48

Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,
Page 2: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,
Page 3: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  

Rubik’s  Cube  Unit  Study:  Teacher’s  Guide  Table  of  Contents  

Page  #   Days  Introduction     2  Lessons  The  Man,  The  Cube,  Its  Impact   3-­‐4   2-­‐3  

Background  article  (Ernö  Rubik)   5-­‐6  Guiding  Questions  handouts     7-­‐10  

Classifying  Polygons   11   1  Classifying  Polygons  answer  key   12-­‐13  

Classifying  3-­‐dimensional  Shapes   14-­‐15   2-­‐3  The  Third  Dimension  answer  key   16  Classifying  Polyhedrons  answer  key   17  Writing  Rules  answer  key     18-­‐19  

Platonic  Solids     20-­‐21   1-­‐2  

Testing  Net  Variations     22   1  Testing  Net  Variations  answer  key   23  

Mix  &  Map  &  Match   24-­‐25   1-­‐2  Templated  Nets  handouts   26-­‐29  

Solving  the  Rubik’s®  Cube   30   5-­‐10  

How  To  Videos   31-­‐32   2-­‐3  

Writing  Algorithms-­‐  Intro  to  Speed  Solving   33-­‐34   2-­‐3  Intro  to  Speed  Solving  answer  key     35  Writing  Inverse  Algorithms  answer  key   36  Writing  Mirrored  Algorithms  answer  key     37  Exploring  Adv.  Speed  Solving  Algorithms  answer  key   38  

Creating  Rubik’s  Art   39-­‐40   6-­‐10  

Making  a  2x2  Rubik’s  Cube   41   1  Making  a  2x2  Rubik’s  Cube  answer  key   42  Making  a  2x2  Solution  Guide  answer  key   43  

Page 4: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com

Introduction  

This  unit  study  is  designed  for  students  in  grades  5-8.  The  lessons  have  been  tested  in  classroom  settings  as  well  as  during  out of school  time  programming.  You  do  not  have  to  do  all  of  the  lessons  in  the  unit,  or  in  the  order  they  are  presented.  Feel  free  to  choose  the  activities  that  are  right  for  your  class  and  rearrange  the  order  based  on  your  students’  preferences.      

Some  benefits  of  using  Rubik’s®  Cubes  in  the  classroom:  • Helps  build  mathematics  skills  in  disciplines  such  as  STEM,  Geometry,

Algebra,  and  General  Math  concepts• Enables  students  to  develop  a  more  positive  attitude  towards  math• Promotes  21st  Century  Skills  such  as  problem  solving,  critical  thinking,

perseverance  and  logical  thinking• Supports  STEM  content  and  teaching  using  an  authentic  learning

experience• Builds  student  confidence

Teachers  and  youth  leaders  can  borrow  sets  of  12,  24,  or  36  Rubik’s  Cubes  FREE  through  the  You  CAN  Do  the  Rubik’s  Cube  Lending  Library.  For  six  weeks,  your  students  can  enjoy  the  fun  of  learning  STEM  and  21st  Century  skills  at  no  cost  other  than  return  shipping.    Materials  are  also  available  to  purchase  at  a  discounted  cost  for  educational  use.  

Request to borrow a class set of Rubik's Cubes www.youcandothecube.com/lending-library

2  

Page 5: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com    3  

The  Man,  The  Cube,  Its  Impact  Common  Core:   Determine  central  ideas  or  themes  of  a  text  and  analyze  their  

development;  summarize  the  key  supporting  details  and  ideas.  (CCRA.R.2)  

Integrate  and  evaluate  content  presented  in  diverse  media  and  formats,  including  visually  and  quantitatively,  as  well  as  in  words.  (CCRA.SL.2)  

Present  information,  findings,  and  supportive  evidence  such  that  listeners  can  follow  the  line  of  reasoning  and  the  organization,  development,  and  style  are  appropriate  to  task,  purpose,  and  audience.  (CCRA.SL.4)  

Objectives:   1) Students  will  learn  about  the  history  of  the  Rubik’s®  Cube  throughresearch  (and  presentations).

2) Students  will  practice  collecting  and  organizing  information.

3) Students  will  prepare  and  share  a  presentation  for  the  class.

Materials:   Guiding  Questions  worksheets  (found  in  Teacher’s  Edition)  Presentations  Notes  worksheet  (found  in  Student  Workbook)  Computers/devices  with  internet  access  (for  research)  Art  supplies*  (poster  paper,  markers,  tape,  etc.)  Projector*  Speakers*  *depending  on  presentation  expectations

Procedure:   1) Explain  your  presentation  expectations  (duration,  number  of  facts,type  of  display,  etc.).

2) Break  the  class  up  into  groups  of  2-­‐3,  and  assign  each  group  a  topic:Who  is  Ernö  Rubik?  How  did  the  Rubik’s®  Cube  come  to  be?  What  impact  has  the  Rubik’s  Cube  had  over  the  years?  What  else?  (fun  &  random  facts  about  the  Rubik’s  Cube)  

 Hand  each  group  the  appropriate  Guiding  Questions  worksheet.  

3) Groups  work  on  collecting,  organizing,  and  displaying  information.(This  could  take  one  or  more  class  periods.)

Page 6: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  4  

4) Groups  take  turns  sharing  their  presentations  with  the  class  in  order  bytopic  (man,  origin,  impact,  then  fun  facts).    Students  will  take  notes  onthe  Presentation  Notes  worksheet  during  classmates’  presentations.

After  all  of  the  presentations,  give  the  students  some  time  to  answer  the  questions  at  the  bottom  of  the  worksheet.    

5) If  not  already  shown  in  a  presentation,  show  the  class  a  five-­‐minuteclip  from  a  Time  interview  with  Ernö  Rubik  found  on  YouTube  at:https://goo.gl/jhe9BV  orhttps://www.youtube.com/watch?v=0poQ8q8RzSg

Notes  to  Teacher:   If  you  have  more  than  four  groups,  topics  may  be  assigned  to  multiple  groups.    

Also,  check  your  school’s  internet  filter.    I  have  to  get  mine  temporarily  altered  so  that  sites  aren’t  blocked  when  students  are  researching.  

An  article  about  Ernö  Rubik  is  included  to  give  you  some  background  information.  

Page 7: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

Ernö Rubik: 

Inventor of the 

Rubik’s® Cube 

By Diana Gettman Flores 

www.youcandothecube.com 

Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, 

Erno Rubik, Sr., an aeronautical engineer who designed gliders and light aircraft, 

and Magdolna Szántó, a poet. Rubik studied sculpture at the Technical 

University in Budapest and then architecture at the Academy of Applied Arts and 

Design, also in Budapest.  Rubik was a professor at the Academy when he 

invented the Rubik’s Cube in 1974. 

Rubik’s first design was made of 27 wooden blocks. It took Rubik about six 

weeks to design a mechanism that would allow the rows to rotate, thus 

rearranging the smaller cubes, but reforming a large cube. Once he had a 

working cube, Rubik spent no less than a month figuring out a solution method­ 

never writing anything down, just working through the solution in his head.  

As a teacher, Rubik was always looking for new ways to present 

information to his students.  He used his cube invention to explain spatial 

relationships as well as algebraic group theory.  Rubik also considered his 

invention to be a work of art, a mobile sculpture that may look very simple at 

first, but is, in fact, rather complex.  Rubik marveled at the fact that throughout 

its many transformations in colors and patterns, the cube remains a single unit. 

The first cubes were made and sold in Hungary as “Magic Cubes.”  When 

Ideal Toy Company began the sale of the cube in the United States in 1980, the 

name was changed to the Rubik’s® Cube, which is thought to be one of the first 

toys named after its inventor. 

©1974 Rubik’s® Used under license Rubik’s Brand Ltd. All rights reserved. 

www.youcandothecube.com 5

Page 8: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

The popularity of the Rubik’s Cube quickly spread and the first 

international speedcubing competition was held in 1982. Today hundreds of 

speedcubing competitions are held regularly around the world. As of June 2016, 

Lucas Etter, a 14­year­old from Kentucky, holds the world record for the fastest 

single solve of a 3x3 Rubik’s Cube. Etter solved the puzzle in 4.904 seconds in 

November of 2015. 

The Rubik’s Cube holds the record as the world’s best­selling puzzle/ toy 

with over 350 million units sold. It is estimated that 1 in 5 people worldwide has 

held a Rubik’s Cube. There have been over 50 books published describing how to 

solve the puzzle, as well as humorous books poking fun at cube solvers and the 

previous cube solving books. 

The Rubik’s Cube is back on track to being as popular today as it was in 

the early 1980s when it was first available in the United States. Part of the 

resurgence in popularity is credited to today’s Internet culture and the 

availability of solution guides and techniques for solving that can be learned 

from streaming videos online, as well as teachers that are bringing Rubik’s Cubes 

into their classrooms to empower today’s youth to learn to solve the Cube, and 

incorporating the powerful tool into math and science lessons. 

References: 

"Erno Rubik". Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2016.  

Web. 17 Jun. 2016 

"Erno Rubik Biography." The Famous People website. The Famous People, n.d. Web. 17 June 2016. 

Fisher, Dave. "Erno Rubik and the Invention of the Rubik's Cube." About.com Home. N.p., 3 Nov. 2015. Web. 6  

June 2016. 

Lynch, Kevin. "Confirmed: Teenager Lucas Etter Sets New Fastest Time to Solve a Rubik's Cube World Record."  

Guinness World Records. Guinness World Records, 24 Nov. 2015. Web. 6 June 2016. 

Slocum, Jerry. The Cube: The Ultimate Guide to the World's Bestselling Puzzle: Secrets, Stories, Solutions. New  

York: Black Dog & Leventhal, 2009. Print. 

 "The History of the Rubik’s Cube." Rubiks. Rubiks.com, n.d. Web. 17 June 2016. 

©1974 Rubik’s® Used under license Rubik’s Brand Ltd. All rights reserved. 

www.youcandothecube.com 6

Page 9: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   7

Guiding  Questions  

Topic:    Who  is  Ernö  Rubik?  

Partners:  

Questions:  Where  was  Ernö  born?  

Where  did  he  grow  up?  

What  was  he  like  as  a  child?  

What  did  he  like  as  a  child?  

Where  was  he  educated?  

What  kind  of  work  did  he  do?  

What  was  his  family  like?  

What  is  he  doing  now?  

Presentation  Plans:  Who  is  going  to  say  what?  

What  is  going  to  be  displayed?    And  how?  

Page 10: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  8  

Guiding  Questions  

Topic:    How  did  the  Rubik’s®  Cube  come  to  be?  

Partners:  

Questions:  When  was  the  Rubik’s  Cube  made?  

Where  was  it  made?  

How  was  it  made?  

Why  was  it  made?  

Where  did  Ernö  get  the  idea?  

How  long  did  it  take  to  make?  

What  did  it  look  like?  

Presentation  Plans:  Who  is  going  to  say  what?  

What  is  going  to  be  displayed?    And  how?  

Page 11: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   9  

Guiding  Questions  

Topic:    What  impact  has  the  Rubik’s®  Cube  had  over  the  years?  

Partners:  

Questions:  How,  and  when,  did  the  Rubik’s  Cube  make  it  around  the  world?  

What  Rubik’s  brand  toys  came  after?  

How  has  the  Rubik’s  Cube  inspired  the  world  of  art?  

What  other  twisty  puzzles  have  been  made?  

How,  and  when,  did  speed  solving  become  a  sport?  

What  is  the  World  Cubing  Association?  

Presentation  Plans:  Who  is  going  to  say  what?  

What  is  going  to  be  displayed?    And  how?  

Page 12: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  10

Guiding  Questions  

Topic:    What  else?  (fun  facts  about  the  Rubik’s®  Cube)

Partners:  

Questions:  How  many  Rubik’s  Cubes  have  been  sold?  

Where  is  the  Rubik’s  museum,  and  what  is  in  it?  

What  is  the  most  valuable  Rubik’s  Cube?  

How  many  ways  can  a  Rubik’s  Cube  be  scrambled?    How  long  would  it  take  to  see  each?  

What  is  the  world  record  for  solving  the  Rubik’s  Cube?  

What  size  is  the  smallest  Rubik’s  Cube?    The  largest?  

What  percent  of  the  population  owns  a  Rubik’s  Cube?    What  percent  can  solve  one?  

What  are  some  other  talented  things  that  have  been  done  with  a  Rubik’s  Cube?  

Presentation  Plans:  Who  is  going  to  say  what?  

What  is  going  to  be  displayed?    And  how?  

Page 13: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   11

Classifying  Polygons  Common  Core:   Understand  that  attributes  belonging  to  a  category  of  two-­‐dimensional  

figures  also  belong  to  all  subcategories  of  that  category.  (5.G.B.3)  

Classify  two-­‐dimensional  figures  in  a  hierarchy  based  on  properties.  (5.G.B.4)  

Objectives:   1) Students  will  learn  vocabulary  related  to  polygons.

2) Students  will  use  that  vocabulary  to  classify  polygons.

Materials:   Classifying  Polygons  worksheet  (found  in  Student  Workbook)  Internet  access  (for  looking  up  definitions)  

Procedure:   1) Students  search  the  Internet  for  the  definitions  and  record  them  onthe  Classifying  Polygons  worksheet.

2) Students  share  and  compare  their  definitions  since  they  may  findalternative  definitions.

3) Introduce  or  review  prefixes  and  suffixes.

4) Students  fill  in  the  Prefixes  section,  and  share  answers.

5) Students  classify  the  polygons  found  on  page  2  of  the  worksheet.

6) With  time  remaining,  have  students  explore  some  extension  questions:*Can  a  polygon  be  regular  and  concave?    Show  or  explain  your  reasoning.*Can  a  triangle  be  concave?    Show  or  explain  your  reasoning.*Could  we  simplify  the  definition  of  regular  to  just…

All  sides  congruent?    or  All  angles  congruent?    Show  or  explain  your  reasoning.  

*Can  you  construct  a  pentagon  with  5  congruent  angles  but  is  notconsidered  regular?    Show  or  explain  your  reasoning.*Can  you  construct  a  pentagon  with  5  congruent  sides  but  is  notconsidered  regular?    Show  or  explain  your  reasoning.

Notes  to  Teacher:   I  have  my  students  search  for  these  answers  and  definitions  online,  however  I  am  sure  that  some  math  textbook  glossaries  may  be  a  good  alternative  resource.  

Page 14: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  12

Classifying  Polygons  

Find  the  following  definitions.  

Two  Dimensional  –  

Line  Segment  –  

Polygon  –  

Congruent  –  

Regular  polygon  –  

Irregular  polygon  –  

Convex  polygon  –  

Concave  polygon  –  

Give  the  prefixes  for  the  following  numbers.  Ex:    Decade  means  10  years,  and  century  means  100  years.  

What  does  the  suffix  –gon  mean?  

Having two dimensions, length and width

A line bound by two endpoints

A two dimensional shape made up of three or more line segments

Having the same shape and size

A polygon where all sides are equal and all angles are equal

Not regular; at least one side or angle is of different measure

A polygon with no reflex angles (all interior angles are less than 180)

A polygon with at least one reflex angle

Tri Quadri Penta Hexa

Hepta Octa Nona

Hendeca Dodeca Icosa

A shape having a specific number of angles

Page 15: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   13

Fill  in  the  blanks  using  the  shapes  above.  shape  #                      concave/convex     regular/irregular   #  of  sides   name  

     ex)      convex              irregular                                    3                                  triangle

         1)                                                                                                                                                                                                                                                                    

         2)                                                                                                                                                                                                                        

         3)                                                                                                                                                                                                                                                                    

         4)                                                                                                                                                                                                                          

         5)                                                                                                                                                                                                                                                    

         6)                                                                                                                                                                                                                          

         7)                                                                                                                                                                                                                        

         8)                                                                                                                                                                                                                                                                    

         9)                                                                                                                                                                                                                    

   10)                                                                                                                                                                                                        

5  1  

4  

3  

2  

8  7  10  

9  6  

Convex Irregular 4 Quadrilateral

Convex Regular 3 Triangle

Concave Irregular 12 Dodecagon

Convex Regular 5 Pentagon

Concave Irregular 4 Quadrilateral

Convex Irregular 7 Heptagon

Concave Irregular 9 Nonagon

Convex Regular 11 Hendecagon

Convex Regular 8 Octagon

Concave Irregular 6 Hexagon

Page 16: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  14

Classifying  3-Dimensional  Shapes  Common  Core:   Write,  read,  and  evaluate  expressions  in  which  letters  stand  for  numbers.  

(6.EE.A.2)  

Use  variables  to  represent  numbers  and  write  expressions  when  solving  a  real-­‐world  or  mathematical  problem.  (6.EE.B.6)  

Objectives:   1) Students  will  learn  vocabulary  related  to  space  figures.

2) Students  will  be  able  to  name  3-­‐dimensional  objects.

3) Students  will  be  able  to  identify  parts  of  3-­‐dimensional  objects.

4) Students  will  write  algebraic  expressions  that  help  find  the  amount  offaces,  edges,  or  vertices  of  a  particular  polyhedron.

Materials:   The  Third  Dimension  worksheet  (found  in  Student  Workbook)  Internet  access  (for  looking  up  definitions)  Classifying  Polyhedrons  worksheet  (found  in  Student  Workbook)  Notecards  labeled  1-­‐8  (for  numbering  8  different  stations)  1  Rubik’s®  Cube  7  Shape  blocks  (preferably:    a  regular  tetrahedron,  rectangular  pyramid,  

triangular  prism,  hexagonal  prism,  regular  octahedron,  regular  dodecahedron,  and  regular  icosahedron)  

Writing  Rules  worksheet  (found  in  Student  Workbook)  

Procedure:   1) Students  fill  out  The  Third  Dimension  worksheet  by  searching  onlinefor  definitions.

2) While  students  are  working,  set  up  8  stations  around  the  classroom  byplacing  one  numbered  notecard  and  one  shape  at  each  location  (theRubik’s  Cube  counts  as  one  of  the  8  shapes).

3) When  done  with  the  worksheet,  students  share  and  compare  thedefinitions  they  found,  and  discuss  the  similarities  and  differences  oftheir  findings.

4) As  students  get  out  their  Classifying  Polyhedrons  worksheet,  explain  tothem  that  they  will  be  visiting  each  station  in  an  attempt  to  name  eachshape  (using  two  words)  and  determine  how  many  faces,  edges,  andvertices  it  is  comprised  of.

Page 17: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   15  

5) Spread  the  students  out  at  the  different  stations  and  let  them  startfilling  out  their  worksheet,  writing  down  their  answers  for  each  station  inthe  corresponding  numbered  row.

6) Students  compare  their  answers  and  compile  what  they  think  theanswer  key  is;  and  then  compare  to  the  actual  key.

7) Students  work  on  their  Writing  Rules  worksheet.    They  will  focus  onspecific  groups  of  polyhedrons  when  counting  faces,  edges,  and  verticesto  discover  shortcuts  in  the  counting  process.    Then  they  will  translatethose  shortcuts  into  algebraic  expressions.

Notes  to  Teacher:   Depending  on  the  length  of  your  class,  good  breaks  would  be  after  procedure  5,  or  after  procedures  3  and  6.  

My  students  tend  to  struggle  with  naming  3-­‐dimensional  shapes  while  visiting  the  stations.    I  encourage  them  to  make  educated  guesses  based  on  the  definitions  that  we  have  been  studying.  

You  will  need  to  create  your  own  answer  key  for  the  Classifying  Polyhedrons  worksheet,  due  to  the  fact  that  you  may  use  different  shapes,  more  or  less  shapes,  or  put  shapes  at  different  stations.  

During  the  Writing  Rules  worksheet,  give  students  access  to  as  many  of  the  shape  blocks  as  you  can.    It  gives  them  a  hands-­‐on  resource  while  they  are  trying  to  develop  hypotheses  and  test  theories.  

Page 18: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  16  

The  Third  Dimension  

Define  the  following  words.  

Space  figure  –                                                                                                                                                                                                                                                                                                              

                                                                                                             

Polyhedron  –                                                                                                                                                                                                                                                                                                                

Parts  of  a  Polyhedron:   Face  –                                                                                                                                                                                                        

Edge  –                                                                                                                                                                                            

Vertex  –                                                                                                                                                  

Special  Polyhedrons  

Prism  -­‐    Platonic  Solid  -­‐   Pyramid  -­‐                Others:  

                                     Concave,                                        Truncated,                                        etc...  

                                   

         

               Name  the  shape  that  is  both    Name  the  shape  that  is  both                  a  prism  and  a  platonic  solid:      a  pyramid  and  a  platonic  solid:  

                                                                                                                                                         

A 3-dimensional shape that has depth in addition to

length and width

A 3-dimensional shape made up of polygons (no curves)

A flat surface of a 3-dimensional shape

A line segment that connects two faces

A point where the edges meet

A 3D shape with two congruent parallel bases connected by rectangles.

A 3D shape where all faces are congruent, all faces are regular, and all vertices have the same number of edges

A 3D shape with a polygon base connected to triangles that all extend to the same point

Cube (Regular Hexahedron) (Rectangular Prism)

Regular Tetrahedron (Triangular Pyramid)

Page 19: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   17

Classifying  Polyhedrons  Visit  each  of  the  shape  stations.    At  each  station,  attem

pt  to  correctly  nam

e  each  space  figure  (using  two  w

ords).    Then  docum

ent  the  number  of  faces,  edges,  and  vertices  of  each  shape.    

Leave  the  last  column  blank.    It  w

ill  be  used  later  in  the  lesson.  

Page 20: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  18

Writing  Rules  

Prisms  1) Count  the  faces,  edges,  and  vertices  of  the  following  prisms.

Name                    n                faces    vertices    edges  triangular  prism   3    rectangular  prism   4      pentagonal  prism   5        

*n  represents  the  number  of  sides  ofone  of  the  bases

2) Find  the  patterns  in  the  table  above  and  use  it  to  make  a  prediction.

Name                    n                faces    vertices    edges  hexagonal  prism   6  

3) Draw  a  hexagonal  prism  and  check  your  prediction.

4) Write  function  rules  that  describe  the  shortcuts  in  finding  the  number  of  faces,  edges,  andvertices  of  a  prism.  (vertices  is  already  completed  as  an  example)

Faces:  F  =  n  +  2

Edges:  E  =  3n          or          E  =  3·∙n

Vertices:  V  =  2n          or          V  =  2·∙n

Pyramids  1) Count  the  faces,  edges,  and  vertices  of  the  following  pyramids.

Name                    n                faces    vertices    edges  triangular  pyramid   3    rectangular  pyramid   4    pentagonal  pyramid   5      

*n  represents  the  number  of  sides  ofthe  base

5 6 9 6 8 12 7 10 15

Take n and: +2 x2 x3

8 12 18

4 4 6 5 5 8 6 6 10

Take n and: +1 +1 x2

Page 21: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   19  

2) Find  the  patterns  in  the  previous  table  and  use  it  to  make  a  prediction.

Name                    n                faces              vertices        edges  hexagonal  pyramid   6  

3) Draw  a  hexagonal  pyramid  and  check  your  prediction.

4) Write  function  rules  that  describe  the  shortcuts  in  finding  the  number  of  faces,  edges,  andvertices  of  a  pyramid.

Faces:  F  =  n  +  1

Edges:  E  =  2n

Vertices:  V  =  n  +  1

Platonic  Solids  

What  shortcuts  could  be  used  to  count  the  faces,  edges,  and  vertices  of  these  regular  polyhedrons?  Write  a  description  and  try  it.  

Euler’s  Formula  

Go  back  to  the  Classifying  Polyhedrons  worksheet.    Label  the  blank  column  “F  +  V”,  and  in  each  row  add  the  number  of  faces  to  the  number  of  vertices  and  record  that  in  the  new  column.    When  you  get  done  with  that,  compare  column  “F  +  V”  with  column  “E”,  and  write  down  a  function  rule  describing  the  pattern.  

7 7 12

For the dodecahedron on the right, there are 12 faces. Each face is a pentagon, which has 5 edges (sides). 5x12=60; however an edge connects two faces, so we are counting each edge twice. 60/2=30; so there are 30 edges. Each face also has 5 vertices (angles). 5x12=60; however a vertex connects three edges of three different faces. 60/3=20; so there are 20 vertices.

F + V = E + 2 this formula works for every polyhedron

Page 22: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  20

Platonic  Solids  Common  Core:   The  Platonic  Solids  are  not  specifically  found  in  the  Common  Core,  

however  this  activity  is  a  beneficial  precursor  to  some  of  the  standards.  

Describe  the  two-­‐dimensional  figures  that  result  from  slicing  three-­‐dimensional  figures.  (7.G.A.3)  

Represent  three-­‐dimensional  figures  using  nets  made  up  of  rectangles  and  triangles,  and  use  the  nets  to  find  the  surface  area  of  these  figures.  Apply  these  techniques  in  the  context  of  solving  real-­‐world  and  mathematical  problems.  (6.G.A.4)  

Objectives:   1) Students  will  learn  more  about  Platonic  Solids.

2) Students  will  use  nets  to  create  the  Platonic  Solids.

Materials:   Computer,  internet,  and  projector  (for  watching  a  YouTube  video)  Platonic  nets  (found  in  Student  Workbooks)  Scissors  Tape  Crayons/markers/colored  pencils  String  and  hangers  (optional)  

Procedure:   1) Have  the  students  watch  parts  1  (length  8:33)  &  2  (length  9:15)  of  thePlatonic  Solids  video.

Part  1:  https://www.youtube.com/watch?v=voUVDAgFtho    Part  2:  https://www.youtube.com/watch?v=BsaOP5NMcCM  

2) Introduce  Nets  as  flat  (2D)  shapes  that  can  be  folded  to  create  a  3Dshapes.    Two  examples  that  you  could  show  them  are  the  nets  of  acylinder,  and  a  square-­‐based  pyramid.

4) Students  can  decorate  their  nets  by  drawing  pictures  or  designs  onthem.  (Platonic  nets  are  in  the  student  workbooks.)

Page 23: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   21

5) Students  cut  out  the  nets,  fold  them,  and  tape  them  shut.

6) Optional:  Students  can  use  the  string  to  connect  their  Platonic  Solids  toa  hanger,  creating  a  mobile.

Notes  to  Teacher:   The  platonic  nets  in  the  student  workbook  can  also  be  found  in  Wikimedia  Commons:  

Tetrahedron:  https://commons.wikimedia.org/wiki/File%3AFoldable_tetrahedron_(blank).jpg  Hexahedron:  https://commons.wikimedia.org/wiki/File%3AFoldable_hexahedron_(blank).jpg  Octahedron:  https://commons.wikimedia.org/wiki/File%3AFoldable_octahedron_(blank).jpg  Dodecahedron:  https://commons.wikimedia.org/wiki/File%3AFoldable_dodecahedron_(blank).jpg  Icosahedron:  https://commons.wikimedia.org/wiki/File%3AFoldable_icosahedron_(blank).jpg  

Page 24: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  22  

Testing  Net  Variations  Common  Core:   Represent  three-­‐dimensional  figures  using  nets  made  up  of    

rectangles  and  triangles,  and  use  the  nets  to  find  the  surface  area  of  these  figures.  Apply  these  techniques  in  the  context  of  solving  real-­‐world  and  mathematical  problems.  (6.G.A.4)  

Understand  that  a  two-­‐dimensional  figure  is  congruent  to  another  if  the  second  can  be  obtained  from  the  first  by  a  sequence  of  rotations,  reflections,  and  translations.  (8.G.A.2)  

Objectives:   1) Students  will  learn  that  a  3D  shape  may  have  multiple  unique  nets.

2) Students  will  use  a  Rubik’s®  Cube  to  test  if  a  potential  formation  of  6squares  is  a  cubic  net,  also  known  as  a  hexomino  net.

3) Students  will  compile  a  list  of  all  the  unique  cubic  nets.

Materials:   Solved  Rubik’s  Cube  (1  per  student)  Testing  Net  Variations  worksheet  (found  in  Student  Workbook)  Square  cut-­‐outs  sheet  (found  in  Student  Workbook)  Scissors  Tape  (optional)  Paper  for  notes  (optional)  

Procedure:   1) Prepare  6  squares  (cut  out)  prior  to  class  for  demonstration  purposes,and  tape  or  magnets  for  sticking  them  on  the  front  board.

2) Student  follow  along  on  their  Testing  Net  Variations  worksheet  as  youdemonstrate  how  the  two  example  problems  are  done.

3) Students  cut  out  the  6  squares  from  their  workbooks,  then  exploretheir  own  6-­‐square  formations,  testing  them  and  compiling  theirdiscoveries.

4) Save  the  last  5-­‐10  minutes  to  let  students  share  their  lists  of  uniquenets  and  formations  that  didn’t  work.

Notes  to  Teacher:   Students  can  roll  pieces  of  tape  into  circles  and  place  them  on  the  backs  of  their  squares.    That  way,  when  they  make  a  formation  on  their  desktops,  the  squares  will  not  slide  around  while  rolling  the  Rubik’s  Cube  over  them.    As  for  taking  notes,  I  have  my  student  compile  their  notes  on  the  backs  of  their  Testing  Net  Variations  worksheets.  

Page 25: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   23  

Here  are  the  11  possible  unique  net  variations  of  the  cube:  

Page 26: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  24  

Mix  &  Map  &  MatchCommon  Core:   Understand  that  a  two-­‐dimensional  figure  is  congruent  to  another  if  the  

second  can  be  obtained  from  the  first  by  a  sequence  of  rotations,  reflections,  and  translations.  (8.G.A.2)  

Represent  three-­‐dimensional  figures  using  nets  made  up  of  rectangles  and  triangles,  and  use  the  nets  to  find  the  surface  area  of  these  figures.  Apply  these  techniques  in  the  context  of  solving  real-­‐world  and  mathematical  problems.  (6.G.A.4)  

Objectives:   1) Students  will  map  3-­‐dimensional  shapes  onto  2-­‐dimensional  nets.

2) Students  will  be  able  to  read  and  rebuild  nets  to  match  to3-­‐dimensional  shapes.

Materials:   Templated  Nets;  multiple  copies  of  each  (found  in  Teacher’s  Edition)  Mix  &  Map  &  Match  worksheet  (found  in  Student  Workbook)  Crayons/markers/colored  pencils  Scissors  Rubik’s®  Cubes  (1  per  student)  Tape/magnets/clips  (for  steps  3  &  10)  

Procedure:   1) Prior  to  the  lesson,  make  multiple  copies  of  the  templatedhexomino/cubic  nets.  Each  student  will  need  2  nets.

2) As  students  are  getting  out  their  Rubik’s  Cube  and  Mix  &  Map  &  Matchworksheet,  hand  each  student  one  of  the  four  templated  nets  (dispersethem  randomly).

3) Help  the  class  work  through  the  steps  on  their  worksheet.    At  step  3,you  will  collect  up  all  of  the  nets  and  tape,  magnet,  or  clip  them  up  for  allto  see.    Then  students  will  randomly  trade  their  Rubik’s  Cubes.    Makesure  to  express  the  importance  of  not  twisting  or  turning  any  of  thecubes.

4) Students  should  continue  along  with  the  steps  outlined  in  theirinstructions.    As  students  are  working  on  step  5,  hand  each  of  themanother  templated  net  (different  from  the  one  they  currently  have).

5) For  step  7,  you  could  either  have  a  class  discussion,  or  have  thestudents  write  down  their  responses.

Page 27: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   25

6) After  step  9,  take  the  note  of  any  student  unable  to  match  theirRubik’s  Cube  back  to  their  two  nets.    You  will  need  to  group  themdifferently  for  steps  13-­‐17.

7) At  step  10,  you  will  need  to  collect  all  of  the  nets,  shuffle  (randomize)them,  label  them  1,2,3,…,  and  then  display  them  around  the  room.Students  can  set  aside  their  Rubik’s  Cube  until  step  13.    Students  will  findand  write  down  all  of  the  pairs  of  nets.

8) At  stage  13,  any  student  that  was  unable  to  rematch  after  step  9  willwait  until  all  others  are  paired  up,  and  will  then  join  a  group  of  two.    Oneof  the  other  two  partners  (with  their  matching  nets)  will  cut  up  both  oftheir  nets  in  step  15  to  trade.

9) Students  can  use  the  same  rolling  method  done  in  the  Testing  NetVariations  activity  when  checking  their  answers  in  step  17.

Notes  to  Teacher:   For  larger  class  sizes,  you  could  divide  the  room  into  halves,  and  for  steps  3  and  10  display  the  two  groups’  nets  separately.  

When  displaying  the  nets  at  step  10,  you  will  want  to  spread  the  nets  out  enough  for  all  students  to  be  able  to  view,  but  avoid  spreading  them  out  too  much  since  students  are  trying  to  identify  matches.  

Page 28: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

26

Page 29: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

27

Page 30: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

28  

Page 31: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

29

Page 32: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  

Solving  the  Rubik’s®  Cube  Common  Core:   Mathematical  Practice  Standards:  

1. Make  sense  of  problems  and  persevere  in  solving  them.2. Reason  abstractly  and  quantitatively.3. Construct  viable  arguments  and  critique  the  reasoning  of  others.4. Model  with  mathematics.5. Use  appropriate  tools  strategically.6. Attend  to  precision.7. Look  for  and  make  use  of  structure.8. Look  for  and  express  regularity  in  repeated  reasoning.

Objectives:   1) Students  will  reference  previous  knowledge  to  understand  the  Rubik’sCube  better.2) Students  will  learn  how  to  solve  the  Rubik’s®  Cube.

Materials:   Introductory  Information  sheets  (found  in  Student  Workbook:  Meeting  the  Cube,  Labeling  the  Cube)  Solution  Guide  sheets  (found  in  Student  Workbook)  “What’s  Next?”  worksheet  (found  in  Student  Workbook)  Rubik’s  Cubes  (1  per  student)  Stopwatches  (optional)  Internet  access  (optional)  

Procedure:   1) Read  through  the  Introductory  Information  sheets  as  a  class,  or  insmall  groups.  (Meeting  the  Cube  &  Labeling  the  Cube)

2) Have  students  start  working  through  the  Solution  Guide  with  theirRubik’s  Cube.    Feel  free  to  read  through  some  of  these  pages  as  a  class.That  way  if  questions  come  up,  students  may  be  able  to  learn  from  otherstudents.    *Working  through  the  Solution  Guide  will  take  multiple  days,and  some  students  will  progress  much  faster  than  others.

3) When  students  succeed  in  solving  the  Rubik’s  Cube,  have  them  try  thepatterns  on  the  “What’s  Next?”  worksheet.

Notes  to  Teacher:   There  are  many  solutions  to  solving  the  Rubik’s  Cube.  A  popular  ‘beginner’s  method’  can  also  be  found  in  the  You  CAN  Do  the  Rubik’s  Cube  Solution  Guide  and  online  at  http://www.youcandothecube.com/secret-­‐unlocked/  You  can  also  request  printed  Solution  Guides  for  your  class  by  writing  to  [email protected]  

30  

Page 33: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  

How  To  Videos  Common  Core:   Present  information,  findings,  and  supporting  evidence  such  that  

listeners  can  follow  the  line  of  reasoning  and  the  organization,  development,  and  style  are  appropriate  to  task,  purpose,  and  audience.  (CCRA.SL.4)  

Make  strategic  use  of  digital  media  and  visual  displays  of  data  to  express  information  and  enhance  understanding  of  presentations.  (CCRA.SL.5)  

Objectives:   1) Students  will  solidify  their  skills  of  solving  a  Rubik’s®  Cube  by  teachingothers.

2) Students  will  gain  experience  using  technology  by  creating  and  editinga  how  to  video.

Materials:   Rubik’s  Cubes  (possibly  1  per  student)  Recording  devices  (iPads,  smartphones,  computers,  etc.)  How  To  Videos  worksheet  (found  in  Student  Workbook)  

Procedure:   1) Organize  the  class  up  into  groups  of  two  and  assign  each  group  a  stageof  the  solution:

1. Meeting  the  Cube2. Reading  Algorithms3. Layer  1  –  Making  a  Cross  (Plus  Sign)4. Layer  1  –  Permuting  the  Cross5. Layer  1  –  Solving  the  Corners6. Solving  Layer  27. Layer  3  –  Making  a  Cross8. Layer  3  –  Permuting  the  Cross9. Layer  3  –  Permuting  the  Corners10. Layer  3  –  Orienting  the  Corners

If  you  don’t  have  enough  students  to  make  10  groups  you  could  have  some  work  individually,  you  could  assign  some  groups  two  stages  (pair  up  1  &  2,  pair  up  3  &  4),  or  you  could  omit  stages  1  &  2.    If  you  have  more  than  10  groups,  assign  some  stages  twice.  

2) Groups  should  review  the  steps  and  algorithms  needed  to  completetheir  assigned  stage.    Then  they  should  develop  a  script  using  their  HowTo  Videos  worksheets.

31  

Page 34: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  32  

3) Have  groups  check  in  after  they  have  completed  their  scripts,  and  afterthey  record  take  1  of  their  video,  so  that  you  may  give  feedback.

4) If  there  is  time  after  all  the  videos  are  complete,  you  could  have  aviewing  party  and  let  the  class  watch  them  all  in  order.

Notes  to  Teacher:   Constructive  feedback  about  their  progress  is  very  beneficial.    If  the  videos  turn  out  well  enough,  I  save  them  and  use  them  as  a  resource  for  my  next  group  of  students.  

My  students  used  iMovie.    One  great  feature  was  that  students  were  able  insert  text  on  top  of  the  recording,  which  allowed  students  to  have  the  algorithms  displayed  on  the  screen  during  their  video.  

The  video  lengths  of  each  individual  stage  seem  to  range  from  1.5-­‐3  minutes.  

Page 35: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   33

Writing  Algorithms- Intro  to  Speed  Solving  Common  Core:   Solve  word  problems  leading  to  equations  of  the  

form  px  +  q=  r  and  p(x  +  q)  =  r,  where  p,  q,  and  r  are  specific  rational  numbers.  Solve  equations  of  these  forms  fluently.  Compare  an  algebraic  solution  to  an  arithmetic  solution,  identifying  the  sequence  of  the  operations  used  in  each  approach.  (7.EE.B.4.A)  

Describe  the  effect  of  dilations,  translations,  rotations,  and  reflections  on  two-­‐dimensional  figures  using  coordinates.  (8.G.A.3)  

Objectives:   1) Students  will  learn  about  the  cycles  of  algorithms.

2) Students  will  learn  to  rewrite  algorithms  by  applying  the  Algebraic  ideaof  inverse  operations.

3) Students  will  learn  to  rewrite  algorithms  by  applying  the  Geometricidea  of  mirror/reflective  operations.

Materials:   Rubik’s®  Cubes  (1  per  student)  Access  to  mirrors  (optional)  Intro  to  Speed  Solving  worksheet  (found  in  Student  Workbook)  Writing  Inverse  Algorithms  worksheet  (found  in  Student  Workbook)  Writing  Mirrored  Algorithms  worksheet  (found  in  Student  Workbook)  Exploring  Advanced  Speed  Solving  Algorithms  worksheet  (found  in  

Student  Workbook)  Internet  access  (for  students)  

Procedure:   1) Students  should  start  with  a  solved  Rubik’s  Cube  and  their  Intro  toSpeed  Solving  worksheet.

2) Read  through  part  1  with  the  class.    Have  students  test  examples  1-­‐2  toverify  those  algorithms’  cycles.    *Sadly,  if  a  student  makes  a  mistakeduring  a  cycle,  they  will  have  to  resolve  their  cube  and  start  over.

3) In  part  2,  students  are  going  to  determine  the  cycle  values  of  3  morealgorithms.

4) In  part  3,  students  will  make  up  their  own  random  algorithm  and  testfor  its  cycle  value.    *Some  cycles  values  can  be  rather  high,  so  make  surestudents  stick  with  a  3-­‐5  turn  algorithm.

Page 36: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  34

5) Have  students  get  out  their  Writing  Inverse  Algorithms  worksheet  andread  through  the  intro  together  and  walk  through  the  example  together.

6) Students  will  then  write  three  inverse  algorithms,  test  them,  anddescribe  their  benefits  when  solving  the  Rubik’s  Cube.

7) When  you  get  to  the  Writing  Mirrored  Algorithms  worksheet,  you  caneither  have  all  the  students  pair  up  and  do  the  mirror  simulation,  or  youcan  take  two  volunteers  and  have  them  do  the  simulation  in  front  of  theclass  while  the  rest  do  the  observations.

8) After  going  through  the  intro  with  the  class,  have  the  students  writethe  three  algorithms.    This  is  where  the  optional  mirrors  could  come  in.    Ihave  had  students  perform  the  algorithms  for  #1-­‐3  while  observing  themoves  of  their  reflection.    It  is  challenging,  but  is  a  really  good  way  forstudents  to  experience  reflections.

9) Students  should  then  test  their  newly  written  algorithms  and  describetheir  benefits  when  solving  the  Rubik’s  Cube.

10) With  the  Exploring  Advanced  Speed  Solving  Algorithms  worksheet,have  students  start  by  looking  up  the  answers  to  #1-­‐2  online.

11) Read  through  the  new  notations  together.    Have  students  get  outtheir  Rubik’s  Cube,  solve  layers  1  &  2,  and  then  explore  and  attemptusing  OLL  and  PLL.

Notes  to  Teacher:   You  will  want  to  verify  that  your  school’s  internet  does  not  block  the  websites  needed  for  this  activity.  

Examples  of  mirrored  algorithms  can  be  clearly  seen  in  the  steps  used  to  solve  the  middle  layer  of  the  Rubik’s  Cube.  The  directions  for  moving  a  piece  to  the  right  edge  mirror  those  that  move  a  piece  to  the  left  edge.  

Page 37: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   35

Intro  to  Speed  Solving  

Part  1:  The  algorithms  that  we  use  have  cycles.    This  means  that  if  you  do  the  same  algorithm  over  and  over  again,  the  puzzle  will  eventually  go  back  to  the  state  it  started  in  prior  to  the  repeated  steps.  

Examples:  Layer  3  –  Permute  the  Cross  (U    R    U    R’    U    R    U2    R’    U)  has  a  cycle  of  3.  

Layer  1  –  Orient  the  Cross  (R    U’    R’    U    R)  has  a  cycle  of  12.  

Layer  2  algorithm    U    R    U’    R’    U’    F’    U    F    has  a  cycle  of  15.  

Starting  with  a  solved  Rubik’s  Cube,  test  examples  1  &  2  by  repeating  each  given  algorithm  the  specified  number  of  times.    When  you  are  done  ,  the  puzzle  should  be  returned  to  the  solved  state.  

Part  2:  Determine  the  cycle  values  of  the  following  algorithms:  

1) Layer  1  –  Solving  the  Corners  (R’    D’    R    D)  has  a  cycle  of  ______.

2) Layer  3  –  Orienting  the  Cross  (F    R    U    R’    U’    F’)  has  a  cycle  of  ______.

3) Layer  3  –  Permute  the  Corners  (U    R    U’    L’    U    R’    U’    L)  has  a  cycle  of  ______.

Part  3:  Make  up  your  own  algorithm  consisting  of  3-­‐5  turns.    The  algorithm  can  be  completely  random;  it  does  not  need  to  contribute  to  solving  the  cube.    Once  you  have  made  your  algorithm,  test  it  to  determine  its  cycle  value.  

6

6

3

Page 38: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.

   

www.youcandothecube.com

 36  

Writing  Inverse  Algorithms  

Inverse  operations  can  be  seen  in  writing  “return”  directions  off  of  a  map,  or  solving  an  algebraic  equation  (as  seen  below).  

Inverse  operations  have  us  “undo”  everything  that  has  been  done.    In  other  words,  inverse  operations  make  us  do  the  opposite  of  each  step  AND  in  the  reverse  order.  

Here  is  an  example  (this  is  not  one  of  the  learned  algorithms):  Original  algorithm:    L,  U’,  R’,  U  

Inverse  algorithm:      U’,  R,  U,  L’  

1) Layer  1/3  –  Solving  the  Corners:    R’  D’  R  DWrite  the  inverse  algorithm:  

2) Layer  3  –  Permute  the  Cross:    U  R  U  R’  U  R  U2  R’  UWrite  the  inverse  algorithm:  

3) Layer  3  –  Permute  the  Corners:    U  R  U’  L’  U  R’  U’  LWrite  the  inverse  algorithm:  

4) When  done,  compare  answers  with  a  neighbor.    Then  test  out  your  new  algorithms.5) When  will  these  algorithms  be  beneficial?

 

Looking  at  the  equation    5 = #$%&'

 

Following  the  order  of  operations   Following  inverse  operations  Start  at  x   End  at  what  x  equals  1) multiply  by  3 3) divide  by  32) add  2 2) subtract  23) divide  by  4 1) multiply  by  4Get  an  answer  of  5 Start  at  the  answer  5

D’, R’, D, R

U’, R, U2, R’, U’, R, U’, R’, U’

L’, U, R, U’, L, U, R’, U’

These algorithms reverse the order of a cycle. For example, if I wastrying to solve the corner piece shown, I would R’ D’ R D once.However, if that corner piece was in the same place, but white tilewas on the front face, that same algorithm would need to be used 5times (however its inverse would only be needed once).

Page 39: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com

 

37  

Writing  Mirrored  Algorithms  

Mirrored  (or  reflective)  operations  can  be  seen  by  observing  movements  in  a  mirror.    Let’s  compile  some  observations  by  simulating  mirrors.    Find  a  partner  and  stand  facing  each  other.    Indicate  who  will  be  the  “model”  and  who  will  be  the  mirror.    The  model  will  perform  a  couple  of  movements,  and  the  partner  will  act  as  if  they  were  the  reflection  in  the  mirror.  

Movements  by  model     Movements  by  mirror  Wave  with  left  hand     What  hand  is  Mirror  waving  with?  Pat  your  head  w/right  hand     Is  Mirror  patting  head?  With  what  hand?  Put  hands  behind  your  back     Where  are  Mirror’s  hands?  Slowly  rotate  right  arm  clockwise     Which  direction  is  Mirror’s  arm  rotating?  Turn  body  right,  rotating  90°  clockwise   Which  way  did  Mirror  rotate?  Lower  your  chin,  then  raise  it     When  did  Mirror’s  chin  go  down?  Up?  

What  we  hopefully  noticed,  was  that  with  mirrored  operations,  up  is  still  up,  down  is  still  down,  front  is  still  front,  and  back  is  still  back.    We  may  have  also  noticed  that  right  becomes  left,  left  becomes  right,  clockwise  becomes  counterclockwise,  and  counterclockwise  becomes  clockwise.  

Here  is  an  example:  Original  algorithm:        L,    U’,  R’,  U  

Mirrored  algorithm:    R’,  U,    L,    U’  

1) Layer  1/3  –  Solving  the  Corners:    R’  D’  R  DWrite  the  mirrored  algorithm:  

2) Layer  3  –  Permute  the  Cross:    U  R  U  R’  U  R  U2  R’  UWrite  the  mirrored  algorithm:  

3) Layer  3  –  Permute  the  Corners:    U  R  U’  L’  U  R’  U’  LWrite  the  mirrored  algorithm:  

4) When  done,  compare  answers  with  a  neighbor.    Then  test  out  your  new  algorithms.5) When  will  these  algorithms  be  beneficial?

 

L, D, L’, D’

U’, L’, U’, L, U’, L’, U2, L, U’

U’, L’, U, R, U’, L, U, R’

Again, these algorithms reverse the order of the cycles, but with a coupleof difference: First, pieces that you would line up on the right prior to solving will now need to be lined up on the left (and vice versa); and second, algorithms that were originally right-hand dependent will now be left-hand dependent (and vice versa).

Page 40: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  38

Exploring  Advanced  Speed  Solving  Algorithms  

1) What  does  acronym  OLL  stand  for?    What  does  OLL  mean?  (search  the  internet)

2) What  does  acronym  PLL  stand  for?    What  does  PLL  mean?  (search  the  internet)

In  order  to  use  them,  we  will  need  more  abbreviated  notations.    Here  are  the  notations  we  have  used  and  some  of  the  new  letters/sets  that  may  come  up  in  more  complex  algorithms:  

• F  (front)  –  the  side  facing  toward,  as  viewed  by  the  solver• B  (back)  –  the  side  that  is  opposite  the  front,  as  viewed  by  the  solver• L  (left)  –  the  side  to  the  left  of  the  front,  as  viewed  by  the  solver• R  (right)  –  the  side  to  the  right  of  the  front,  as  viewed  by  the  solver• U  (up)  -­‐    the  side  on  top,  as  viewed  by  the  solver• D  (down)  –  the  side  on  bottom,  as  viewed  by  the  solver

*The  six  letters  above  assume  a  90°  clockwise  rotation.• 2  (two)  –  turn  the  given  face  twice• ‘  (apostrophe)  –  turn  counterclockwise• f  (front  two  faces)• b  (back  two  faces)• l  (left  two  faces)• r  (right  two  faces)• u  (upper  two  faces)• d  (downward  two  faces)• x  (rotate  entire  cube)  –  D  will  become  F• y  (rotate  entire  cube)  –  R  will  become  F• z  (rotate  entire  cube)  –  U  will  become  R

• Solve  layers  1  and  2  of  a  scrambled  Rubik’s  Cube,  but  not  the  last  layer.    Then  go  to  oneof  the  following  sites  (top  preferred):

• http://www.cubezone.be/oll.html• https://ruwix.com/the-­‐rubiks-­‐cube/rubiks-­‐cube-­‐solution-­‐with-­‐advanced-­‐

friedrich-­‐method-­‐tutorial/orient-­‐the-­‐last-­‐layer-­‐oll/• https://www.speedsolving.com/wiki/index.php/OLL

Match  up  your  mixed-­‐up  third  layer  to  the  same  scenario  from  the  site’s  list.    Then  follow  the  provided  algorithm  to  orient  the  last  layer.  

3) When  successful  in  part  3,  go  to  one  of  the  following  sites  (top  preferred):• http://www.cubezone.be/pll.html• https://ruwix.com/the-­‐rubiks-­‐cube/rubiks-­‐cube-­‐solution-­‐with-­‐advanced-­‐

friedrich-­‐method-­‐tutorial/permutate-­‐the-­‐last-­‐layer-­‐pll/• https://www.speedsolving.com/wiki/index.php/PLL

Match  your  puzzle  to  the  same  scenario  on  the  site  and  follow  the  corresponding  algorithm.

x  

y  

z  

Orient Last Layer: to get all remaining pieces turned the right way

Permute Last Layer: to get all remaining pieces moved to correct locations

Page 41: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   39

Creating  Rubik’s  Art  Common  Core:   Without  matching  this  to  specific  standards,  this  block  of  activities  

involves  creativity,  collaboration,  cooperation,  computer  skills,  photo  editing,  blueprinting,  and  pattern  recognition.  

Objectives:   1) Students  will  be  able  to  replicate  color  configurations  on  one  face  of  aRubik’s®  Cube.

2) Students  will  design  their  own  81-­‐pixel  picture/pattern,  and  thenreplicate  it  using  9  Rubik’s  Cubes.

3) Students  will  gain  exposure  to  photo  editing,  and  will  use  twoparticular  programs  to  create  larger-­‐scaled  Rubik’s  mosaics.

Materials:   Crayons/markers/colored  pencils  Scissors  Rubik’s  Cubes  (more  cubes  means  larger  mosaics  and  more  detail)  

*can  be  borrowed  through  YouCanDoTheCube.comPractice  &  Pixelate  worksheet  (found  in  Student  Workbook)  Building  a  Mini-­‐mosaic  worksheet  (found  in  Student  Workbook)  Designing  a  Rubik’s  Mosaic  using  Gimp  worksheet  (found  in  Student  

Workbook)  Designing  a  Rubik’s  Mosaic  using  Twist  the  Web  worksheet  (found  in  

Student  Workbook)  Computers,  with  Gimp  2  software  installed  (free  software)  Computers,  with  Internet  access  (specifically  Google  Chrome)  Printer  (optional)  

Procedure:   1) With  the  Practice  &  Pixelate  worksheet  and  a  Rubik’s  Cube,  havestudents  complete  tasks  #1-­‐2.

2) As  a  class,  discuss  responses  to  #2  and  share  strategies.

3) Have  students  get  some  coloring  utensils  (only  yellow,  blue,  orange,red,  and  green)  and  draw  a  picture  or  pattern  for  #3.    I  recommendhaving  extra  copies  of  this  worksheet  ready  in  case  any  students  makemistakes,  want  to  start  over,  or  want  to  draw  a  second  picture/pattern.

4) Students  transfer  their  picture/pattern  onto  the  Building  a  Mini-­‐Mosaic  worksheet.    Then  they  cut  out  the  9  3x3  squares.

Page 42: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com  40

5) When  a  number  of  students  are  ready,  group  them  together,  give  thegroup  9  Rubik’s  Cubes,  and  have  them  help  each  other  build  their  mini-­‐mosaics.    *Your  group  sizes  depend  on  access  to  Rubik’s  Cubes.    Take  thenumber  of  Rubik’s  Cubes  you  have  and  divide  that  by  9.    That  is  howmany  groups  you  can  have.

6) Students  will  log  onto  a  computer  that  contains  Gimp  2.    They  will  thenfollow  the  instructions  on  the  Designing  a  Rubik’s  Mosaic  using  Gimpworksheet.    *If  computers  are  limited,  pair  students  up  and  have  them  doit  together.    *Depending  on  time  and  classroom  management,  you  maywant  to  set  expectations  on  step  #1,  “getting  a  picture”.

7) Now  that  students  have  experienced  the  photo  editing  needed  tocreate  a  Rubik’s  mosaic,  they  will  use  a  web-­‐based  program  that  does  alittle  more  of  the  work  for  them.    They  will  need  a  computer  with  internetaccess  through  Google  Chrome  and  the  Designing  a  Rubik’s  Mosaic  usingTwist  the  Web  worksheet.    Students  will  follow  the  instructions  on  theworksheet  to  create  a  Rubik’s  mosaic.  *For  #9,  you  may  want  to  instructstudents  to  save  their  work  instead  of  printing,  because  printing  uses  alot  of  paper.

8) Show  the  class  some  of  the  art  made  using  Twist  the  Web.    Havestudents  vote  on  one,  print  the  blueprint  for  the  mosaic,  and  have  theclass  work  together  on  building  it.    *Art  designed  on  Gimp  2  can  be  used,but  it  won’t  print  in  a  nicely  blueprinted  format  like  Twist  the  Web.

Notes  to  Teacher:   Some  of  my  students  tend  to  spend  too  much  time  looking  for  (or  taking)  pictures  to  use  when  making  mosaics  with  Gimp  and  Twist  the  Web.    Again,  setting  expectations  about  how  long  they  have  to  take  or  find  a  photo  (and  even  what  the  photos  can  contain)  will  help  keep  students  on  task.  

Students  will  find  out  that  some  pictures  transform  into  Rubik’s  mosaics  better  than  others.    Pictures  with  a  lot  of  colors,  lots  of  details,  and  small  main  objects  tend  to  transfer  poorly.    I  will,  sometimes,  steer  students  to  cartoon  or  clip-­‐art  pictures.  

Gimp  2  software  can  be  downloaded  at:  https://www.gimp.org/downloads/    

Page 43: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   41  

Making  a  2x2  Rubik’s  Cube  Common  Core:   Solve  real-­‐world  and  mathematical  problems  involving  area,  volume  and  

surface  area  of  two-­‐  and  three-­‐dimensional  objects  composed  of  triangles,  quadrilaterals,  polygons,  cubes,  and  right  prisms.  (7.G.B.6)  

Objectives:   1) Students  will  learn  how  a  3x3  Rubik’s  Cube  can  be  modified  to  make  a2x2  Rubik’s  Cube.

2) Students  will  create  a  solution  guide  for  solving  a  2x2  Rubik’s  Cube  bymodifying  their  solution  guide  for  a  3x3  Rubik’s  Cube.

Materials:   Crayons/marker/colored  pencils  Scissors  Rubik’s  Cubes  (1  per  student)  Tape  Making  a  2x2  Rubik’s  Cube  worksheet  (found  in  Student  Workbook)  Cut-­‐outs  for  a  2x2  Rubik’s  Cube  worksheet  (found  in  Student  Workbook)  Making  a  2x2  Solution  Guide  worksheet  (found  in  Student  Workbook)  

Procedure:   1) Have  students  gather  needed  materials:    Making  a  2x2  Rubik’s  Cubeworksheet,  a  Rubik’s  Cube,  coloring  utensils,  scissors,  tape,  and  the  cut-­‐outs  for  a  2x2  Rubik’s  Cube  worksheet.

2) Students  will  then  follow  the  directions  on  the  Making  a  2x2  Rubik’sCube  worksheet.

3) When  students  finish,  have  them  share  their  responses  to  #5  (ordiscuss  as  a  class).

4) Have  students  complete  the  Making  a  2x2  Solution  Guide  worksheet,and  use  it  to  solve  their  2x2.

Notes  to  Teacher:   Relating  this  way  back  to  “The  Man,  The  Cube,  Its  Impact”,  I  speculate  to  my  students  that  this  is  why  the  3x3  Rubik’s  Cube  was  constructed/completed  first,  because  the  easiest  way  to  make  a  2x2,  is  by  modifying  a  3x3.  

Page 44: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

  ©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.           www.youcandothecube.com    

Making  a  2x2  Rubik’s®  Cube    You  are  going  to  make  a  2x2  Rubik’s  Cube.  

1)   Cut  out  24  squares  (found  on  the  Cut-­‐Outs  page).    Color  them:  4  yellow,  4  blue,  4  orange,  4  red,  and  4  green  (leaving  4  white).    The  squares  should  measure  about  1”  x  1”.  

 2)   Tape  the  squares  onto  the  corner  pieces  of  the  corresponding  sides.  

                                  *Do  not  do  any  taping  on  the  edge  pieces.      

3)   You  now  have  a  2x2  Rubik’s  Cube.    Turn  it  slowly  to  begin,  as  some  pieces  of  paper  may  catch.    If  so,  curl  those  edges  upward.  

 4)   Mix  it  up  and  then  solve  it.    Have  some  tape  nearby  just  in  case  some  of  your  squares  come  

loose.    

5)   What  are  the  similarities  and  differences  between  solving  the  3x3  and  the  2x2?    Similarities:    

              Differences:              

The two main similarities are: Solving the first layer corners Solving the last layer corners

Some of the big differences are: There are no center pieces to indicate the color the side should be There is no layer one cross There is no layer 2 There is no layer 3 cross

42  

Page 45: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,

©1974  Rubik’s®  Used  under  license  Rubik’s  Brand  Ltd.  All  rights  reserved.    www.youcandothecube.com   43

Making  a  2x2  Solution  Guide  

Let’s  make  a  solution  guide  for  the  2x2  Rubik’s  Cube.    U

se  our  3x3  guide,  and  cross  out  any  step  that  applies  to  an  edge  piece.    W

e  now  have  a  guide  for  

solving  the  2x2  Rubik’s  Cube.    Try  it  out.  

Page 46: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,
Page 47: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,
Page 48: Rubik’sCubeUni tStudy:Teacher’sGuidelghttp.60951.nexcesscdn.net/80487FB/Downloads/resources/...Ernö Rubik was born on July 13, 1944 in Budapest, Hungary to his parents, Erno Rubik,