36
Ressources Minérales pour les ENergies Renouvelables Olivier Vidal, CNRS, Isterre [email protected] MI 24/03/2015

Ressources Minérales pour les ENergies Renouvelables · Ressources Minérales pour les ENergies Renouvelables Olivier Vidal, CNRS, Isterre [email protected] MI 24/03/2015

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Ressources Minérales pour les ENergies

Renouvelables

Olivier Vidal, CNRS, Isterre

[email protected]

MI 24/03/2015

Population Energy

17% 25 to 50% 100%

of global electricity generation

(about 40% of global E demand)

Evolution of hydro, solar and wind energy production for the next 40 years

The available global energy

scenarios rely on a strong

increase in the share of solar

and wind energy

Solar and wind sources are diluted and require large facilities

Latest wind turbine generation:

6 Mw, basement at 60 m depth,

rotor > 150 m, >1500 t of steel

800 of such wind turbines are necessary to

produce the same energy (Wh) as a 1300 MW

nuclear plan

Steel intensity

(t/MW capacity)

400

300

200

100

0

Wind 250

20 Nuclear

Hydro

60

In 2050, the cumulative amount of concrete, steel, Al, Cu and glass sequestered

in wind and solar facilities will be 2 to 8 times the 2010 world production

PH 2002

PH 2002

PV from PH 2002

W 2010

Materials requirements for wind and solar energy production facilities

Vidal et al., 2013 (Nature geoscience)

Mil

lion t

ons

years

Population Energy

Base metals

Need of energy to produce metals

• “21 % of the global energy consumed by the industry in 2011 was used for the

production of steel + cement” (international energy outlook 2013)

• « Energy consumption and intensity in mining and mineral processing is rising at

around 6% per annum » (Australian Bureau of Agricultural and Resource Economics - 2010)

• “1 tCO2 is generated for 1t of produced concrete” (Natesan et al., 2003) and about 2 t CO2

are generated for 1 t of produced steel.

Need of metals to produce energy

The energy-raw materials nexus

Objectifs du projet ReMinER (focalisé sur les énergies renouvelables):

- Quelle intensité matérielle pour produire l’énergie, stocker et transporter l’énergie ?

Spécialistes des technos actuellement en développement, ingénierie et processus

- Quelle intensité énergétique pour produire les métaux ? spécialistes de l’industrie

extractive - Quels impacts économiques et sociaux Economistes et sociologues/géopolitique - Quelles réserves et ressources primaires et secondaires ? Sciences de la terre

- Quels sont les flux de matière ? - Compilation et intégration des données: création d’une base de format Wiki.

Compétence en gestion de bases de données

- Intégration dans un modèle dynamique et contraint par des données historiques,

pour modéliser les tendances futures. Compétences en modélisation dynamique

0

100

200

300

400

500

600

700

800

900

1000

Hyd

ropo

wer

Nuc

lear

Gas

Coa

l

Wind land

Wind offsho

re

PV ro

of

PV fixe

d

PV tr

acke

r

CSP

ste

el (t

/MW

)

1) Material intensity of fossil and renewable energy

production facilities

1) Material intensity of fossil and renewable energy

production facilities

Impact of new technologies

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Hydropower

Nuclear

Gas

Coal

Wland

Wsea

PVroof

PVfixed

PVtracker

CSP

copper(t/M

W)

Falconer 2009 (HV connection)

Wind turbine component

Connected wind turbine farm

1) Material intensity of production facilities

Systèmes et composants…

1) Material intensity of other energy sectors

• For a storage capacity = 10% of the production capacity -> 0.5 to 2Mt Cu

• 45000 km of new HV network until 2030 -> 0.5 to 2Mt Cu (Ten Year Network

Development Plan)

• 100 millions hybrid and electric vehicles in 2035, (60kg/vehicule) -> 6 Mt Cu => 175 kt Nd

Sum: 10-20 Mt Cu (2050) to be added to the 50 Mt

estimated previously.

4 ans de production I annuelle mondiale

1) Material intensity of storage and transport. Cu

example

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5

Energyconsump

oninM

J/kg

Oreheadgrade(%Cu)

2) Energy intensity of

metal production

Ore grade vs time

Energy vs ore grade

Chapman (1974) 2080

2040

1980 1950 1920

2)Energy intensity of

metal production

Improvement of

technology and energy

efficiency + secondary

production

15

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5

Energyconsump

oninM

J/kg

Oreheadgrade(%Cu)

Chapman (1974) 2080

2040

1980 1950 1920

3) Enjeux géopolitiques, économiques & sociaux

1) l’organisation des filières en Europe & France,

2) les évolutions de la demande et la géographie de l’offre,

3) l’anticipation d’éventuels conflits locaux associés à l’exploitation minière.

Cu, Fe, Li, Ga

Demand Social and industrial

developpement

Resources

and reserves

Price

Investment and production cost

Debt

Extraction

Use

Concentration

Purification

Resources

(réserves)

Recycling

4) Modelling the whole

value chain: In contrast to

oil & gas, metals can be

recycled (secondary

reserves)

EOL

dsheep/dt= sheep(t)*(birth rate - wolves(t)*predation rate)

dwolves/dt= wolves(t)*(sheep(t)*delta - death rate)

death rate

birth rate

Integration of data: Dynamic Modelling (prey-predator)

Resource

« Wealth »

(Capital, labour,

infrastructure, energy, etc)

Demand

Prey-predator modelling

dD/dt = D(t)*τ

dR/dt= R(t)*(taux - C(t)*beta(t))

dW/dt= W(t)*(R(t)*delta - gamma)

C-> R

R -> C

Increase of reserves (I) due to lowering ore grade (R(t) = R1900exp(taux*t),

equivalent to the regeneration of renewable resources

Erosion of

capital

Efficiency of wealth to

extract the resource.

Recycling

Primary extraction

Reserves I Products

made of I

EOL Products

made of II

Lost

Wealth I

Wealth II

Technology

Demand

Technology

Energy I

Energy II

Demand

Ore grade

Integration of data: Dynamic Modeling (prey-predator)

Delay (life time)

c 20

Dem-Prod

40

30

20

10

0

1900 1930 1960 1990 2020 2050

Mt/

Yea

r

secondary production

pimary production

Total production

The copper example: reserves (primary) and ore grade

The model fits the historical

reserves

http://www.icsg.org/index.php/press-releases/finish/170-publications-press-releases/1991-2015-01-06-press-release-directory-copper-mines-plants

The model fits the historical

data of production

Ore grade

Stock in use

Non-recycled Cu

Data from Glöser et al. (2014)

Annual generated EOL flow

c 22

The copper example: secondary flows and stocks

Post-consumer flow

stock of Cu in use

Stock of non-recycled

Cu

Dem-Prod

40

35

30

25

20

15

10

5

0

1900 1930 1960 1990 2020 2050 2080

Mt/

Year

secondary production

pimary production

"Flux EOL I+II" : Current

"Production I + II" : Current

perdu total : Current

demande : Current

Recycled

Primary Cu

Stock

1500

1200

899.2

598.8

298.4

-2

1900 1940 1980 2020 2060 2100

Mt

Stock techno II : Current

Stock techno I : Current

Stock EOL : Current

stock total : Current

Stock perdu : Current

Long term trends (stocks)

Cu in EOL

Long term trends (flow)

Primary Cu

in products

Recycled Cu

in products

Mohr model, which aggregates detailed logistic data from each copper producing country to form planet-wide trends

https://lasttechage.wordpress.com/2014/02/26/is-copper-entering-crisis-mode/

The model fits evolution of

production predicted by

Northey et al. (2013)

Demand > supply ?

EOL

Not recycled

c 23

capital

4000

3000

2000

1000

0

1900 1950 2000 2050 2100 2150

Time (Year)

A.U

.

Capital Recyclage : Current

Capital I : Current

Wealth (I)

Correlation Wealth (I) -GDP variations Between 1970 and 2010

The model predicts variations of « Wealth » equal to the variations of world real GDP and realistic production costs

c 24

depreciation capital

120 B

96 B

72 B

48 B

24 B

0

1900 1930 1960 1990 2020 2050

euro

s/Y

ear

DeprecCapitalIeuros : Current

Production costs

energie I + II

1500

1125

750

375

0

1900 1950 2000 2050 2100 2150

Time (Year)

GJ/

Yea

r

Energie production II : Current

Energie production I : Current

"Energie production I + II" : Current

Total Energy

Primary

prod. Secondary

prod.

Total

prod.

energie/Mt

120

102.5

85

67.5

50

2000 2010 2020 2030 2040 2050

Time (Year)

"Energie/Mt" : Current

30% increase

Energy/Mt Cu (I + II)

c 25

Postponing the shift towards renewable

energy costs energy !

GJ/y

ear

GJ/t

on

energie/Mt

120

102.5

85

67.5

50

2000 2010 2020 2030 2040 2050

Time (Year)

"Energie/Mt" : Current

30% increase

Energy/Mt Cu (I + II)

Waiting longer makes little sense because if

demand continues to rise, the primary metal

required to build the infrastructure might

become difficult to find, and it is likely to

become expensive (copper is hardly

substituable)

Dem-Prod

40

30

20

10

0

1900 1940 1980 2020 2060 2100

Mt/

Yea

r

secondary production

pimary production

Total production

demande : Current

Demand > supply ?

c 26

Postponing the shift towards renewable

energy costs energy !

The evolution of raw material prices following a

possible decline of production in a context of

rising demand would have a dramatic effect on

our capacity to achieve the energy transition

GJ/t

on

27

2015 • Première version de la base de données Wiki en ligne - NoSQL database pour gérer

les LCI-LCIA et les intensités en ressource des secteurs de production d’E:

Les bases existantes (e.g. Ecoinvent, ELCD, GaBi, NEEDS) ont des formats différents

(ecospold1, ecospold2, ILCD, SimaPro CSV, etc.) et sont difficiles à désagréger.

Structuration en une base unique avec représentation ontologique, meilleure adéquation

requêtes - besoins.

• Economie: Modèle économique type Goodwin Keen avec matrices d’I/O qui sera

incorporé au modèle dynamique + approche indépendante en Equilibre Général

Calculable.

• Géopolitique/Socio : organisation des filières en Europe & France, évolutions de la

demande et la géographie de l’offre, anticipation d’éventuels conflits locaux associés

à l’exploitation minière: Cu, Li

• Modélisation dynamique: Intégration du module économique et application en

régional, extension aux petits métaux. Lien réserves - prix – Energie - coûts de

production

"price"

35,000

28,000

21,000

14,000

7000

0

1900 1950 2000 2050 2100

Time (Year)

euro

s/t

"coutprod/Mt" : Current

prix : CurrentPostponing the shift towards renewable

energy costs energy !

Waiting longer makes little sense because if

demand continues to rise, the primary metal

required to build the infrastructure might

become difficult to find, and it is likely to

become VERY expensive (copper is hardly

substitutable)

The evolution of raw material prices following a

possible decline of production in a context of

rising demand would have a dramatic effect on

our capacity to achieve the energy transition

c 28

Price

Gain Net

400 B

300 B

200 B

100 B

0

1900 1940 1980 2020 2060 2100

Time (Year)

euro

s/Y

ear

gainNeteuros : Current

c 29

energie I + II

1500

1125

750

375

0

1900 1950 2000 2050 2100 2150

Time (Year)

GJ/

Yea

r

Energie production II : Current

Energie production I : Current

"Energie production I + II" : Current

Total Energy

Primary

prod. Secondary

prod.

Total

prod.

energie/Mt

120

102.5

85

67.5

50

2000 2010 2020 2030 2040 2050

Time (Year)

"Energie/Mt" : Current

30% increase

Energy/Mt Cu (I + II)

Waiting longer makes little sense because if

demand continues to rise, the primary metal

required to build the infrastructure might

become difficult to find, and it is likely to

become expensive (copper is hardly

substituable)

Dem-Prod

40

30

20

10

0

1900 1940 1980 2020 2060 2100

Mt/

Yea

r

secondary production

pimary production

Total production

demande : Current

Demand > supply ?

c 30

Postponing the shift towards renewable

energy costs energy !

Energy production: 0.15 – 1% increase of the present raw materials production each of the next 40 years...

0

10

20

30

40

50

60

1920 1940 1960 1980 2000 2020 2040

Mt/year

Year

7%/year

5.6%/yearSolar &

wind

infrastru

cture

Al

Between 2010 and 2030, the yearly global demand in Ga, In, Se, Te, Dy, Nd, Pr et Tb for

solar and wind facilities could be boosted to 10 to 230% of the 2010 world supply

In addition to base metals there a need of «scarce metals» in increasing quantities

c 32

http://illusionofprosperity.blogspot.fr/2010/07/of-metals-and-

men.html

depreciation capital

120 B

96 B

72 B

48 B

24 B

0

1900 1930 1960 1990 2020 2050

euro

s/Y

ear

DeprecCapitalIeuros : Current

dsheep/dt= sheep(t)*(birth rate - wolves(t)*predation rate)

dwolves/dt= wolves(t)*(sheep(t)*delta - death rate)

death rate

birth rate

Resource

« Wealth »

(Capital, labour,

infrastructure, energy, etc)

Demand

Prey-predator modelling

dD/dt = D(t)*τ

dR/dt= R(t)*(taux - C(t)*beta(t))

dC/dt= C(t)*(R(t)*delta - gamma)

C-> R

R -> C

Increase of reserves (I) due to lowering ore grade (R(t) = R1900exp(taux*t),

equivalent to the regeneration of renewable resources

Erosion of

capital

Efficiency of wealth to

extract the resource.

Dem-Prod

40

35

30

25

20

15

10

5

0

1900 1930 1960 1990 2020 2050 2080

Mt/

Year

secondary production

pimary production

"Flux EOL I+II" : Current

"Production I + II" : Current

perdu total : Current

demande : Current

Recycled

Primary Cu

Stock

1500

1200

899.2

598.8

298.4

-2

1900 1940 1980 2020 2060 2100

Mt

Stock techno II : Current

Stock techno I : Current

Stock EOL : Current

stock total : Current

Stock perdu : Current

Long term trends (stocks)

Cu in EOL

Long term trends (flow)

Primary Cu

in products

Recycled Cu

in products

Demand > supply ?

EOL

Not recycled

c 34

Can we make it ? and where ?

Recycling will be fed by EOL products. We should keep them at home instead

of exporting them abroad !

UK

In the US, it is estimated that 50-80 percent of the waste collected for recycling

is being exported to India, Africa and China.

EU

http://www.weee-

forum.org/sites/default/files/documents/2012_movement

s_of_waste_across_the_eu_eea.pdf

China import of scrap and waste Cu :

about 4 Mt/a (global EOL flow = 10

Mt/a)

http://www.tradingeconomics.com/china/imports-of-copper-waste-scrap Chinese refinery devoted to the

extraction of copper from e-

waste.

http://shanghaiscrap.com/2013/09/page/2/

it is cheaper to export e-waste to

developing countries than it is to locally

recycle (yet).

- In 2005, inspections of 18 European

seaports found that approximately 47%

of exported waste was illegal

- 75% of the exported e-waste are

working machines