21
An overview of Classical Orthogonal Polynomials Roberto S. Costas-Santos University of Alcal´ a Work supported by MCeI grant MTM2009-12740-C03-01 www.rscosan.com Gaithersburg, March 25, 2014 NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

Roberto S. Costas-Santos University of Alcal a · 2014. 3. 25. · An overview of Classical Orthogonal Polynomials Roberto S. Costas-Santos University of Alcal a Work supported by

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • An overview of Classical Orthogonal Polynomials

    Roberto S. Costas-SantosUniversity of Alcalá

    Work supported by MCeI grant MTM2009-12740-C03-01

    www.rscosan.com

    Gaithersburg, March 25, 2014

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Outline

    1 The basicsClassical Orthogonal PolynomialsThe Favard’s theoremMy First result: the Degenerate Favard’s Theorem

    2 The SchemesThe Classical Hypergeometric Orthogonal PolynomialsThe Classical basic Hypergeometric Orth. Polyn.

    3 Some ResultsCharacterization TheoremHypergeometric and basic hypergeometric representationsThe Connection ProblemOne example. Big q-Jacobi polynomials

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • THE BASICS

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Classical Orthogonal Polynomials

    Let (Pn) be a polynomial sequence and u be a functional.

    Property of orthogonality

    〈u,PnPm〉 = d2nδn,m.

    Distributional equation:

    D(φu) = ψu, degψ ≥ 1, deg φ ≤ 2.

    Three-term recurrence relation:

    xPn(x) = αnPn+1(x) + βnPn(x) + γnPn+1(x).

    The weight function dµ(z) = ω(z) dz

    〈u,P〉 =∫

    ΓP(z) dµ(z), Γ ⊂ C, .

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • 1 Continuous classical orthogonal polynomials

    d

    dx(φ(x)ω(x)) = ψ(x)ω(x),

    2 ∆-classical orthogonal polynomials

    ∇(φ(x)ω(x)) = ψ(x)ω(x),

    ∆f (x) = f (x + 1)− f (x), ∇f (x) = f (x)− f (x − 1),

    3 q-Hahn classical orthogonal polynomials

    D1/q(φ(x)ω(x)) = ψ(x)ω(x),

    Dqf (x) =f (qx)−f (x)x(q−1) , x 6= 0, Dqf (0) = f

    ′(0),

    x(s) = c1qs + c2.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Some families

    Continuous Classical OP: Jacobi, Hermite, Laguerre andBessel.

    ∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier,etc.

    q-Classical OP: Askey Wilson, q-Racah, q-Hahn, Continuousq-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre,Al-Salam-Chihara, Stieltjes-Wigert, etc.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Some families

    Continuous Classical OP: Jacobi, Hermite, Laguerre andBessel.

    ∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier,etc.

    q-Classical OP: Askey Wilson, q-Racah, q-Hahn, Continuousq-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre,Al-Salam-Chihara, Stieltjes-Wigert, etc.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Some families

    Continuous Classical OP: Jacobi, Hermite, Laguerre andBessel.

    ∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier,etc.

    q-Classical OP: Askey Wilson, q-Racah, q-Hahn, Continuousq-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre,Al-Salam-Chihara, Stieltjes-Wigert, etc.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • The Favard’s theorem

    Let (pn)n∈N0 generated by the TTRR

    xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x).

    Favard’s theorem

    If γn 6= 0 ∀n ∈ N then there exists a moments functionalL0 : P[x ]→ C so that

    L0(pnpm) = rnδn,m

    with rn a non-vanishing normalization factor.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Degenerate version of Favard’s theorem

    Theorem

    If there exists N so that γN = 0, then (pn) is a MOPS with respectto

    〈f , g〉 = L0(fg) +∑j∈A

    L1(T(N)(f )T (N)(g)).

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • THE RELEVANT FAMILIES

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • The Classical Hypergeometric Orthogonal Polynomials

    Wilson Racah

    Cont. Dual Hahn Cont. Hahn Hahn Dual Hahn

    Meixner-Pollaczek Jacobi Meixner Krawchuk

    laguerre Charlier

    Hermite

    F

    F F

    F

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • The Classical basic Hypergeometric Orth. Polyn.

    The scheme is too big to put it on here,let’s go outside to see it ;)

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • SOME RESULTS

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Characterization Theorems. The continuous version

    Let (Pn) be an OPS with respect to ω. The following statementsare equivalent:

    1 Pn is classical, i.e. (φ(x)ω(x))′ = ψ(x)ω(x).

    2 (P ′n+1) is a OPS.

    3 (P(k)n+k) is a OPS for any integer k .

    4 (First structure relation)

    φ(x)P ′n(x) = α̂nPn+1(x) + β̂nPn(x) + γ̂nPn−1(x).

    5 (Second structure relation)

    Pn(x) = α̃nP′n+1(x) + β̃nP

    ′n(x) + γ̃nP

    ′n−1(x).

    6 (Eigenfunctions of SODE)

    φ(x)P ′′(x) + ψ(x)P ′(x) + λP(x) = 0.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Characterization Theorem (cont.)

    Let (Pn) be an OPS with respect to ω. The following statementsare equivalent:

    1 Pn is classical, i.e. (φ(x)ω(x))′ = ψ(x)ω(x).

    2 The Rodrigues Formula for Pn

    Pn(x) =Bnω(x)

    dn

    dxn(φn(x)ω(x)), Bn 6= 0.

    3 φ(x)(PnPn−1)′(x) =

    gnP2n(x)− (ψ(x)− φ′(x))Pn(x)Pn−1(x) + hnP2n−1(x)

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Hypergeometric and basic hypergeometric representations

    The continuous and discrete COP can be written in terms of

    rFs

    (a1, a2, . . . , arb1, b2, . . . , bs

    ∣∣∣∣ z) = ∑k≥0

    (a1)k(a2)k . . . (ar )k(b1)k(b2)k . . . (bs)k

    zk

    k!.

    The q-discrete COP can be written in terms of

    rϕs

    (a1, . . . , arb1, . . . , bs

    ∣∣∣∣ z) = ∑k≥0

    (a1; q)k . . . (ar ; q)k(b1; q)k . . . (bs ; q)k

    ((−1)kq(

    k2))1+s−r zk

    (q; q)k.

    (a)k = a(a + 1) · · · (a + k − 1)

    (a; q)k = (1− a)(1− aq) · · · (1− aqk−1)

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • The Connection Problem

    The connection problem is the problem of finding the coefficientsck;n in the expansion of Pn in terms of another sequence ofpolynomials Rk , i.e.

    Pn(x) =n∑

    k=0

    ck;nRk(x).

    We are interested into obtaining such coefficients for Classicalorthogonal polynomials in a enough ‘general’ context.

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • The example. Big q-Jacobi polynomials

    Again let’s go to File 2 :D

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • Some References

    (with J.F. Sánchez-Lara) Extensions of discrete classicalorthogonal polynomials beyond the orthogonality. J. Comput.Appl. Math. 225 (2009), no. 2, 440–451

    (with F. Marcellán) q-Classical orthogonal polynomial: Ageneral difference calculus approach. Acta Appl. Math. 111(2010), no. 1, 107–128

    (with J.F. Sánchez-Lara) Orthogonality of q-polynomials fornon-standard parameters. J. Approx. Theory 163 (2011), no.9, 1246–1268

    (with F. Marcellán) The complementary polynomials and theRodrigues operator of classical orthogonal polynomials. Proc.Amer. Math. Soc. 140 (2012), no. 10, 3485–3493

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  • FINALLY....

    THANK YOUFOR YOUR ATTENTION !!

    NIST, 2014

    R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials