e s i n was f a c i l i t a t e d by use o f a

10 m l p i p e t w i t h t i p removed. Methanol i s al lowed t o d r a i n from the tube

u n t i l the l i q u i d reached the top o f the r e s i n bed. The r e s e r v o i r s iphon

(F igure 2-1 ) i s at tached l oose ly and p u r i f i e d water from the r e s e r v o i r i s

a l lowed t o fill the tube. The r e s e r v o i r siphon i s then f i r m l y at tached

and approximately 200 ml o f water i s al lowed t o f l ow through the column.

A t t h i s p o i n t two phenomena occur: (1 ) gas bubbles form i n the column,

and ( 2 ) an e t h e r bubble forms a t the top of the tube. The r e s e r v o i r s iphon

i s disconnected. Water i s al lowed t o g e n t l y en te r the tube from the

bottom thereby causing a backf lushing, c a r r y i n g away the e the r and a few

f l o a t i n g beads. With the cap s t i l l d isconnected,. the,resin bed i s g e n t l y

d i s tu rbed by a s w i r l i n g motion o f a s t i f f s t a i n l e s s s t e e l wi re. The mot ion

i s cont inued u n t i l the gas bubbles trapped i n the r e s i n column a re removed

and the r e s i n bed appears uniform. S u f f i c i e n t water i s in t roduced i n t o

the tube so as t o f i l l i t. The siphon i s reconnected and an a d d i t i o n a l

f i f t y m l water i s al lowed t o f low through the column. A t t h i s p o i n t t h e

Page 67: S. D. C., - NCSU

column may be stored fo r a day or tws with both ends sealed by rubber t u b -

ing clamps. This preparative operation requires appr~ximately f ive minutes

per tube.

Sample preparation: The reservoir i s f i l l e d with suff ic ient purified

water to allow one l i t e r of water per extraction tube to be used, plus an

extra 500 ml of water to insure good siphoning. Acetone i s used to d i lu te

the organic solute into the water. A calibrated volume of the dissolved

organic solute i s injected into the reservoir. A magnetic s t i r r e r i s used

and adjusted throughout the extraction procedure to insure good mixing in

the reservoir, The reservoir i s allowed to mix for approximately f ive

minutes t o insure proper dissolution. In th i s study, the amounts of organic

compounds added varied from 50 to 300 ug/l i t e r (ppb). Additional pretreat-

ment of the water such as pH adjustment, or addition of s a l t , i s done

immediately a f t e r injection of the organic solute. In the case of the

organic acid tested during this work, approximately 10 rnl of concentrated

HC1 was added to b r i n g the pH to about two as determined by paper pH tape.

Column Extraction: Both pinch clamps are removed to allow gravity

flow of the prepared water through the column and into a graduated flask

or beaker. Flow rates vary s l ight ly as the level of the reservoir decreases,

and average one hundred rnl per minute. Slower flow rates can be maintain-

ed with the use of adjustable clamps a t the lower tubing adapter. After

one l i t e r of the water i s allowed to flow through the column, the flow i s

stopped and the column i s a1 lowed to drain.

Elution and Internal Standardization: The tube i s removed from the

siphon equipment, and both caps are removed while insuring tha t the tube

Page 68: S. D. C., - NCSU

i s kept up r igh t . Excess water i s a l lowed t o f l ow i n t o the measuring

beaker i f a second e x t r a c t i o n i s t o be done. The r e s l n remains wetted.

A s o l i d cap and l i n e r i s p laced on the bottom o f the tube. A known amount

of an i n t e r n a l standard, d isso lved i n a known amount o f ether , i s added

as the i n i t i a l a l i q u o t of so lvent begins t o saturated the r e s i n . The r e s i n

bed w i l l con ta in many a i r pockets, some o f which are removed by gen t l e

s w i r l i n g w i t h a s t a i n l e s s s tee l w i re . The top cap and l i n e r i s t igh tened

down and the tube i s inver ted . The bottom cap (now on top) i s removed

and add i t i ona l e the r s u f f i c i e n t t o fill the tube i s added. The cap i s re -

placed and the tube i s shaken w i t h s u f f i c i e n t f o rce t o d is lodge t h e r e s i n

bed, so as t o f a c i l i t a t e good mix ing. The tube i s attached h o r i z o n t a l l y

t o a w r i s t a c t i o n shaker and al lowed t o shake f o r var ious chosen e l u t i o n

t imes. A f t e r shaking, the tube i s removed from the shaker and tapped

g e n t l y t o re fo rm the r e s i n bed. The tube i s i nve r ted and t h e bottom cap

removed. The tube i s r i g h t e d and the so lvent i s poured i n t o a small f l a s k

o f twenty t o f i f t y m l . capaci ty . The top cap i s removed and the remaining

so lvent f lows i n t o the small f l a s k . An a d d i t i o n a l t e n m l o f c lean e t h e r

i s poured i n t o the tube and al lowed t o d r a i n through the column i n t o t h e

c o l l e c t i o n f l a s k . I f a second e l u t i o n i s t o be done, the tube i s r e f i l l e d

w i t h so lvent and e lu ted again as described above.

Drying: The f l a s k i s covered w i t h aluminum f o i l and p laced i n t o an

u l t r a - c o l d f reezer (-70°C) f o r f i f t e e n minutes. An a1 i q u o t o f p u r i f i e d

e ther i s a l so p laced i n t o t h e f reezer . Upon removal, the d r i e d e l u t a n t

i s q u i c k l y poured i n t o a Kudurna-Danish evaporator through a s i l an i zed

glass wool p lug placed i n a g lass funnel. The i c e l e f t behind i s washed

w i t h a two t o th ree m l a l i q u o t o f the equa l l y c h i l l e d ether . Th i s i s re -

Page 69: S. D. C., - NCSU

frozen, then i s added t o the I n i t i a l e l u t n n t . T y p i c a l l y , two t o f i v e ml

o f water i s removed by t h i s procedure.

Concentrat ion: The d r i e d e the r i s t r ans fe red t o a Kuderna-Danish

evaporator and i s then reduced i n volume t o one ml by g e n t l e heat ing

over a steam bath. Evaporat ion r a t e s are n o t c r i t i c a l because of t he i n -

t e r n a l standard, b u t the slower the evaporat ion r a t e , the g rea te r t h e

e f f i c i e n c y o f the concent ra t ion step. T y p i c a l l y , t he b o i l i n g of t he e t h e r

i s aided by a p o r c e l a i n b o i l i n g ch ip, b u t even t h a t a i d does n o t e l i m i n a t e

r e l a t i v e l y r a p i d bubbl ing when volumes are below th ree m l . The end p o i n t

o f t he concent ra t ion i s n o t e a s i l y observed due t o t h i s phenomenon. The

evaporator i s removed from t h e heat source when the re i s d e f i n i t e l y l e s s

than one m l l e f t i n the KD th imble. Rapid c o o l i n g o f t he evaporator occurs

upon removal o f t h e heat source and condensing e t h e r washes t h e w a l l s of

t he KD. The th imb le i s q u i c k l y removed from the evaporator when i t i s

f i l l e d t o one ml. A ground g lass stopper i s used t o cap the th imb le un-

t i l measurement o f t he s o l u t e by GLC. Chromatographic ana l ys i s i s u s u a l l y

done no l a t e r than one day a f t e r concentrat ion. F i n a l one ml a l i q u o t s a re

r e f r i g e r a t e d if an i n t e r v a l of more than a few minutes i s expected t o

elapse before c h a r a c t e r i z a t i o n by GLC.

Determinat ion of load ing capac i ty o f XAD r e s i n : Prepara t ion o f

the column and so lu tes i s done e x a c t l y as descr ibed i n the Caro l ina Method

above. Rather than determine the amount o f mass adsorbed by the column,

the amount of s o l u t e n o t adsorbed by t h e column was measured. A one m l

sample was drawn a t f i v e m l i n t e r v a l s . From t h a t column e f f l u e n t sample,

a one u l a l i q u o t was i n j e c t e d i n t o t h e GLC and the r e s u l t a n t peak r e f l e c t -

ed the concent ra t ion o f s o l u t e i n the column e f f l u e n t . Minimum concentra-

Page 70: S. D. C., - NCSU

tions quantifiable were f ive percent of the in i t i a l concentration of the

prepared solute (prior to extraction by the resin column).

Anthracene was not tested since i t i s so insoluble i n water tha t a

saturated solution i s marginal 1y quantifiable without further concentra-

t i on, Otherwise, typical concentrations of the prepared waters were 100

mg per 1 i t e r (ppm).

Page 71: S. D. C., - NCSU

Sect4 on Three

Results and Discussion

As the protocol i n Section two indicates, s ix evaluation actions will

describe the merits and weaknesses of the experimental work conducted.

Some of these evaluations such as ab i l i t y to adsorb, or ab i l i t y to desorb,

can be deal t with in d i s t inc t sections. Other evaluations must be carried

through each part of th i s section. For that reason, the resul ts of the

work undertaken by the authors will be compared with that of Junk e t a l .

(l974), Webb (l975), Musty and Nickless (l974), and Goldberg-et a l . (1973).

Of primary importance are three experimental phases of the work w i t h

the Carolina Method: (1 ) extraction of solutes from water, (2) desorption

of solutes from the resin, and ( 3 ) concentration of the solutes by solvent

evapora t i on.

(1) Extraction of solutes from water: The a b i l i t y of the XAD-2 macro-

re t icu lar resin to extract non-volati l e organic solutes from water has been

reported t o range from 100% t o less than 4% for widely differing compounds

(Junk -- e t a1 . , 1974; Webb, 1975). Junk e t a1 . (3974) has concluded: "These

porous polymer resins are completely effective i n extracing neutral organic

solutes from water. Many dissociated solutes are also extracted provided

the acidi ty of the water sample i s adjusted prior to the..extraction. No

significant improvements or detrimental effects can be defini te ly a t t r ibut -

ed to salting-out, flowrate variations, pore diameter, bead s ize, resin

bed volume, and mixtures vs. s i ngl e component contaminationsN.

To the contrary, Harvey (1973) reports that there i s an optimal bed

Page 72: S. D. C., - NCSU

dimension, and that flow rates are significant. Webb (1975) also reports

that flow rate significantly influences extraction efficiency; and

fur ther , that the resin adsorbs the polar and aromatic portions of fuel

o i l , b u t n o t the al iphat ic hydrocarbons. Musty and Nickless (1974) also

report tha t flow rate exerts a significant influence on extraction e f f i -

ciency.

The significance of the bed dimension was n o t tested by th i s research.

The recommendation of Harvey (1973) for a column depth seven times the

diameter of the column was followed throughout. For the Schnare Tube,

the resin column i s 1.15 cm x 8.0 cm.

The capacity of the XAD-2 resin t o adsorb four non-volati

solutes i s indicated in Table 3-1. A 95% adsorption level (5%

occurs a t loading rates we1 1 in excess of that concentration n

l e organic

leakage)

orma 1 ly

found in natural or polluted water. In a l l cases, i t was possible t o p u t

a t l eas t three milligrams of solute onto one gram of resin with no more than

5% leakage. These capacities compare favorably with other reported data.

Rohm and Haas loaded phenol a t 73 mg/g resin w i t h a very low leak ra te ,

and Musty and Nickless (1974) loaded lindane a t 20 mglg resin with an

apparent s ix percent leak rate. Figure 3-1 indicates the nature of leak-

age through a column as loading increases for compounds of varying polarity.

A t s imilar flow rates , the resin adsorbs greater amounts of non-polar

solutes than polar or dissociated solutes, even when pH i s adjusted to

favorable condi t ions,

The ef fec t of two flow rates on adsorptive capacity was determined

with iso-valeric acid. Figure 3-1 indicates that a flow rate of 10 ml/rnin

Page 73: S. D. C., - NCSU

Table 3-1

CAPACITY OF THE XAD-2 RESEN TO RETArN ORGANIC SOLUTES ON AN 80 X 11.5 mm BED

mg s o l u t e adsorbed p e r gram r e s i n , w i t h column leakage of:

Col umn Compound 5% 10% 20% 40% F l ow Rate

m-Xyl ene

Benzothi azo l e 29.5 36.6 43.3 59.8 100

3,4-Dimethoxy 68.6 7.5 10. - 100 acetophenone

f soval e r i c Acid* 2.19 3.4 4.7 - 100 8.4 12. 15. - 10

* pH o f wate r was ad jus ted t o approx imate ly pH = 2 p r i o r t o c o l urnn e x t r a c t i on

Page 74: S. D. C., - NCSU

Flow Rate

I Isovalaric Acid (pH 7) 10 rnl/min 11 Isovalaric Acid (pH 2) 100 ml/min I11 3,4-dimethoxy

acetophenone (pH 7) 100 ml/min

IV Isovalaric Acid (pH 2) 10 ml/min V Benzothiazole (pH 7) 100 rnl/min VI m-Xylene (pH 7) 100 ml/min

mg solute/gram resin

Figure 3 d

LEAKAGE VS. LOADING FOR AN 80 x 11.5 mm XAD-2 RESIN COLUMN

Page 75: S. D. C., - NCSU

w aJ L ce a E U

3 s a,

.r- U .r 'I- '4- aJ

E: 0 -r C, 0 (d L C, X a,

rn aJ V) m a, L U s -r

s st'-

E --. P

E 0 @.I

I 0 - C, 3 0 n m '4- 0

aJ C, m L

3 0 7

cc

5 L '4-

V) aJ C, 3 P 0 V)

% 0

h U s aJ .r- 0

%--

'I- '4- a,

s 0 -P- c, 3 2 L 0 V) al PI

'4- 0

C 0 .I-- C, U 6 3 '4-

m V) .r

>, F

m 5 C m 6, E: a L (d Q Q a aJ c LP

I a L 0 V) aJ PI

1, P aJ > -r C, U aJ 'I- rc aJ C, 0 s aJ L m 2, w r C,

C, a r C,

V) aJ C, m L

3 0

L

i5 7

t' m 2, 7

C, r m T-

C,

0 V)

n L O V) PI m 0 C,

C, s aJ .r U "7

'4- '4- 3 V)

aJ a 0 C,

rn % W Q) Q a m 2, C, .I?- U m Q m U

a, c I-

V) aJ C, ce L

B P

'I-

'4- 0

1, C, a, v- L m > m C, m M b a, C, m 3

Page 76: S. D. C., - NCSU

Table 3-2

THE EFFECT OF FLOW' RATE ON RECOVERY EFFICIENCY

% Recovered -% Rec~ve red Compound @ 10 ml/min @ 100 m l / m i n

Neutra 1 Compounds

m-Xy? ene 19.4 40.8 i ncrease

o-Xyl ene 26.3 27.8

p- Xyl ene

To1 uene

E t h y l Benzene 63.8

Cumene 59.9

39.8 inc rease

81.9 increase

84.6 i ncrease

85.3 i ncrease

Po la r Compounds

Benzothi azole 87.5

3,4-Dimethoxy acetophenone 85.3

95.1 inc rease

62.6 decrease

~ s o v a l e r l c Ac id 79.0 42.3 decrease

Page 77: S. D. C., - NCSU

applications i t i s c r i t i ca l that a large enough resin bed be used so column

capacity i s not exceeded.

( 2 ) Desorption of solutes from the resin: Since most compounds appear

ed, and an internal standard has Been included that accounts

for losses of solute mass during the concentration step, the recoveries that

a re observed can be presumed t o be direct ly ref lect ive of desorption e f f i -

ciency, when a1 1 other con i tions are favorable. Four factors were i n -

vestigated to determine the degree to which they affected desorption

efficiency, solvent selection, polarity of the solutes, a l iphat ic and

aromatic nature of the solutes, and batch or column desorption technique.

There i s some question as to the u t i l i t y of flow through column de-

sorption, versus batch desorption, in l igh t of the wetting characteristics

of XAD resins. Once a column i s water saturated, ether will not quickly

permeate the top of the column. In the procedure developed by Junk e t a l ,

(1974) a plug of glass wool covers the column. In our use of his method,

ether would not quickly saturate the plug, and was less able t o enter the

resin column. The ten minute period during which ether was to elute the

adsorbed organics i s in actuality only about one minute, the period of time

i t takes to force the ether through the column. A further problem in

column desorption i s the characteristic a i r pocketing tha t occurs when

immiscible, or miscible solvents are replaced by one another as column

elution i s attempted. Such pocketing indicates that there are numerous

areas of resin surface tha t are not brought into contact with the eluting

solvent. Finally, glass wool plugs apparently adsorb some of the solutes.

tdebb C1975) reports up to 15% of the organtc compounds extracted by solvent

methods adhere to a glass wool plug used as a drying agent. Musty and

Page 78: S. D. C., - NCSU

Nickless (1974) r e p o r t up t o 32% o f i n s e c t i c i d e s s tud ied adhere t o g lass

and g lass wool Before they had an oppor tun i t y t o reach an XAD column. For

t h a t reason, g lass wool was abandoned i n the Carol ina Method. Fur ther ,

w r i s t a c t i o n shaking o f the column w h i l e covered by e l u t i n g so l ven t breaks

up the column and a1 lows we t t i ng of the e n t i r e r e s i n surface. Table 3-3

i nd i ca tes an improvement i n recover ies w i t h the batch-type e l u t i o n when

compared t o the column type e l u t i o n . For m-xylene t h i s accounted f o r an

increase i n recovery from 34.8% recovered by the Junk method t o 46.4% re-

covered by the Carol ina Method. An increase was a l so noted w i t h benzothia-

zole, b u t was not marked, as i n i t i a l recover ies were very high.

A second important c o n d i t i o n f o r s i g n i f i c a n t desorpt ion o f organic

so lu tes i s so l ven t se lec t ion . This i s most s i g n i f i c a n t f o r those so lu tes

t h a t p a r t i t i o n on t o XAD-2 from an organic solvent . Such so lu tes appear t o

be s t r a i g h t cha in hydrocarbons and small neu t ra l aromatic compounds. Table

3-4 i nd i ca tes t h a t normal s t ra igh t - cha in compounds adsorb very w e l l t o XAD-

2 res ins , and do not desorb w e l l a t a l l . S i m i l a r l y , t h e d l - s u b s t i t u t e d

benzenes, meta-,ortho- and para-xylene, appear t o desorb poo r l y f rom the

res in , This does no t seem t o be a func t i on o f p o l a r i t y as e t h y l benzene,

w i t h a d i p o l e moment very s i m i l a r t o o-xylene, i s recovered i n much l a r g e r

amounts. The a f f i n i t y o f t he r e s i n i s f u r t h e r described as s t rong fo r

small neu t ra l aromatic compounds and neu t ra l a1 i p h a t i c compounds as i ndi - cated i n Table 3-2. These f a c t o r s make the amount of any spec i f i c so lu te

t h a t w i l l be recovered by XAD-2 d i f f i c u l t t o p r e d i c t on the bas is of known

chemical c h a r a c t e r i s t i c s . To be ab le t o q u a n t i t a t e organic p o l l u t a n t s i t

i s necessary t o have recovery in format ion f o r each spec l f i c p o l l u t a n t t h a t

must be quan t i f i ed .

Page 79: S. D. C., - NCSU

Table 3-3

RECOVERY EFFICIENCY WITH RESPECT TO ELUTION TIME AND MODE OF CONTACT

Mode of Compound Contact Time Contact Method % Recovered

m-Xyl ene 10 min quiescent Junk* 34.8 6 0 shaken Carol i na 46.4 6 0 mag s t i r batch 86.8

Benzothiazol e 10 qu i escent Junk 90.1 6 0 shaken Carol i n a 91.9 9 0 shaken Carol i na 95.1

* Junk r e f e r s t o t he Junk -- e t a l . (1974) method as used by the authors, and does no t r e f e r t o recovery e f f i c i e n c y repor ted by Junk

Page 80: S. D. C., - NCSU

Table 3-4

RECOVERY EFFICIENCY WITH RESPECT TO AROMATIC VERSUS ALIPHATIC SOLUTES

% Recovered D ipo le Compound @ 10 ml/mln Moment Conf igura t ion

n-Hexadecane 12.0* - normal s t r a i g h t - c h a i n

m-Xy4ene 19.4 - d i - subs t i t u t e d (meta)

o- Xyl ene 26.3 0.62 d i - subs t i t u t ed (o r tho )

p- Xyl ene 27.4 0.0 d i - s u b s t i t u t e d (para)

To1 uene 56.5 0.36 mono-substi t u t e d (CH3)

E thy l Benzene 63.8 0.59 mono-su bs t i t u t e d (C2H5)

Cumene 60.3 - mono-substi t u t e d ( i sop ropy l )

* Less than 2% of the n-Hexadecane i n i ti a1 l y present i n t he sample water was found i n the column e f f l u e n t

Page 81: S. D. C., - NCSU

Proper choice of solvent may mitigate th is very strong at t ract ion.

Table 3-5 shows the e f fec t of varytng the eluting solvent. Recovery of mm

xylene improved from 46.4% t o 72.3% by eluting with 50%aacetone/- 50% ether

rather than pure ether. I t was noted that wetting of the resin occurs more

quickly with the mixed solvents. However, when applied t o the Junk -- e t a l .

(1974) procedure, a i r pockets remained, A further complication with sol-

vents that are miscible in water, such as methanol, Is that they are d i f f i -

c u l t , t o dry, a prerequisite for solvent evaporation.

When considering the ent i re range of compounds that could be present

in water, the use of XAD-2 resin appears useful for recovering a high per-

centage of solutes present. Table 3-6 indicates t h a t with ether, and a t

slow flow rates that encourage high adsorption for most compounds, the polar

compounds are recovered a t re lat ively high levels. If ether i s replaced by

a solvent mixture (acetone/ether), recoveries of about 75% can be expected

for most classes of compounds, and polarity need not appreciably a f fec t re-

covery. The effective use of these resins requires attention to a l l the

variables discussed about, including flow rate , desorpti on solvent, and

method of sol vent/resin contact during desorption. The most c r i t i c a l

factor for achieving high recoveries appears to be the use of a solvent

system that permits maximum contact between the solvent and the surface of

the resin bead, .

(3 ) Concentration of solutes by solvent evaporation: In order to use

detection methods such as GLC/MS, the concentration of a compound must be

on the order of 50 uglml. Elution of s ~ l u t e s adsorbed on the resin resul ts

in an eluate c~ncentrat ion of about 2 ug/ml, compared t o an t n i t i a l water

Page 82: S. D. C., - NCSU

RECOVERY EFFICIENCY FOR m-XY LENE WITH RESPECT TO SOLVENTS

Sol vent Contact t ime % Recovered

e t h e r

10% acetone/ 90% e the r

50% acetone/ 50% e t h e r

60 min 180

60 180

Page 83: S. D. C., - NCSU

Table 3-6

RECOVERY EFFICIENCY OF ETHER DESORPTION WITH RESPECT TO POLARITY AND SOLUBILITY

% Recovered % Recovered D ipo le Compound @ 100ml/min @ lOml /m in Moment S o l u b i l i t y

Anthracene 71.8 - 0 i

p-Xylene 39.8 27.4 0

n- Hexadecane 11.7 12.0 - To1 uene 81.9 56.5 0.36

E t hy 1 Benzene 84.6 63.8 0.59 i

o-Xyl ene 27.8 26.3 0.62 i

Benzothiazole 95.1 87.5 - s s

Acetophenone, 62.6 85.3 - 3 ,bdimethoxy

Page 84: S. D. C., - NCSU

concent ra t ion I n the p a r t per b i l l i o n range. Concentrat ion of the so lu tes

us ing the Kudurna-Dani sh (KD) technique t s s u f f i c i e n t t o i ncrease s o l u t e

concentrat ion t o requ i red l eve l s . There Is, however, some quest ion as t o

the reproduci b i 1 i ty and e f f i c i e n c y o f t h i s concentrat fan technique.

Goldberg e t a1 . (1973) recovered 66% of the to luene i n a ch lo ro form solu-

t i o n b u t recovered on l y 30% o f the to luene i n a carbon t e t r a c h l o r i d e so lu -

t i o n us ing KD techniques. Junk -- e t a l . (1974) designed a spec ia l concentra-

t i o n th imble f o r use w i t h the KD apparatus so as t o e l im ina te v a r i a t i o n i n

recovery e f f i c l e n c y f o r d i f f e r e n t compounds i n the same solvent .

The problems t h a t a r i s e from using the KD technique can be nea r l y

m i t i g a t e d by us ing an i n t e r n a l standard s f m i l a r t o the so lu tes under i n -

ves t i ga t i on . P r i o r t o desorpt ion o f the res in , an organic compound n o t

found i n waters, o r n o t expected t o be found i n waters, can be in t roduced

i n t o the e l u t i o n solvent i n known amounts. Q u a n t i t a t i o n o f t h i s compound

w i l l i n d i c a t e e f f i c i e n c y of the concentrat ion procedure as w e l l as account

f o r losses dur ing shaking o f the e x t r a c t i o n apparatus, t r a n s f e r o f e l u t i o n

solvent , and d ry ing o f the so lvent by f reezing. Table 3-7 i nd i ca tes the

r e p r o d u c i b i l i t y o f the Carol ina Method. The standard dev ia t i on o f r e -

covery e f f i c i e n c i e s was t y p i c a l l y l ess than th ree percent.

Page 85: S. D. C., - NCSU

Table 3-7

RECOVERY EFFICIENCY OF THREE XAD RESIN METHODS

Compound Sol . Dlpole

Anthracene i

m-Xylene i

onXylene u2

p-Xylene

To1 uene

E thy1 Benzene

Cumene

Benmothiazole

3 ,4-Dimethoxy acetophenone

Iso-valeric Acid

n--Hexadecane

Carol t na Method

100ml /nl n 1 0ml l m t n % SD % sol vent

ether

ether 1 O%acetone 50%acetone

ether

ether

ether

ether

ether

ether

ether

ether

5O%aceton6

clunk Method 2Qn1 / m i n

a Reported in Junk e t a l . (1974)

Reported in Webb (1975)

Page 86: S. D. C., - NCSU
Page 87: S. D. C., - NCSU

APPENDIX A

A Topical Bi bl iography

Chemical and Theoretical Properties of XAD Resins

Gustafson, R. and Paleos, J., "Chapter Ten -Interactions responsible for the selective adsorption of organics on organic surfaces", Faust, S.B. and Hunter, J.V., ed., Organic Compounds in Aquatic Environments, Marcel Dekker, New York, 1971 , pp. 21 3-237.

Rohm and Haas Company, "Summary Bulletin Amberlite Polymeric Adsorbents", Rohm and Haas Research Division, Philadelphia, Pennsylvania.

Schneider, H., Kresheck, G. and Scheraga, H,, "Thermodynamic Parameters cfHydrophobic Bond Formation in a Model System", Journal of Physical Chemistry, Vol . 69, pp. 1310-1324, ( ~ p r . r

Isolation of Aqueous Organic Contaminants

Burnham, A*, Calder, G., Fritz, J.9 Junk, G., Svec, H. and Willis, Re, "IDentification and Estimation of Neutral Organic Contaminants in Potable Water", Analytical Chemistry,Vol . 44(1) , pp. 139-142, (Jan. 1972).

Burnham, A,, Calder, G., Fritz, H., Junk, G., Svec, H. and Vick, R., "Trace Organics in Water: Their Isolation and Identification", Journal of the American Water Works Association, Vol. 65, pp. 722- 725, (Nov. 1973).

Harvey, G., "Adsorption of Chlorinated Hydrocarbons from Seawater by a Cross1 ink1 ed Polymer", EPA-R2-73-177, U .S. Environmental Protection Agency, Washington, D.C., (Mar. 1973).

Junk, G., Richard, J., Grieser, M., Witiak, D., Witiak, Jay Arguello, m., Vick, R., Svec, H., Fritz, H. and Calder, G.3 "Use of Macro- reticular Resins in the Analysis of Water for Trace Organic Contaminants", Journal of Chromatography, Vol. 99, pp. 745-762, (1 974).

Musty, P. nd Nickless, G., "Use of Amverlite XAD-4 for Extraction and Recovery of Chlorinated Insecticides and Polychlorinated Biphenyls from Water", Journal of Chromatography, Vol . 89(2), pp. 185-1 90, (Feb. 1974).

Page 88: S. D. C., - NCSU

Richard, J . and F r i t z , J. "Absorpt ion o f Ch lo r ina ted Pes t ic ides from River Water w i t h XAD-2 Resin", Talanta, Vol . 21, pp.91-93, (1974).

R i ley, J. , and Taylor, D., "The A n a l y t i c a l Concentrat ion of Traces o f rgan i c Ma te r i a l s from Sea Water w i t h Amber l i te XAD-1

Resin", Ana l y t i ca Chimica Acta, Vol. 46 pp. 307-309, (1969).

U. S. Envi ronmental P r o t e c t i o n Agency, " D r a f t A n a l y t i c a l Report, New Orleans Area Water Supply Study", Survei 1 lance and Analys is D i v i s i o n , Region V I , Dal las, Texas, (Oct. 1974).

Water Treatment

Kennedy, D., "Treatment of E f f luen t from Manufacture o f Ch lo r ina ted P res t i c i des w i t h a Synthe t ic Polymeric Adsorbent, Amver l i t e XAD-4", Env i rqmen ta l Science and Technoloav, Vo1. 7 (2 ) , pp. 138-141, (Feb. 1373).

Segar, G.A., "Macrore t i cu la r Resins - A S o l u t i o n t o Aqqressive Condi t ions" , Ef f l uen t and Water Treatment ~ o u r n a i ; Vol . 9(8) , pp. 433-438, (Aug. 1969).

Appl i c a t i o n s f o r B i o l o g i c a l Research

Elce, J .S., "Metabol ism o f a G l u tahione Conjugate o f 2-Hydroxyoestro- d io l -176 i n t h e Adu l t Male Rat", Biochemical Journal , Vol. 126, pp. 1067-1 071 , (Mar. 1972).

Kami kubo, T. and Narahara, H., "Adsorbents f o r Cor r ino ids , Nonionic, Nonpolar Synthe t ic High-Pol y e r s " , Japan Patent 38,058 (1970).

Kokubu, T., " I s o l a t i o n and I d e n t i f i c a t i o n o f a Renin I n h i b i t o r f rom Ox B i 1 e" , Biochemical Pharmacology, Vol . 21, pp. 209-217, (Jan. 1972).

Popjak, G., Edmond, J., C l i f f o r d , K., and Wi l l iams, V . , "Biosynthesis and S t ruc tu re o f a Mew Intermedia between Farnesyl Pyrophosphate and Squalene", Journal o f B i o l o g i c a l Chemistry , Vol . 244(7), pp. 1897-1 91 8, (Apr. 1969).

Scheider, W. and F u l l e r , J.K., "An E f f e c t i v e method f o r D e f a t t i n g Albumin us ing Resin Columns", B iochimical e t Biophysica Acta, Vol . 221 (2 ) , pp. 376-378, (Nov. 1970).

App l i ca t i ons t o Assessment and Treatment o f Human Drug Use.

Bastos, M., Jukofsky, D. and Mule, S., "Routine I d e n t i f i c a t i o n o f Drugs o f Abuse i n Human Ur ine 111 D i f f e r e n t i a l E l u t i o n o f t h e XAD-2 Resin", Journal of Chromatography, Vo. 81 (1 ) , pp. 93-98, (June 1973).

Page 89: S. D. C., - NCSU

Chu, T.M., Bsawa, Y. and Rey oso, G., "Simple Assay for Urinary Estrogens in Non-pr cy", Clinical Chemistry, Vol. 17(5), pp. 438-439, (May 7

and Cawley, L ti on of Dehydroepiandro- esterone (DHW) Sul fat eroi d Conjugates from Urine by Amber1 ite", Clinical Biochemistry, Val. 4, pp. 287-296,

Fujimoto, J.M. and Wanq, R.I.H., "A Method of Idnetifying Narcotic . - - ~najgesics in ~umki Urine after Therapeutic Doses", and Appl ied Pharmacology, Vol . 16, pp. 186-193, (Jan

usette, A., "Steroid Excretion Patterns in Urine zed and Adrenalectomized Rats'', Biochimica et , Vol . 280, pp. 182-186, (Sept. 1972).

Hetland, L.V., Knowlton, D. and Couri, D., "A Aethod for the Detection of Drugs at Therapeutic Dosages in Human Urine using Adsorption Column Chromatography and Ti n-Layer Chromatograph", Cl inica Chimica Acta, Vol . 36, pp. 473-478, (Feb. 1992).

Kelsey, M. and Mosgatelli, E., "Gas-liquid Chromatographic Analysis of Phenolic and Non-phenolic Chlorpromazine Metabolites in the Urine of Chronic Schizophrenic Patients", Journal of Chromatography, Vol. 85(l) , pp. 65-74, (Oct . 1973).

Leung, F.Y. and Giffitsh, J., "A Chromatographic Method for Aldosterone Determination in Human Urine", Clinica Chimica Acta, Vol. 37, pp. 423-432, (Mar. 1972).

Rosenbaum, J., Winsten, S., Kromer, M., Moras, J. and Raja, R., "Resin Hemoperfusi on in the Treatment of Drug Intoxication", Transactions

, Vol. 16,

Rosenbaum, J., Kramer, M., Raja, R. and Boreyko, C., "Resin Hemoper- fusion: A New Treatment for Acute Drug Intoxication", New En land Journal of Medici ne, Vol . 284(16), pp. 874-877, (Apr. 1971 e

Rosenbaum, J. L., "The Use of Resin Hemoperfusion in the Treatment of Acute Drug Intoxication", Clinical Toxicology, Vol. 5(3), pp. 331- 335, (Fa1 1 1972).

Liquid Chromatography

Chu, Chi-Hong, "An Investigation of the Column Chromatographic Behavior of the Prous Support XAD-2: Separation of the Qrganic Bases, Phenols,

roids", dissertation presented at the University of Iowa, Ames, Iowa, in 1973, In partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Page 90: S. D. C., - NCSU

Fritz, J.W. and Beurman, D. R., "Chromatographic Separation of Molyb- denum Using an A1 iphatic a- hydroxy Oxime" , Analytical Chemistry, Vol . 44(4), pp. 692-694, (Apr . 1972).

Grieser, M. and Pietrzyk, D . 9 "Liquid Chromatography on a Porous Polystyrene-Divinyl benzene Support", Analytical Chemistry Vol . 45, pp. 1348-1353, (July 1973).

Scoggins, M.W. and Miller, J.W., "Rapid Separation Technique for Mono- and Disulfonic Acids", Analyticad Chemistry, Vol . 4O(7), pp. 155- 157, (June 1968).

Scoggins, M.W., "Analysis of Potassium Terphthalate-Benzoate Mixtures of Column Chromatography", Analytical Chemistry, Vol . 44(7), pp. 1285-1288, (June 1972).

Zaika, L., "Column Chromatography on Polystyrene Resin using Aqueous Systems", Journal of Chromatography, Vol . 49(2), pp. 222-229, (June 1970).

Applications in Physical Chemistry

Fritz, J.S. and Tateda, A., "Studies on the Anion Exchange Beahvior of Carboxyl ic Acids and Phenols", Analytical Chemistry, Vol . 40(14) pp. 2115-2119, (Dec. 1968).

Appl ications in Analytical Chemistry

Witiak, J., Junk, G., Calder, G., Fritz, J. and Svec, H., "A Simple Fraction Collector for CC", Journal of Organic Chemistry, Vol . 38(17), pp. 3066-3067, (Aug. 1973).

Review Article

Brusse, F.S., Furst, R. and Van Bennekom, W.P., "Amberlite XAD-2, een literatuuroverzicht", Pharaceutisch Weekblad, Vol. 109, pp. 921 -929, (1974). (Dutch) (Translation available from Schnare)

Webb, R.C., "Isolating Organic Water Pollutants: XAD Resins, Urethane Foams, Solvent Extractiont', EPA-660/4-75-003, U.S. EPA, Corvallis, Oregon, June, 1975.

Page 91: S. D. C., - NCSU

REFERENCES

Afghan, B., Kulkarn, A., and Ryan, J., "Determinat ion of Nanogram Q u a n t i t i e s o f Carbonyl Compounds Using Twin Ce l l Potent i a1 Sweep Vol tammetry", A n a l y t i c a l Chemistry, Vol . 47(3), pp.

-494, (Mar. 1975).

Ah1 ing, 5. and Jensen, S., "Reversed L iqu id -1 i q u i d P a r t i t i o n i n Determinat ion o f Po lych lor ina ted Biphenyl (PCB) and Ch lor ina ted Pres t ic ides i n water", A n a l y t i c a l Chemistry, Vol . 42( l3 ) , pp. 1483-1485, (Nov. 1970).

A l len , S., Pahl, R. and Mayhan, K., "Organic Desorpt ion from Carbon-I", Water Research, Vol . 5(1) , pp. 3-18, (Jan. 1971 ) .

Alon, A., "Removal o f Dissolved Organic Mat te r from Ac id i c Aqueous Solut ion" , S. A f r i c a n Patent 04,706, (May 1974)

Aly, 0. , "Separat ion o f Phenols i n Waters by Thin Layer Chromatography", Water Research, Vol . 2(8) , pp. 587-595, (Sept. 1968).

Andelman, J. and Suess, M., "Polynuclear Aromatic Hydrocarbons i n the Water Environment", B u l l e t i n o f the World Heal th Organisat ion, V O ~ . 43, pp. 479-508, (1 970).

Ar in , L., "Moni tor ing w i t h Carbon Analyzers", Environmental Science and Techno1 ogy, Vol . 8 ( l 0 ) , pp. 898-902, (Oct . 1974).

Arpino, D., Dawkins, B. and McLaf fer ty , F., " L i q u i d Chromatography1 Mass Spectrometry Sys tems Prov id ing Continuous Mon i to r ing w i t h Nanogram Sens i t v i t y " , Journal o f Chromatographic Science, Vol.

( l o ) , pp. 574-578, ( k t . 1974).

Atanus, H., "TLC f i n d s Hexame Solubles", Water and Wastes Enqineeripg, Vol. 11(10), pp. 26-28, ( k t . 1974).

AWWA Research T&P Comi t t e e on Organic Contaminants, "Commi t t e e Report", Journal o f the American Water works Associat ion, pp. 682-688,

'

(Nov. 1974).

Balch, N., Brown, D., Pym, R., Marles, E., I l i s , D., and L i t t l epage , J., "Moni t o r i ns Mari ne O u t f a l l s by us ing Ul t r a v i o l e n t Absorbance", Journal o f - t h e Water pol 1 u t i & Contro l Federat ion, Vol . 47(1) , pp. 195-202, (Jan. 1975).

Page 92: S. D. C., - NCSU

Bagdosarov, G . , "Photometric Methods f o r Analyzing Cond i tona l ly Pure Waters", (USSR), Chemical Abstracts, 70,22767, (1970).

Baker, R., "Trace Organic Contaminat Concentration by Freezing - I. Low Inorganic Aqueous Solut ionsi ' , Water Research, Vol . 1 (1 ) ,

Baker, R., "Trace Organic Contaminant Concentration by Frezing - 11. Inorganic Aqueous Solutionsi', Water Research, Vol . 1 (21, pp. 97-113, (Feb. 1967).

Baker, R., "Trace Organic Contaminant Concetrat ion by Freezing - 111. I c e Washing", Water Research, Vol. 3(9) , pp. 7-7-730, (Sept. 1969).

Baker, R., "Trace Organic Contaminant Concentration by Freezing - I V . I o n i c Ef fec ts" , Water Research, Vol . 4(8), pp. 559-573, (Aug. 1970).

Bark, L., Cooper, R. and Wheatstone, K., "The Determinat ion o f Organic ~ a s e s i n Carbonisat ion ~ f f l uentsl' , Water Research, Vol. 6(1), pp. 117-126, (Jan. 1972).

Barrow, G., "The Kinet ic-Molecular Theovny o f Gases1\ ,, Ph s i c a l Chemistry, 2nd ed. , McGraw-Hi 11 , New York, 1966, p --%r-

Bastos, M., Jukofsky, D. and Mule, S., "Routine I d e n t i f i c a t i o n o f Drugs o f Abuse i n Human Ur ine I11 - D i f f e r e n t i a l E l u t i o n o f the XAD-2 Resin", Journal o f Chromatography, Vol . 81 (1 ) , pp. 93-98, (June 1973).

Baudin, G., Darras, R. and Roth, E., "Method Analyt ique pour L 'etude de l a Po1 l u t i o n de L'eau" , CEA-CONF-2559, Centre dlEtudies Necleaires, Par is , June, 1973;

Bedford, J.W., "Use o f Polyurethane Foam Pluqs f o r Ex t rac t i on o f PCB's from Natural wate-rs" , B u l l e t i n o f ~nv i ronmen ta l Contamination and Toxicology, Vol . 1 2(5), pp. 622-625, (1 974).

Be1 l a r , T. and Lichtenberg, J., "Determining V o l a t i l e Organics a t Microgram-per- l i ter Levels by Gas Chromatography", Journal o f t he American Water Works Associat ion, Vol . 66(12), pp. 739-744, (Dec. 1974).

Berry, L. and Karger, B., "Pumps and I n j e c t o r s f o r Modern L i q u i d Chromatography", Ana ly t i ca l Chemistry, Vol . 45(9), p. 81 9A, (Aug. 1973).

Black A. and Christman, R., "Chemical Charac ter is t i cs o f F u l v i c Acids", Journal o f t he American Water Works Associat ion, Vol . 55, pp. 897-913, (1963).

Page 93: S. D. C., - NCSU

?lack, A . and Christman, R . , "Characterist ics of Colored Surface Waters", Journal of the American Water Works Association, Vol. 55(6), p . 753, (June 1963).

Black. A. and Willems, D . , "Electrophoretic Studies of Coagulation fo r Removal of organic-color" , ~ i u ~ n a l of the American Water Works Association, Vol. 53(5), p. 589, (May 1961 ) .

Booth, R., English, J . and cDermott , G. , "Eva1 uation of Sampl ing Conditions in the CAM", Journal of the American Water Works Association, Vol . 57(ir) ,2

Borneff, J . and Kunte, H . , "Kanzerogene Substanzen in Wasser und Boden XXVI Routine Method zur Bestimmung von Polyzyki 1 schen Aromaten i m Wassner", Archiv fuer Hygiene, Vol . l53(3) , pp. 220- 229, (1969).

Brause, H . , Mi ddl eton, F. and Wal ton, G . , "Organic Chemical Compounds i n Raw and F i 1 tered Surface Waters", Analytical Chemistry, Vol . 23(8), pp. 1160-1164, (Aug. 19511.

Brown, D . , Kelliher, G . , Heigle, C . and Warren, P . , "Rapid Scan IR fo r Operation with Support Coated Open Tubular or Packed Column Gas Chromatography", Analytical Chemistry, Vol . 43(3), pp. 353-358, (Mar. 1971 ) .

Brusse, F.S., Furst , R : , and Van Bennekom, W.P., "Amberlite XAD-2 een 1 i teratuuroverz~cht", Pharmaceuti sch Weekblad, Vol . 109, pp. 921 -929, (1 974). (Dutch).

Buelow, R . , Carswell, J.K. and Sumons, J.M., "An Improved Method fo r Detrmining Organics by Activated Carbon Adsorption and Solvent Extraction. Part I . " , Journal of the American Water Works Association, Vol . 6 5 ( l ) , pp. 57-72, (Jan. 1973).

Buelow. R . , Carswell, J.K. and Symons, J.M., "An Improved Method fo r - ~ e t e r m i n i n ~ organics by ~ i t i v a t e d carbon ~ d s o r p t i o n and Solvent Extraction, Part I I . " , Journal of the American Water Association, Vol . 65(3), pp. 195-201 , (Mar. 1973).

Bunch, R . , Barth, E. and Ett inger, M . , "Organic Materials in Secondary Effluents" , Journal of the water pol 1 ution Control Federation, Vol. 33(2), pp. 122-126, (Feb. 1961).

Burnham, A . , Calder, G . , F r i t z , J . , Junk, G . , Svec, H . and Wil l is , R., "Ident i f ica t ion and Estimation of Neutral Organic Contaminants i n Potable Water", Analytical Chemistry, Vol . 44(1) , pp. 139-142, (Jan. 1972).

Burnham, A . , Calder, G . , F r i t z , J , , Junk, G . 9 Sv ec , H . and Vick, R. "Trace Orqanics in Water: Their Isolat ion and Ident i f ica t ion" , Journal of the American Water Works Association, Vol. 65, pp. 722-725, ( N o v . 1973).

Page 94: S. D. C., - NCSU

Carswell, J.K., Buelow, R.E. and Symons, J.M., "An Improved Method o f Measuring Organics i n D r ink ing Water by Ac t i va ted Carbon Adsorpt ion and Sol vent E x t r a c t ion" , Proceeding o f the 15 th Water Qual i ty Conference, U n i v e r s i t y o f I l l i n o i s , p. 73, (Feb. 1973).

Christman, R. and H r u t f i o r d , B., "Water Q u a l i t y Standards f o r Organic Contaminants: A n a l y t i c a l STudies", Proceedings o f t h e 15 th Water Qual i ty Conference, U n i v e r s i t y o f I 1 1 i n o i s , (Feb. 1973).

Chu, Chi-Hong, "An I n v e s t i g a t i o n of the Column Chromatrographic Behavior of t he Prous Support XAD-2: Separat ion o f Organic Bases, Phenols, and Stero ids" , d i s s e r t a t i o n presented a t t he U n i v e r s i t y o f Iowa, Ames, Iowa, i n 1973, i n p a r t i a l f u l f i l l m e n t o f t he requirements f o r t he degree o f Doctor o f Philosophy.

Chu, T.M. , Osawa , Y . and Reynsso, G. , "Simp1 e Assay f o r U r i n a r y Estrogens i n Non-pregnancy" , C l i n i t a l Chemistry, Vol . 17(5), pp. 438-439, (May 1971 ) .

Chudoba, J., Lischke, D. and Tucek, F., "Molecular Weight D i s t r i b u t i o n o f Organic Residual Mat te r i n B i o l o g i c a l l y P u r i f i e d Wastewater", Acta Hydrochimica e t Hydrobio l ogica, Vol . 1 (4 ) , pp. 397-404, (1 973).

Cohen, A., "Apparatus f o r Determining Organic Carbon Content o f P o l l u t e d L iqu ids" , Chemical Abstracts , Vol. 82, i t em 76881b, U.S. Patent 3,854,881 .

Cooper, R. and Wheatstone, K., "The Determinat ion o f Phenols i n Aqueous E f f l u e n t s " , Water Research, Vol . 7(4), pp. 1375-1 384, (Sept . 1973).

Datsko, V.G., "Photometric I n v e s t i g a t i o n o f the Color React ion o f S u l f u r i c Acid w i t h Organic Substances i n Natura l Waters", Journal o f Appl i e d Chemistry, Vol . 13, pp. 384-389, (1 940).

Datsko, V.G., "Organic Mat te r i n Water of Ce r ta in SEas", Comptes Rendus Academie des Sciences (USSR), Vol. 24, pp. 294-2-939).

Demmering, W., "The Use of Absorpt ion Spectra l Analyses f o r t h e I n v e s t i g a t i o n and Rout ine Checking of Contaminated Surface Water", Vom Wasser, Vol . 11 , pp. 220-237, (1 936).

Desbaumes, E. and Imhoff , C., "Determinat ion o f Hydrocarbon Residues i n Water", Water Research, Vol . 6(8), pp. 885-893, (Aug . 1972).

D iener t , F., "Research on F lu rescent Substances i n the Contro l o f D i s i n f e c t i o n o f Water", Comptes Rendus, Vol . 150, pp. 487-489, ( 1 91 0).

Dufor t , J . and Rud, M., "Peat Moss as an Adsorbing Agent f o r t h e Removal o f Co lo r i ng Mat ter" , Proceedings o f t he I n t e r n a t i o n a l Peat Congress, Vol. 4, pp. 299-310, (1972).

Page 95: S. D. C., - NCSU

Eichelberger, J. and bichtenberg, J., 'Tarbon Adsorption for Recovery of Organic Pesticides ," Journal of the American Water Works Association, Vol . 63(l) , pp. 25-27, (Jan. 1971 ) .

rger, J. and Lichtenberg, J., "Persistence of Pesticides in Raw Water", Environmental Science and Technology, Vol . 5, pp. 541 -544, (June, 1971 ) .

Elce, J.S., "Metabolism of a Blutathione Conjugate of 2-Hydroxyoestrodiol-17B in the Adult Male Rat", Biochemical Journfi, Vol . 126, pp. 1067-1071, (Mar. 1972).

/

El 1 ison, W. and Wal l bank, T. , "Sol vents in Sewage and Industrial Waste Waters: Identification and Determination", Water Pollution Control , Vol . 73(6), pp. 656-672, (1 974).

Esmond, S.E. and Wolf, H.W., "The Status of Organics - The Dallas Water Reclaimation Pi lot Plant", Proceedings of the 15th Water Qua1 i ty Conference, University of I1 1 inois, (Feb. 1973).

Evans, J. E. , "A Gas-Chromatographic-Mass Spectrometric and Stable Carbon Isotope Ration Study of Organic Pollution in Clear Lake and its Tributaries", dissertation presented at the University of Houston, Houston, Texas, in 1973, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Faucette, W.E. and Cawley, L.P., "Effective Adsorption of Dehydro- epianorosterone (BHA) Sulfate and other 17-ketosteroid Conjugates from Urine by Amber1 ite", C1 inical Biochemistry, Vol . 4, pp. 287-296, (Dec. 1971).

Fishman, M.F. and Erdmann, D.E., "Water Analysis", Analytical Chemistry, Vol . 43 (51, pp. 356R-388R, (Apr . 1971 ) .

Frisch, N.W. and Kunin, R., "Organic Fouling of Anion-Exchange Resins", Journal of the American Water Works Association, Vol. 52, p. 875, (July 1960).

Fritz, J.S. and Tateda, A . , "Studies on the Anion Exchange Behavior /

of Carboxylic Acids and Phenols", Analytical Chemistry, Vol. 40(14), pp. 2915-2119, (Dec. 1968).

Fritz, J.S. and Beuerman, D.R., "Chromatographic Separation of Molybdenum Using an A1 iphatic 6 - Hydroxy Oxime" , Analytical Chemistry, Vol . 44(4), pp. 592-694, (Apr. 1972).

Fujimoto, 3.M. and Wang, R.I., "A Method of Identifying Marcotic Analygesics in Human Urine after Therapeutic Doses" Toxic01 o and Applied Pharmacology, Vol . 16, pp. 186-193. ( J i n ' d

Page 96: S. D. C., - NCSU

Gaevaya, T. and Khesina, A. , "Determinat ion o f Polycyc l i c Aromatic Aydrocarbons i n I n d i v i d u a l and Multicomponent So lu t i ons f rom Q u a s i l i n e a r Florescence and Phosphorescence Spectra", Zhurnal Ana l i t i chesko i Khimi i , Vol . 29(11), pp. 2225-2231, ( 1 9 7 4 ) ,

Gesser, H., Chow, A, Davis, F., Uthe, J. and Reinke, J., "The E x t r a c t i o n and Recovery o f PCB us ing Porous Polyurethane Foam", A n a l y t i c a l Le t te rs , Vol . 2(12), pp. 883-886, (Dec. 1971 ) .

Goldberg, M., Delong, L. and Kahn, L., "Continuous E x t r a c t i o n o f Organic Ma te r i a l s from Water", Environmental Science and Technology, Vo1. 5(2), pp. 161-162, (Feb. 1971).

Goldberg, M. Delong, L. and S i n c l a i r , M., "Ex t rac t i on and Concentrat ion o f Arganic Solutes from Water", A n a l y t i c a l Chemistry, Vol . 45(1) , pp. 89-93, (Jan. 1973).

Goma, C. and Durand, C., "Dosage De Substances non M isc ib les par Chromatographie en Phase Gazeuse: Hydrocarbures den's L'Eau.", Water Research, Vol . 5(8), pp. 545-552, (Aug. 1971 ) .

Goryhnova, S .V. , "Charac ter iza t ion o f D i s ss l ved Organic Substances i n Water o f Beloe Lake (White Lake)", Trudy I n s t i t u t e M i k r o b i o l o g i i Akademiya Nauk SSSR, Vol . 3, pp. 185-193, (1954).

Greenberg, A., Maehler, C. and Cornel ius, J., "Evaluat ion o f the Carbon Adsorpt ion Method", Journal o f the American Water Works Associat ion, Vol . 57(6), pp. 791 -799, (June 1965).

Gr ieser , M. and P ie t r zyk , D., " L i q u i d Chromatography on a Porous Po lys ty rene-D iv iny l benzene Support", A n a l y t i c a l Chemistry, Vol , 45(8), pp, 1348-1353, ( J u l y 1973).

Grob, K., "Organic Substances i n Potable Water and i n i t s Precursor", Journal o f Chromatography, Vol . 84, pp. 255-273, ' ( 1 973).

Groves, M.J., " P a r t i c l e Size Analys is , Past, Present, and Future", Analyst , Vol . 9 9 ( l l 8 5 ) , pp. 959-972, (1 974).

Grutz, P., " V o l a t i l e F a t t y Ac id Determinat ion by Automatic Analys is" , Water Research, Vol . 1 (5 ) , pp. 319-324, (May 1967).

Gunther, F., B l i n , R., Kolbezen, M. and Barkley, J., "Micro- es t ima t i on o f 2 - (p - te r t -bu ty l phenoxy)isopropyl-2-chloroethyl S u l f i t e Residues", A n a l y t i c a l Chemistry, Vol . 23(12), pp. 1835- 1842, (Dec. 1951).

Gustafson, R. and Paleos, J., "Chapter 10, I n t e r a c t i o n s Responsible f o r t he Se1 e c t i ve Adsorpt ion o f Organics on Organic Surfaces", Faust, S.D. and Hunter, J.V. ed. o rgan ic ~ o m p o k d s i n quat tic- Environments , Marcel Dekker , New York 1971 .

Page 97: S. D. C., - NCSU

Gustafsson, J-A, and Pousette, A , , ' 'Steroid Excretion Patterns i n Urine from Overiectomi zed and Adreal ectomi zed Rats", Biocheica e t Biophysica Acta, Vol. 280, pp. 182-186, (Sept. 1 9 7 ' r

Hall, K. and Lee, G.F., "Molecular Size and Spectral Characterization of -organic Matter i n - a Meronictic Lake", water Research, Vol . 8 ( 3 ) , pp . 239-251 , (Mar. 1974).

Malloway, J . and Petersen, G.E., "Ultrasonic Cleaning of Resin", Chemical Abstracts, Vol . 82 i tem 59378, U .S. Patent 3,849,196.

Hammond, M.W. and Alexander, M . , "Effect of Chemical Structure on Microbial Degradation of Methyl-Substituted Aliphatic Acids", Environmental Science and Techno1 ogy, Vol . 6 , pp. 732, (1 972).

Harvey, G . "Adsorption of Chlorinated Hydrocarbons from Seawater by a Cross1 inked Polymer" ', EPA-R2-73-177, U.S. Enviornmental Protection Agency, Washington D . C . , March 1973.

Harvey, G . , Steinhauer, W . and Teal, J . , "Polychlorobiphenyls i n North Atlantic Ocean Water", Science Vol. 180, pp. 643-644.

Headi ngton, D . F . , "Methods f o r Determining Hydrocarbons and Phenol s in Water", Amlytical Chemistry, Vol . 2 5 ( l l ) , pp. 1681-1685, (Nov. 1953).

Heller, S. , McGuire, J . and Budde, W . , "Trace Organics by GCIMS", Enviornmental Science and Technolog~, Vol . 9 ( 3 ) , pp. 210-21 3, (Mar. 1975).

Hetland, L.B., Knowlton, D and Couri, D . , "A Method fo r the Detection of Drugs a t Therapeutic Dosages i n Human Urine using Adsorption Column Chromatography and Thin-l ayer Chramatology" , Cl inica Chimica Acta, Vol. 36, ppl 473-478, (Feb. 1972).

Hewes, C.,Smith, W.H:, and Davison, R . , "Comparative Analysis of Solvent Extraction and Stripping (steam) in waste water treatment", American In s t i t u t e of Chemical Engineers Symposium Ser ies , Vol . 70(14-- pp. 54-60',. (1 974).

Hilborn, J . , Thomas, R.S. and Lao, R . G . , "Organic Content of International Reference Samples of Asbestos", Science of- the Total Environment, Vol. 3 ( 2 ) , pp. 129-1403 (1974).

Hites, R . and Biemann, K . , "Water Pollution: Organic Compounds i n the Charles River, Boston"', Science, Vol . 178, pp. 158-1 60, (Oct . 1972).

Hites, R . , "Analysis of Trace Organic Compounds in New England Rivers", Journal of Chromatographic Science, Vol . 11 , pp. 70-574, (Nov. 1973).

Hoak, R . , "Recovery and Ident i f ica t ion of Organics i n Water" ', International Journal of Air and Water Pol 1 ution, Vol . 6 , pp . 521 -538, (Nov/Dec 1962).

Page 98: S. D. C., - NCSU

H r u t f i o r d , B., Christman, R. and Horton, M., "Advanced Ins t rumenta l Techniques f o r t he I d e n t i f i c a t i o n o f Organic Ma te r i a l s i n Aqueous So lu t ions" , Proceedings o f the Meeting of t h e American Chemical Society , D i v i s i o n o f A i r , Water and Waste Chemistry, Boston, March 1972.

Huhn, W., "Behavior o f L ipoph i lous Organic Trace Substances i n t h e Recharge o f Groundwater", Acta Hydrochimica e t Hydro-Biologica, Vol. 2 (2 ) , pp. 161-171, (1974).

Imhoff, K, and Sierp, F., "Improvement o f Ch lo r ina ted Dr ink ing Water by use o f Ac t iva ted Carbon F i l t e r s " , Pub1 i c Works, Vol . 60(8) , pp. 308-309, (Aug. 1929).

Je l t s , R. , "Gas-Chromatographic Determinat ion o f Minera l O i 1 in Water", Water Research, Vol . 3, pp. 931 -941 , (Dec. 1969).

J e l t s , R., and Dem Tonkelaar, W. , "Gas Chromatography versus I n f r a - r e d Spectrometry f o r Determinat ion of Minera l O i l D issolved i n Water", Water Research, Vol . 6(3) , pp. 271 -278, (Mar. 1972).

J o l l y , R.L., Sco t t , C.D., P i tt, W. and McBride, M.D., "Determinat ion o f Trace Organic Contami nants i n Natura l Waters by High-Resol u t i o n L i q u i d Chromatrography", Proceedings o f t h e Annual NSF Trace Contaminants - Conference, I s t , NTIS (Conf. 730802), pp. 397-412, (1973).

Junk, G., Richard, J., Griesner, M., Wi t iak , D., Wi t iak , J., Argue l lo , M., Vick, R., Svec, H., F r i t z , J . and Calder G., "Use o f Mac ro re t i cu la r Resins i n t he Analys is o f Water f o r Trace Organic Contaminants", Journal o f Chromatography, Vol . 99, pp. 745-762, (1 974).

Kahn, L. and Wayman, C., "Apparatus f o r Continuous E x t r a c t i o n o f Nonpolar Compounds f rom Water Appl i e d t o Determinat ion o f Ch lo r ina ted Pes t i c i des and' In termediates" , ~ n a l y t i c a l Chemistry, Vo1. 36(7) , pp. 1340-1 343, (June 1964).

Kamikubo, T. and Narahara, H., "Adsorbents f o r Cor r ino ids , Nonionic, Nonpolar Synthe t ic High-Polymers" , Japan Patent 38,058, (1 970).

Ka t la fsky , B. and D i e t r i c h , M., "Onl ine I n f a r e d I d e n t i f i c a t i o n o f Gas Chromatography Ef f luen ts" , Appl i e d Spectroscopy, Vol . 29(1) , pp. 24-28, (Jan. 1975).

Katz, S., P i t t , W., Scot t , C. and Rosen, A., "Determinat ion o f S tab le Organic Compounds i n Waste E f f l uen ts a t Microgram per L i t e r Levels by Automatic High-Resolut ion Ion" , - Water Research, Vol . 6, pp. 1026-1037, (1972).

'{awahara, F., E ichelberger , J., Reid, B. and S t i e r l i , H., "Semi-automatic E x t r a c t i o n of Organic Ma te r i a l s from Water", Journal o f t he Water Pol l u t i o n Contro l Federat i on, Vol . 39(4), pp. 572-578, (Apr. 1967).

Kawahara, F., "Gas Chromatographic Ana lys is o f Mercaptons, Phenols, and Organic Acids i n Surface WAters w i t h Use o f Penafluorobenzvl ~ e r i v a t i v e s " , Environmental Science and Technology, Vol . 5(3) ,- pp. 235-239, (Mar. 1971 ) .

Page 99: S. D. C., - NCSU

Keiser, K., "The Differentiation of Organic Substances in Water", Technisches Gemeindeblatt, Vol . 31 , p. 81, (1 928).

Kei ser, K. "Further Contributions dn the Differentiation of Organic Substances in Water", Technisches Gemeindeblatt, Vol . 32, p. 195, (1929).

Kelsey, M. and Mosgatell i , E., "Gas-Liquid Chromatographic Analysis of Phenolic and Non-Phenolic Chlorpromazine Metabolites in the Urine of Chronic Schizophrenic Patients, " Journal of Chromatography, Vol . 85(1) , pp. 65-74, (Oct. 1974).

Kennedy, D., "Treatment of Effluent from Manufacture of Chlorinated Pesticides with a Synthetic Polymeric Adsorbent, Amber1 ite XAD-4", Environmental Science and Technotogy, Vol . 7(2), pp. 138-141, (Feb. 1973).

Knox, J., "The State of the ARt and Future of Highspeed Liquid Chroma- tography", Chemistry and\!ndustr.y, Vol . 1 , pp. 29-34, (Jan. 1975).

Knox, J., "The Potential for High-speed Liquid Chromatography", Proceedings of the Society of Analytical Chemistry, Vol . 10(8), pp. 217-218, (Aug. 1973).

Koehl, C. and Mandel, P., "Chromatography of Amino Acids in Biological Fluids," Annales de Biologie Clinique (Paris), Vol . 32(3), pp. 447-453, (1974) (French).

Kokubu, T., "Isolation and Identification of aRenin Inhibitor from Ox Bile", Biochemical Pharacolqv, Vol . 21., pp. 209-217, a an. 1972).

Xrasnoshchekova, R. and Gubergri ts, M., "Solubi 1 i ty in Water of Binary Mixtures of Some Hydrocarbons", Neftekhimiya, Vol . 14(6), pp. 916-91 9, (1974).

Krisko, G.C. and Bolander, K., "Chemical Carcinogens in the Enviornment and in the Human Diet: Can a Threshold be Established?" Food and Cosmetics Toxicology, Vol . l2(5l6), pp. 737-796, (Oct . 1974).

Krzyzanowski, S., "Nature of the radicals formed on adsorption of unsaturated hydrocarbons on rare earth-exchanged X Zeol i tes" , Journal of the Chemical Society , Chemical Communications , Vol . 24, pp. 1036-1 037, (1 974) .

Kubasiewicz, A. and Kekawski, W., "New Construction of a Continuous Extractor", Urmadzen Ciepl nych Pol i tech Wrocl aw, Vol . 25 ,pp. 293-304, (1 974).

Kuninobu, Y. and Morikawa, T., "Concentration of an Aqueous Solution Containing a Small Amount of Formaldahyde" , Japan Patent 87,613, (1 974).

Lamar, W.L. and Goerlitz, D.F., "Characterization of Carboxylic Acids in Unpolluted Streams by Gas Chromatography", Journal of the American Water Works Association, Vo1 . 55(6), pp. 797-802, (June 1963).

Page 100: S. D. C., - NCSU

Laqua, E . , "Adsorptive- Elimination and I d e n t i f i c a t i o n of Organic Matter in Water Using d i f f e r e n t F i l t e r i n g Media", Acta Hydrochimica e t Hydrobiologica, Vol . 1 ( 4 ) , pp. 345-351 , (1973).

Lee, E . , and Walden, C . , "A Rapid Method f o r the Estimation of Trace Amounts of Kerosene i n Eff luents" , Water Research, Vol . 4 ( 9 ) , pp. 641-644, (Sept . 1970).

Lee, S. and Chang, S . , "Use of High-pressure Liquid Chromatography f o r t h e Fract ion of Less Vola t i l e Flavor Compounds", Journal of Agr icul tura l and Food Chemistry, Vol . 23(2) , pp. 337-339, (Mar./Apr. 1975).

Leenheer, J . and Malcolm, R . , "Frac t ionat ion and Charac ter iza t ion of Natural Organic Matter from Certain Rivers and S o i l s by Free-Flow Electrophoresis" , USGS Water Supply Paper 1 8 1 8 4 , 1973.

Leenheer, J .3 "Occurrence of Dissolved Organic Carbon i n Selected Groundwater Samples i n t he United S t a t e s , " Journal of Research of t h e U.S.G.S., Vo1. 2 ( 3 ) , p. 361, (1974).

Leenheer, J . and Malcom, R a y "Preparat ive Free-flow Electrophoresis a s a Method of Fract ionat ion of Natural Organic Mater ia ls" , USGS Water Supply Paper 1817-D, 1973.

Lemaire, E . , "Use of Synthet ic Resins a s Adsorbents in the Pur i f i ca t ion of Water", Genie C i v i l , Vol. 116, pp. 340, 344, (1940).

Leoni , V . , Puccet t i , G . and Grel la , A . , "Preliminary Results on the Use of Tenax f o r the Extraction of Pes t i c ides and Polynuclear Aromatic Hydrocarbons from Surface and Drinking Waters from Analyt ical Purposes", Journal of Chromatography, Vol . 106(1) , pp. 119-124, (Mar. 1975)

Leung, F.Y. and G r i f f i t h s , J a y "A Chromatographic Method f o r Aldosterone Detkrmination i n Human Urine", Cl i n i ca chimica Acta, Vol . 37, pp. 423-432, (Mar. 1972).

Love, O . , Carswell, J . , Stevens, A n y and Symons, J . , "Evaluation of Activated Carbon a s a Drinking Water Treatment Unit Process," EPA Progress Report, March 1975

Luessem, H . , "Enrichment of Traces i n Water by Pressure Ext rac t ion" , Zei tshi f t f u e r Wasser und Abwasser Forschung, Vol . 7 (5), pp. 134-1 37, (1 974).

Luh, M-D. , and Baker, R e y "Sorption and Desorption of Pyrdine-Clay i n Aqueous Solu t ion" , Water, Research, Vol . 5(10) , pp. 849-859, (Oct. 1971 ) .

Lysyj , I . , Nelson, K . , and Newton, P . , "Determination of t h e Organic Content of Natural Waters by a Rapid Method", Water Research, Vol . Z(3), pp. 233-241, (Mar. 1968).

Lysyj, I . , Nelson, K. and Webb, S. , "Analysis of Multicomponent Organic Flixtures i n Aqueous Media by Pyrolys is" , Water Research, Vol . 4 ( 2 ) , pp. 157-163, (Feb. 1970).

Page 101: S. D. C., - NCSU

lcolm, R . L . , Leenheer, J.A., cKinley, and Eccles, L . A . , Supplement I I - Or- ganic Carbon, U.S. Geological Survey Techniques", Water Resources Inventory Book 5, p. 34, U.S. Geological Survey (1971).

1 levia l l e , J . , "Measurement of Hydrocarbons i n Water: Application t o Cases of Surface Water Pollution", k t e r Research, Vol . 8 (12 ) , pp. 1871 -1 075, (Dec. 1974).

Manka, J . , Rebhen, M . , Mandelbaum, A . and Bortinger, A . , "Characterization of Organics in Secondary Effluents", Environmental Science and Technology, Vol. 8(12) , pp. 1017-1019, ( N o v . 1974).

Matejka, Z . , Oceanasek, M . , Eliasek, J . , Mastejka, J . , Uher, J . , Prokupek, J . , and Tuna, J . , "Simultaneous Removal of Aldehydes, Ketones, and Acids from Solutions by Anion Exchangers", German Patent 2,426,274.

McConnell, G . , Ferguson, D.M. and Pearson, C . , "Chlorinated Hydrocarbons and the Enviornment", Endeavour, Vol . M ( l 2 l ) , pp. 13-18, (Jan. 1975).

McNair, H.M. and Bonelli , E.J,, "Basic Gas Chromatography", 5th ed. , Varien Aerograph, Consolidated Pr in te r s , Berkeley, March 1969, p . 118.

Me1 polder, F.W., Warfield, C.W. and Headington,C.E., "Mass Spectral Deter- mination of Volat i le Contaminants in Water", Analytical Chemistry, VOI . 25(lO) , pp . 1453-1 456, (Oct . 1953).

Middleton, F.M., "Organics in Water Supply - The Problem", Proceedings of the 15th Water Quality Conference, University of I l l i n o i s , Feb. 1973, p. 1-14.

'qieure, D . , "Determination of Trace Organics i n Air and Water", Journal of Chromatographic Science,.Vol. 1 1 , (Nov. 1973), pp. 567.

' "" ' ' ' - " ' "

Migalat i l , E . and Pushkarev, V . , "Separation of Surfactants from Aqueous Solutions by R.O. Membranes", Nov. Napravil , Nauk Tekh. 1973, pp. 65-67.

Mori t a , M. Nakamura, H , and Mimura, S. , "Analytical Method and Evaluation of Oraanic Matter i n River and Well WAter. 11- Pollut ion by Chlorinated ~l i p h a t i c Hydrocarbonsti, Tokyo Tori t su Eisei Kenkyusho ~ensyu Nempo, VOI . 25, pp . 399-403, 1974.

Mount, D.I. , "Significance of Synthetic Organics t o Aquatic Animals", Proceedings of the 15th Water Quality Conference, University of I l l i n o i s , Feb. 1973.

Mrkva, M . , " Investigation of Organic Pollut ion of Surface Waters by U . V . Spectrophotometry", Journal of the Water Pollution Control Federation, Vol. 4 l ( l l ) , pp. l923-l93ly ( N o v . 7969).

Muel l e r , H.F. I Larson, T . E . , and Lennarz, W . J . , "Chromatographic Iden t i f i ca t ion and Determination of Organic Acids i n Water", Analytical Chemistry Vol. 30(1) , pp . 41-44, (Jan. 1958).

Page 102: S. D. C., - NCSU

Murtaugh, J.J. and Bunch, R.L, "Ac id i c Components o f Sewage E f f l u e n t s and R iver Water", Journal of t h e Water P o l l u t i o n Contro l Federat ion, Vol. 37(3) , pp. 410-415, (Mar. 1965).

Murtaugh, J . and Bunck, R., "S te ro l s as a Measure o f Fecal P o l l u t i o n " , Journal o f the Water Pol l u t i o n Contro l Federat ion, Vol . 39(3), pp. 404-409, Mar. 7967).

Musty, P. and Nick less, G., "Use of Amber l i te XAD-4 f o r E x t r a c t i o n and Recovery o f Ch lo r ina ted I n s e c t i c i d e s and Po lych lo r i na ted Biphenyls f rom Waer"', Journal o f Chromatography, Vol . 89(2) , pp. 185-190, (Feb. 1974).

Musty, P. and Nick less, G., "Ex t rac t i on and Recovery o f Ch lo r ina ted Biphenyls from Water Using Porous Polyurethane Foams", Journal o f

CZj-

Chromatography, Vol . 100(1), pp. 83-93, (Nov. 1974).

Nelson, K. and Lysy j , I., "Appl i c a t i o n o f P y r o l y t i c Gas Chromatography t o Natura l Waters", Water Research, Vol . 3(5) , pp. 357-365, (May 1969).

Obremski , R. , " I n f r a r e d Microsampl i n g w i t h Low Cost I n f r a r e d Spectrophotometers", Beckman Instrument, I nc . Technical Report, 1974.

Ochi, T. and Okaichi , T., "Chemical Nature o f Dissolved Organic Ma t te r i n Sea Water", Nipon Ka isu i Gakkaishi, Vol. 26(141), pp. 150-155, (1973).

Oehme, C. and Mar t ino la , F., "Removal o f Organic Ma t te r From Water by Resinous Adsorbents" , Chemistry and Indus t ry , pp. 823-826, (Sept . 1973).

Ogner, G. and Schni tzer , M., "Humic Substances: F u l v i c Acid-Dia l k y l Ph tha la te Complexes and t h e i r Role i n P o l l u t i o n " , Science, Vol. 170, pp. 317-318, (Oct. 1970).

Ohtani , I., "React iva t ion of Adsorbents f o r Xyl ene Isomers", Japan Patent 27,570, 1974.

Ohtsuki, S. Ho r i , K. and Miganohara, I., "Phase Separat ion of Aqueous So lu t ions and Organic Solvents" , Japan Patent 36,209, 1974.

Ongerth, H., Spath, D., Croor, J . , Greenberg, A.E. , "Pub1 i c Heal t h Aspects of Organics i n Water Supply", Proceedings o f the 15 th Water Q u a l i t y Conference, U n i v e r s i t y o f I l l i n o i s , Feb. 1973.

OIShea, J. and Bunch, R., "U r i c Acid as a P o l l u t i o n I n d i c a t o r " , Journal o f t he Water Po1 l u t i o n Federat ion, Vol . 37 (1 0) , pp. 1444-1446,(0ct. 1965).

Pa in te r , H., "Organic Compounds i n S o l u t i o n i n Sewage E f f l uen ts " , Chemistry and Indus t ry , pp. 818, (Sept. 1973).

Pahl, R., Mayhan, K. and Bertrand, C., "Organic Desorpt ion f rom Carbon - I & I L " , Water Research, Vol . 7(9), pp. 1309-1 330, (Sept. 1973).

Perras , J. , "Por tab le Gas Chromatographic Techniques t o Measure Di sso l ved Hydrocarbons i n Sea Water", US NTIS, AD Report #786583/5GA, 1973.

Page 103: S. D. C., - NCSU

P e t r a r i v , I., Pet ra r i a , P. and Petrevs, 01, "Phenol Adsorpt ion on St rong ly Basic Macroprous I o n Exchangers", Revue d1Chimie, Academie de l a Republique Popul a i r e Roumaine, Vol . 25(9), pp. 727-729 (1 969).

P h i l l i p s , S.L. and Mack, D.A., " Instruments f o r Water Q u a l i t y Measurements"', Environmental Science and Technology, Vol . 9(3) , pp. 214-220, (Mar. 1975).

Ploder, I., "Gas Chromatographic Detec t ion o f some Toxic Sub stances i n Waer by Means o f t h e Headspace Technique and Use o f a SCOT Column", Deutsch Lebensmi t t e l - Rundschau, Vol . 70(11) , pp. 401 , (1 974).

Plumb, R. and Lee, G., "A Note on t h e Iron-Organic Re la t ionsh ip i n Natura l Waters", Water Research, Vol. 7 (4 ) , pp. 581-585, (Apr. 1973).

Ponomareva, V.V. and E t t i n g e r , A . I . , "The na ture o f Organic Substances Dissolved i n the Water o f t he Neva R ive r ' , Doklady Akademii Nauk SSSR, Vol . 88, pp. 105-1 08, (1 953).

Popjak, G., Edmond, J., C l i f f o r d , K. and Wi l l iams, V., "B iosynthesis and S t ruc tu re o f a New In te rmed ia te between Farnesyl Pyrophosphate and Squalene" , Journal o f B i o l o g i c a l Chemistry, Vol . 244(7), pp. 1897-1918, (Apr. 1969).

Rebhun, M. and Manka, J., " C l a s s i f i c a t i o n o f Organics i n Secondary E f f l u e n t s " , Environmental Science and Technology, Vol . 5(7) , pp. 606-609, ( J u l y 1971 ) .

Reuter, L.H., "The Occurance, S ign i f i cance, and Contro l o f Organics i n D i r e c t Waste Water Reuse systems", Proceedings o f t he 15 th Water Q u a l i t y Conference. U n i v e r s i t v o f I l l i n o i s . Feb. 1973.

Richard, J. and F r i t z , J., "Adsorpt ion o f Ch lo r ina ted Pes t i c i des from River Water w i t h XAD-2 Resin", Talanta, Vol . 21 , pp. 91 -93, ( 1 974).

R i cke r t , D. and Hunter, J., "Rapid F r a c t i o n a t i o n and Ma te r i a l s Balance of S o l i c s Frac t ions i n Waste Water and Waste Water E f f l u e n t " , Journal o f t he Water Pol 1 u t i o n Contro l Federat ion, Vol . 39(9) , pp. 1475-1486, (Sept . 1967)

R i ley , J. and Taylor , D., "The A n a l y t i c a l Concentrat ion of Traces o f Dissolved Organic Ma te r i a l s from Sea Water w i t h Amberli t e XAD-1 Resin", Ana l y t i ca Chimica Acta, Vol. 46, pp. 307-309, (1969).

Roedicker, H., "Separat ion o f Hydrocarbon Mix tu res by Permeation", East German Patent 107,667.

Rohm and Hass Co. , "Pre l im inary Technical Notes Amber1 i t e XAD-7", Rohm and Haas Co., Ph i lade lph ia , Penn. 19105.

Rosen, A.A., and Middleton, F.M., " I d e n t i f i c a t i o n o f Petroleum Ref inery Wastes i n Surface Waters", A n a l y t i c a l Chemistry, Vo1 . 27(5), pp. ,790-794, (May 1955).

Page 104: S. D. C., - NCSU

Rosen, A.A., and Middleton, F.M., "Ch lo r ina ted I n s e c t i c i d e s i n Surface Waters", A n a l y t i c a l Chemistry, Vol . 31 ( l o ) , pp. 1729-1732. (Oct. 1959).

Rosenbaum, J., Winsten, S., Kramer, M., Moras, J. and Raja, R., "Resin Hemoperfusion i n t he Treatment o f Drug I n t o x i c a t i o n " , - ~ r a n s a c t i o n s of t h e American .Society o f A r t i f i c i a l , I n t e r n a l 0m,Vo1;16,. 134-140, (A'p'rl . 1970). ' '

Rosenbaum, J., Kramer, M., Raja, R., and Boreyko, C., "Resin Hemoperfusion: A New Treatment f o r Acute Drug I n t o x i c a t i o n " , New England Journal o f Medicine, Vo1 . 284(16), pp. 874-877, (Apr. 1971 ) .

Rosenbaum, J.L., "The Use of Resin Hemoperfusion i n t h e Treatment o f Acute Drug I n t o x i c a t i o n " , Cl1n1 c a l T n x i a h g g

. . . , Vol 5(3) ,

pp. 331-335, ( F a l l 1972).

Ryckman, D., I r v i n , J., and Young, R., "Trace Organics i n Surface Watersr', Journal of t he Water P o l l u t i o n Contro l Federat ion, Vo1 . 39(3), pp. 458-469, (Mar. 1967).

Saver, H.I., "Re la t ion between Trace Element Content o f D r i n k i n g Water and Chronic Diseases", Proceedings of t h e 16 th Water Q u a l i t y conference, Vol. 16, pp. 39-48, (1974).

S a v i l l e , LT., "On t h e Nature of Color i n Water", Journal o f t h e New England Water Works Associat ion, Vol . 31, p. 79, (19173.

Schnare, D.W. , "Ext rac t1 on of Organic Mat te r i n Water - t h e Carol i n a Method", Journal o f t h e Water P o l l u t i o n Contro l Federat ion, Vol. 51, pp. 2467- 2474, (Nov. 1979).

Schneider, H., Krescheck, G.C. and Scheraga, H.A., "Thermodynamic Parameters o f Hydrophobic Bond Formation i n a Model System", Journal o f Physica l Chemistry, Vol. 69, pp. 1310-1324, (Apr. 1965).

Scheider, W. and F u l l e r , J.K., "An E f fec t i ve Method f o r D e f a t t i n Albumin Using Resin Columns", Biochimica e t Biophysica Acta, Vol . 221 2 ) , pp. 376-378, (Nov. 1970).

9 Scoggins, M.W. and M i l l e r , J.W., "Rapid Separat ion Technique f o r Mono-

and D i s u l f o n i c Acids", A n a l y t i c a l Chemistry, Vol. 40(7) , pp. 144-157, (June 1968)

Scoggins, M.W., "Analyses of Potassium Terephthalate-Benzoate Mix tu res o f Column Chromatography", Anal v t i c a l C h w , Vol . 44(7), pp. 1285-1 288, (June 1972).

Segar, G.A., "Macrore t i cu la r Resins - A s o l u t i o n t o Aggressive Condi t ions" , E f f l u e n t and Water Treatment Journal , Vol . 9(8), pp. 433-438, (Aug . 1969).

Segura, R. and Cotto, A., "New F lu romet r i c Procedure f o r t he De tec t i on and Quant i t a t i o n o f Organic Compounds i n Thi n - l aye r Chromatography", Journal o f Chromatography, Vol . 99, pp. 643-647, (1 974).

Page 105: S. D. C., - NCSU

Shevchenko, M., Marchenko, P., Taran, P. and Kravets, E., "Removal of Some Pest ic ides f rom Dr ink ing Water by Adsorpt ion Methods1', Vodosnabzhenie Sanitarnaya Tekhnika, Vol. 10, pp. 31-32, (1974).

Simard, R., Hasegawa, I. andaruk, W. and Headington, 6. , " In f ra red Spectrophotometr ic Determinat ion o f O i 1 and Phenols i n Water", &&&ical C k * t , Vo1. 23(90), pp. 1384-1387, (Oct. 1951).

Skopintsev, B.A. and Krylova, L.P., "Dynamics o f Organic Substances i n Natura l Waters", j, Akademiya Nauk SSSR, Vol . 6, pp. 38-45, (1955).

Skopintsev, B.A. and Krylova, L.P., "The Op t i ca l Proper t ies o f t h e Organic Substance o f the Aqueous Human Present i n the Upper Layers of I n l a n d Waters", Gidrokhimicheskie Mater ialy,pp. 23-31, (May 1955).

S i j i v a r i c , S., Kra iner , M. and Boban, Z., "Determinat ion of Organic I m p u r i t i e s and Soluble Humic Acids i n t he R ive r Sava, near Zagreb", A r h i v H i g i jenu Radai Toksi ko log i j u , Vo1 . 25(2), pp. 213-220, (1974).

Smith, R., "Mod i f i ca t i on o f Gas-Chromatographic Substrates f o r the Separat ion o f A l i p h a t i c Diamines", A n a l y t i c a l Chemistry, Vol. 33, pp. 1160-1162, (Aug. 1961).

Stoeber, J. and Bearle, S., "Organic Acids i n t h e Rhine and Some o f i t s T r i b u t a r i e s " , Kernforschungszentrum Kar l sruhe KFK Be r i ch t , pp. 58-81 , ( 1 969).

Tard i f f , G .G. and Dei zner , M. , " T o x i c i t y o f Organic Compounds i n D r i nk ing Water", Proceedings o f t he 15 th Water Qua1 i ty Conference, Un ivers i ty o f I 1 1 i n o i s , Feb. 1973.

Thideman, H., "Thin-Layer Chromatographic Separat ion and Detec t ion L i m i t s (Semiquanti t a t i v e Determinat ion) o f Some Ch lor ina ted Hydrocarbons ( I n s e c t i c i d e s ) on Ready Made F o i l s " , Z e i t s c h r i q t f u e r Chemie, Vol . 14(7), p. 292, (1974).

T i l swor th , T., "Organic and Color Removal f rom !!,later Suppl ies by Synthe t ic Resonous Adsorbents", NTIS PB-233 068, Jan. 1974.

Tsuchida, M. and Matsura, K., "Safe and Simple Tests f o r Determining Q u a l i t y o f D r i nk ing Water", Chemical Abs t rac ts , Vol . 82, i t e m 7 6 , 9 4 7 ~ ~ Japan Patent 751 94, ( 1 974) .

Ungar, J., "Anion Exchange Resin Foul i ng " , E f f l u e n t and Water Treatment Journal , Vol . 2(6) , pp. 333, (June 1962).

Urov, K., Rikken, J., Klesment, I. and Eisen, O., "Gas Chromatographic Separat ion o f Anthracene and Phenanthene i n a Packed Column". E i s t i NSU Tead, Akad, Toim, Keem, Geol., Vol. 23(4), pp,. 358-359, (1974 ) .

Page 106: S. D. C., - NCSU

U.S. €PA, l lCharacter izat ion and Separat ion of Secondary E f f l u e n t Components by Molecular Weight", EPA 16020FEN03/71, EPA, Washington, D.C., March 1971.

U.S. EPA, "Eva lua t ion o f CCE and CAE", Journal o f t h e American Water Works Associat ion, (May 1975).

U.S. EPA, "Dra f t A n a l y t i c a l Report, New Orleans Area Water Supply Study", Region VT , Dal l a s ,- Tex. (1974).

Varshal , V., Lu r ' e , Y. and Stepanova Sephadexes i n Systematic Anal ys i s Zhurnal Anal i t i c h e s k o i Khimi i , Vo

N., "Use of Ce l lu lose Sorbents and o f Organic Substances i n Natura l Water",

1 . B ( 8 ) , pp. 1626-1 632, (1 974).

Van Huyssteen, J., "Determinat ion o f S o l u t i o n by GLC,", Water Research

Short-Chain F a t t y Acids i n Aqueous ,, Vol. 4, pp. 645, (1970).

Vei th , G. and Lee, G., "Chlorobiphenyls (PCB's) i n t h e Milwaukee R iver " , Water Research, Vol. 5 ( l l ) , pp. 1107-1115, (Nov. 1971).

Voback, V . and Beer, A., "E l im ina t i on Ana lys is Studies. I- Fundamentals o f t he E l lm ina t i on Analys is o f Water", F o r t s c h r i t t e der Wasserchemie und I h r e r Grenzgebiete, Vol. 15, pp. 9-30, (1973).

Wang, W., Lee, G.F. and Spyr idak is , D., "Adsorpt ion o f Para th ion i n a Mu1 ticomponent So lu t ion" , Water Research, Vol . 6(10), pp. 1219-1 228, (Oct. 1972.)

Wasik, S., "Determinat ion of Hydrocarbons i n Sea Water Using an E l e c t r o l y t i c S t r i p p i n g C e l l " , Journal of Chromatographic Science, Vo1 . 12(12) , pp. 845-848, ( 1 974).

Water Pol l u t i o n Research Lab," Residues of Organo-Chl o r i n e Pes t i c i des i n Surface Waters", Water P o l l u t i o n Contro l , Vol . 66, p. 633, (1967).

Webb, R.G., " I s o l a t i n g Organic Water P o l l u t a n t s : XAD Resins, Urethane Foams, Solvent Extraction",EPA-66014-75-003, U.S.EPA, C o r v a l l i s , Oregon, June 1975.

Webber, L, and Burks, C., "Determinat ion o f L i g h t Hydrocarbons i n Water - Carbon D iox ice STr ipping Method", A n a l y t i c a l Chemistry, Vol . 24(7), pp. 1086-1 087, ( J u l y 1952).

Weston, R.S., " I nves t i ga t i ons i n Regard t o Co lo r i ng Mat te r i n Water and Methods o f Removal", Journal o f t h e New England Water Works Associat ion, Vol. 16, p. 156, (Mar. 1902).

Westronics, " I n s t r u c t i o n and Maintenance Manual f o r S t r i p Chart Recorder Model No. LSllA/MAX/DU6Hl M.

Wi t iak , J . , Junk G., Calder, G., F r i t z , J. and Svec , H., "A Simple F r a c t i o n C o l l e c t o r f o r CC", Journal of Organic Chemistry, Vol. 38(17), pp. 3066-3067, (Aug. 1973).

Page 107: S. D. C., - NCSU

Wol ler , D.M. , 'lPubl l c Ground Water Suppl ies t n Ford, Crawford, Brown, Edgar and Boone Counttesl ' , I1 1 lno i s S t a t e Water Survey Bull e t i n , 1974.

Zai ka , L. , "Column Chromatography of Polystyrene Resin Using Aqueous Systems", Journal of Chromatography, Vol . 49(2 ) , pp. 222-229, (June 1970).

Page 108: S. D. C., - NCSU