17
RESEARCH ARTICLE Open Access Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects Takayuki Watanabe * , Hideaki Takeuchi, Takeo Kubo * Abstract Background: The ecdysone receptor (EcR) regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform- specific activation function (AF)-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results: The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions: Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional regulation mechanisms. Backgrounds Morphogenetic events during insect development are trig- gered by ecdysteroids. The major insect ecdysteroid, 20- hydroxyecdysone (20E), binds directly to a heterodimeric transcription factor comprising two nuclear receptors, the ecdysone receptor (EcR) and the ultraspiracle, to activate a complex transcriptional cascade [1]. In the holometabo- lous insects, there are two or three EcR isoforms (A and B1 isoforms; Drosophila has an additional B2 isoform) that are produced from a single genetic locus by differential promoter usage and alternative splicing [2]. The EcR iso- forms have a common C-terminal region that includes the DNA binding domain and the ligand binding domain (the C-F domains), but also have isoform-specific regions in the N-terminal A/B domain. In the holometabolous insects, each EcR isoform govern distinct steroid-stimu- lated responses during metamorphosis. In Drosophila, the EcR-A isoform is predominantly expressed in the prolif- erative tissues during metamorphosis, and is required for adult-specific developmental processes. In contrast, the EcR-B isoforms (B1 and B2 isoforms) are expressed in the larva-specific tissues, and are involved in 20E-triggered lar- val tissue remodeling during metamorphosis [2-7]. In the red flour beetle Tribolium castaneum, the EcR-A isoform has a dominant role in transduction of the ecdysteroid action by regulating the expression of 20E-response genes [8]. Only the A isoform has been identified in basal direct- * Correspondence: [email protected]; [email protected] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Watanabe et al. BMC Evolutionary Biology 2010, 10:40 http://www.biomedcentral.com/1471-2148/10/40 © 2010 Watanabe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

RESEARCH ARTICLE Open Access Structural diversity and ......The major insect ecdysteroid, 20-hydroxyecdysone (20E), binds directly to a heterodimeric transcription factor comprising

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • RESEARCH ARTICLE Open Access

    Structural diversity and evolution of theN-terminal isoform-specific region of ecdysonereceptor-A and -B1 isoforms in insectsTakayuki Watanabe*, Hideaki Takeuchi, Takeo Kubo*

    Abstract

    Background: The ecdysone receptor (EcR) regulates various cellular responses to ecdysteroids during insectdevelopment. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF)-1 region. Although distinct physiologic functions of the EcR isoforms have beencharacterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in whichonly A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, weperformed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms ininsects.

    Results: The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, includingdirect-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealedthat the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures andinsect subgroup-specific structural modifications. The A isoform-specific region generally contained four conservedmicrodomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specificregion contained three conserved microdomains, including an acidic activator domain-like motif. In addition, theEcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end.

    Conclusions: Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptionalregulation, the microdomain structures identified in the isoform-specific A/B domains might function as signaturemotifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions.Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoformsuggests that the holometabolous insect EcR-B1 acquired additional transcriptional regulation mechanisms.

    BackgroundsMorphogenetic events during insect development are trig-gered by ecdysteroids. The major insect ecdysteroid, 20-hydroxyecdysone (20E), binds directly to a heterodimerictranscription factor comprising two nuclear receptors, theecdysone receptor (EcR) and the ultraspiracle, to activate acomplex transcriptional cascade [1]. In the holometabo-lous insects, there are two or three EcR isoforms (A andB1 isoforms; Drosophila has an additional B2 isoform) thatare produced from a single genetic locus by differentialpromoter usage and alternative splicing [2]. The EcR iso-forms have a common C-terminal region that includes the

    DNA binding domain and the ligand binding domain (theC-F domains), but also have isoform-specific regions inthe N-terminal A/B domain. In the holometabolousinsects, each EcR isoform govern distinct steroid-stimu-lated responses during metamorphosis. In Drosophila, theEcR-A isoform is predominantly expressed in the prolif-erative tissues during metamorphosis, and is required foradult-specific developmental processes. In contrast, theEcR-B isoforms (B1 and B2 isoforms) are expressed in thelarva-specific tissues, and are involved in 20E-triggered lar-val tissue remodeling during metamorphosis [2-7]. In thered flour beetle Tribolium castaneum, the EcR-A isoformhas a dominant role in transduction of the ecdysteroidaction by regulating the expression of 20E-response genes[8]. Only the A isoform has been identified in basal direct-

    * Correspondence: [email protected]; [email protected] of Biological Sciences, Graduate School of Science, TheUniversity of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    © 2010 Watanabe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the CreativeCommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

    mailto:[email protected]:[email protected]://creativecommons.org/licenses/by/2.0

  • developing (ametabolous and hemimetabolous) insects[9,10], therefore, it is not known whether direct-develop-ing insects have multiple EcR isoforms with distinct phy-siologic functions.In addition to the differential expression patterns and

    the distinct physiologic functions during development,EcR isoforms have differential transcriptional regulationmechanisms. The A/B domain of the nuclear receptorsgenerally contains the ligand-independent activationfunction (AF)-1 region [11]. Several studies of the AF-1function of Drosophila EcR isoforms have revealed thatthe A/B domain of Drosophila EcR-B isoforms havestrong transactivation activity, whereas that of the A iso-form has weaker transactivation activity [12]. The AF-1of Drosophila EcR-B1 mainly locates in the N-terminalregion (amino acid residues 1-53), whose sequence isconsiderably conserved among higher holometabolousinsects such as flies, mosquitoes, and moths [13].Although structural differences in the AF-1 regionamong the EcR isoforms result in differential transcrip-tional regulation, the structural basis and molecularmechanisms underlying the isoform-specific AF-1 func-tions remain obscure.In the present study, to examine the detailed struc-

    tural characteristics of the isoform-specific region ofeach EcR isoform, we performed a comprehensive struc-tural comparison of the isoform-specific regions of theinsect EcR-A and -B1 isoforms. First, we newly identi-fied EcR isoforms in 51 insect and non-insect arthropodspecies, focusing mainly on the basal direct-developinginsects. Then, we compared the deduced amino acidsequences of the isoform-specific region of the EcR-Aand -B1 isoforms (45 and 76 species, respectively).Sequence comparison revealed that the isoform-specificregion of each EcR isoform contains several conservedmicrodomain structures, some of which were evolution-ally acquired or modified. Interestingly, the isoform-spe-cific region of the holometabolous insect EcR-B1isoform contained a highly conserved (K/R)RRW motifat the N-terminus, which was lacking in basal direct-developing insects. Given that the nuclear receptor AF-1regions provide an interaction interface for co-regulatoryproteins, the conserved microdomain structures in theEcR isoform-specific AF-1 regions might play essentialroles in transcriptional regulation. Moreover, the holo-metabolous insect EcR-B1 might have novel transcrip-tional regulation mechanisms that are mediated by thenewly acquired (K/R)RRW motif.

    ResultsCloning of cDNA fragments encoding the A/B domain ofthe EcR-A and -B1 isoformsThe EcR gene encodes two or three isoforms in theholometabolous insects (A, B1 and B2 isoforms), but

    only A isoform was previously identified in the direct-developing insects. In the present study, to perform acomprehensive sequence comparison of the isoform-spe-cific region of the EcR-A and -B1 isoforms amonginsects and non-insect arthropods, we obtained cDNAfragments encoding the A/B domains of the EcR-A and-B1 isoforms from 18 and 51 arthropod species, respec-tively, by using reverse transcription polymerase chainreaction (see Additional file 1, Table S1 and Additionalfile 2, Table S2). We newly identified the EcR-A isoformin the direct-developing insects, including Paleoptera (1species), Polyneoptera (2 species), and Paraneoptera (8species). For a detailed analysis, we also identified theEcR-A isoform in 5 holometabolous insect species andone non-insect arthropod species. Although the EcR-B1isoform was identified in many holometabolous insectsand several non-insect arthropods, it has not been iden-tified in basal hemimetabolous and ametabolous insects.Therefore, we newly identified the EcR-B1 isoform inbasal insects, including Apterygota (2 species), Paleop-tera (2 species), Polyneoptera (8 species), and Paraneop-tera (12 species). In addition, we identified the EcR-B1isoform in 25 holometabolous insect species and twonon-insect arthropod species. To our knowledge, this isthe first report of the identification of the EcR-B1 iso-form in the direct-developing insects. In the direct-developing insects, the EcR isoforms were cloned fromthe whole body of the nymph and adult, and isolatedtissues, including the nymphal wing pad, fat body, testis,and ovaries (data not shown), suggesting that the EcRisoforms are broadly distributed in the direct-developinginsects.

    The A isoform-specific region was classified into fivestructural typesWe compared the deduced amino acid sequences of theisoform-specific region in the A/B domain of the EcR-Aisoform identified from 45 arthropod species (5 non-insect arthropod species [Crustacea and Chelicerata], 15direct-developing insect species [1 paleopteran species, 4polyneopteran species, and 9 paraneopteran species] and26 Endopterygota species). GenBank accession numbersof the EcR-A isoforms were listed in Additional file 1,Table S1.General structural features of the A isoform-specific regionThe C-terminal region of the A isoform-specific regioncontained a conserved Ser/Thr-rich region, which wasformally referred to as the “A-box” [10,14]. In the N-terminal region of the A isoform-specific region, wefound two conserved microdomains: the SUMOylationmotif and the nuclear localization signal (NLS). In addi-tion, we found conserved (D/E)(D/E)W residuesbetween the NLS and the C-terminal A-box. TheSUMOylation motif in the A isoform-specific region

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 2 of 17

  • contained a canonical consensus sequence for theSUMOylation (ΨKxE, where Ψ represents a large hydro-phobic amino acid) [15]. The NLS of the A isoform-spe-cific region contained a consensus sequence of themonopartite NLS [K(K/R)x(K/R)] [16].Comprehensive structural comparison revealed several

    subgroup-specific structural modifications. Based on thestructural similarity, we classified the isoform-specificregion of the EcR-A isoform into five structural types.Type-1 A isoform-specific region (Figure 1)The type-1 A isoform-specific region contained theSUMOylation motif, the NLS, the (D/E)(D/E)W resi-dues, and the A-box. The consensus sequence of the A-box of the type-1 A isoform-specific region wasNGxSPSxxSSYDxxYSP. The EcR-A isoform with thetype-1 A isoform-specific region was identified in non-insect arthropods.Type-2 A isoform-specific region (Figure 2)The type-2 A isoform-specific region contained theSUMOylation motif, the NLS, the (D/E)(D/E)W resi-dues, and the A-box. In addition, the type-2 A isoform-specific region generally contained two conserved N-terminal sequences (DLKHE and ΨAYRG, where Ψrepresents a large hydrophobic amino acid). The con-sensus sequence of the A-box of the type-2 A isoform-specific region was NGYSSP(M/L)SSGSYDPYSP. TheEcR-A isoform with the type-2 A isoform-specific regionwas identified in the direct-developing insects except forHeteroptera (Order Hemiptera) and three holometabo-lous orders (Coleoptera, Trichoptera, and Lepidoptera).The EcR-A isoforms identified from two psicopteraninsects (Pediculus humanus corporis and Liposcelis sp.)

    did not contain the DLKHE sequence at their N-termini.The EcR-A isoforms identified from several polyneop-teran insects (Blattella germanica [Order Dictyoptera],Locusta migratoria [Order Orthoptera], and Anisolabismaritima [Order Dermaptera]), and non-neopteraninsects (Ephemera strigata [Order Ephemeroptera]) didnot contain the ΨAYRG sequence at their N-termini.The EcR-A isoforms identified in Lepidoptera lacked theNLS.Type-3 A isoform-specific region (Figure 3)The type-3 A isoform-specific region contained the (D/E)(D/E)W residues and the A-box. The type-3 Aisoform-specific region lacked the N-terminal regioncontaining the SUMOylation motif and the NLS. Theconsensus sequence of the A-box of the type-3 A iso-form-specific region was NGxPSPTMSSMSYDPYSP.The EcR-A isoform with the type-3 A isoform-specificregion was identified in Heteroptera (OrderHemiptera).Type-4 A isoform-specific region (Figure 4)The type-4 A isoform-specific region contained theSUMOylation motif, the NLS, the (D/E)(D/E)W resi-dues, and the A-box. In addition, the type-4 A isoform-specific region contained D(T/S)S repeats in the N-ter-minus. The consensus sequence of the A-box of thetype-4 A isoform-specific region was NGYASPMS(T/S)GSYDPYSP. The EcR-A isoform with the type-4 A iso-form-specific region was identified in Hymenoptera andMecoptera. The NLS of the EcR-A isoforms identifiedfrom several hymenopteran insects (Apis mellifera, Phei-dole megacephala, and Camponotus japonicus) wasmodified (consensus; KxxR).

    17512196111110

    14610480

    9495

    * ** : :: *:.**SPLKRSRHININNNNNNSSSSAMEE---WLPSPSPSKRIR---------------QDDAGSWIASP-PPKRVR---------------QDDAGAWISSPSPSKRTK---------------QED-GTWLPSPSPNKRIR---------------QED-GTWIPSP

    Daphnia magnaOrnithodoros moubata

    Amblyomma americanumNephila clavata

    Liocheles australasiae

    4495709075

    3082577862

    ::* *** . ** IIKTEPRNSDSPTTTIVKVEPRLP-SPCVSVVKVEPRLP-SPCVGIVKMEPRLP-SPCN-IVKVEPRLP-SPCLN

    258161134143151

    232142121127133

    * ** : * **: : *. : NGYSP-SPMSTGSYEPPF-SPGGGGGKLG-NGLSPAS-CS--SYD-TY-SP-----RGPC-GLSPVSNCS--SYD-TY-SP-----RGPCNGHSP-T--S--SYD-AYCSS-----KD--NGLSPVSMVS--SYDP-Y-SP-----KG--

    SUMO A-boxNLS + (D/E)(D/E)W

    SUMO NLS (D/E)(D/E)W A-box

    Daphnia magna

    Ornithodoros moubata

    Amblyomma americanum

    Nephila clavata

    Liocheles australasiae

    SUMO

    NLS

    (D/E)(D/E)W

    A-box

    50 amino acids

    Chelicerata

    Crustacea

    Figure 1 Type-1 A isoform-specific region. The type-1 A isoform-specific region contained four conserved microdomains. (A) Schematicrepresentation of the type-1 A isoform-specific regions. Positions of the SUMOylation motif, the NLS, the (D/E)(D/E) residues, and the A-box areindicated by colored boxes. (B) The alignment and Sequence Logo representation of the conserved microdomains of the type-1 A isoform-specific region. The amino acid residues are represented in the default color scheme of ClustalX. Asterisks indicate identical residues and colonsindicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 3 of 17

  • Type-5 A isoform-specific region (Figure 5)The type-5 A isoform-specific region contained theSUMOylation motif, the NLS, the (D/E)(D/E)W resi-dues, and the A-box. In addition, the type-5 A isoform-specific region contained YRLN residues at the N-termi-nus. The consensus sequence of the A-box of the type-5A isoform-specific region was NGYASPMSAGSYD-PYSPNG. The EcR-A isoform with the type-5 A iso-form-specific region was identified in Diptera. The EcR-A isoforms identified from several species in genus Dro-sophila (D. melanogaster, D. simulans, and D. yakuba)did not contain the YRLN sequence at their N-termini.

    The B1 isoform-specific region was classified into sixstructural typesWe compared the deduced amino acid sequences of theisoform-specific region in the A/B domain of theEcR-B1 isoforms identified from 76 arthropod species(4 non-insect arthropod species [Crustacea, Myriapoda,and Chelicerata], 24 direct-developing insectspecies [2 apteryogote species, 2 Paleopteran species,8 polyneopteran species, and 12 paraneopteran species]and 48 Endopterygota species). GenBank accessionnumbers of the EcR-B1 isoforms were listed in Addi-tional file 2, Table S2.

    Stenopsyche marmorata

    Tribolium castaneum

    Leptinotarsa decemlineata

    Graptopsaltria nigrofuscata

    Bothrogonia ferruginea

    Aphrophora pectoralis

    Acyrthosiphon pisum

    Pediculus humanus corporis

    Liposcelis sp.

    Blattella germanica

    Locusta migratoria

    Anisolabis maritima

    Nemoura sp.

    Ephemera strigata

    Bombyx mori

    Choristoneura fumiferana

    Omphisa fuscidentalis

    Chilo suppressalis

    Manduca sexta

    50 amino acids

    Lepidoptera

    Trichoptera

    Coleoptera

    Polyneoptera

    Hemiptera(without Heteroptera)

    Psocoptera

    Dictyoptera

    Orthoptera

    Dermaptera

    Plecoptera

    Ephemeroptera

    Paraneoptera

    Endopterygota

    ΨAYRGΨAYRG

    DLKHE SUMOSUMO

    NLSNLS

    (D/E)(D/E)W(D/E)(D/E)W

    A-boxA-box

    7875767577121151161145111103168114115150121106158119

    59565756591021321421259183133959513110174139100

    * .* ** :*: .**.**** SN--------------GY-----SSP-LSS-GSYGPYSP-NGNN--------------GY-----SSP-LSS-GSYGPYSP-NGNN--------------GY-----SSP-LSS-SSYGPYSP-NGNN--------------GY-----SSP-LSS-SSYGPYSP-NGNN--------------GY-----SSP-LSS-GSYGPYSP-N-SN--------------GY-----SSP-MSS-GSYDPYSP-NGSN--------------GY-----SSP-MSS-GSYDPYSP-NGSN--------------GY-----SSP-MSS-GSYDPYSP-NGSN--------------GY-----SSPTMSS-GSYDPYSP-NGSN--------------GY-----SSPTMSS-GSYDPYSP-NGSN--------------GY-----SSPTMSS-GSYDPYSP-NESNGGGGGGGGGGGGGGGYN----TSP-MST-NSYDPYSPMSGSN--------------GY-----SSP-MSS-GSYDPYSP-NGSN--------------GY-----SSPTMSS-GSYDPYSP-NGSN--------------GY-----SSP-MSS-GSYDPYSP-NGPN--------------GYA-----SP-LSSGGSYDPYSP-GGTNNNNNNST-------SYAGGGAPSP-LSSGGSYDPYSP-TGNN--------------GY-----SSP-MSS-GSYDPYSP-NGSN--------------GY-----SSP-LSS-GSYDPYSP-NG

    4341424243801111179567551177272741077210963

    3634353536669810280544110358585993619545

    : -----------D--W-MAGGAA-----------D--W-MAGGAG-----------E--W-MAGATA-----------Y--W-MAGVVG-----------D--W-MAGGAAVKRPR--TD--D--W-LAAASPSKRQR--TD--D--W-LSSPS-ATK-RQMTE--D--F-MSSPSPNKRPR--TD--E--WPLSSPSPTKR-R--VD--D--W-MSSPSPTKRQR--TD--D--W-LSSPSPVKRLR--PD--D--W-LAVNSPSKRPR--TD--D--W-LSPPSPNKRSR--TD--D--W-LSPPSPAKRAR--LDS-D--W-LSSPGSNKRPR--PD--D--W-LSSPSPAKRLRPSTE--ES-W-------NKRTR--PD--D--W-LSAVSPTKRARLSSEQQEGGW-L--PSP

    Bombyx moriChoristoneura fumiferana

    Omphisa fuscidentalisChilo suppressalis

    Manduca sextaStenopsych marmorata

    Tribolium castaneumLeptinotarsa decemlineata

    Graptopsaltria nigrofuscataBothrogonia ferruginea

    Aphrophora pectoralisAcyrthosiphon pisum

    Pediculus humanus corporisLiposcelis sp.

    Blattella germanicaLocusta migratoria

    Anisolabis maritimaNemoura sp.

    Ephemera strigata

    NLS + (D/E)(D/E)W A-box

    NLS (D/E)(D/E)W A-box

    Bombyx moriChoristoneura fumiferana

    Omphisa fuscidentalisChilo suppressalis

    Manduca sextaStenopsych marmorata

    Tribolium castaneumLeptinotarsa decemlineata

    Graptopsaltria nigrofuscataBothrogonia ferruginea

    Aphrophora pectoralisAcyrthosiphon pisum

    Pediculus humanus corporisLiposcelis sp.

    Blattella germanicaLocusta migratoria

    Anisolabis maritimaNemoura sp.

    Ephemera strigata

    1111111111111111111

    11111111111421241514637781930261422

    -------------MEL-K-HE---------------------VAY-RG----------------MDL-K-HE---------------------VAY-RG----------------MDL-K-HE---------------------VAY-RG----------------MDL-K-HE---------------------VAY-RG----------------MDL-K-HE---------------------VAY-RG----------------MDL-KQ-E--------------------LL-F-RPGPAMTAICS--GNLGSMDI-K-HE--------------------MI-Y-R----MTTIHSITSHLGSMDI-K-HE--------------------MI-Y-RD----------------MDL-KQHD--------------------SL-YNR-SGG-------------MDL-K-HE--------------------LL-YGR-SGT-------------MDL-K-HD------------------------------------------MMDQ-K-CDGGGGGVAAAAAGIGGGGVGGLMSYNRGRGG------------------------------------------M-F-RGGAS------------------------------------------M-YQRGTST-------------MDL-K-HE-LGGLGGGGASGNC-----------------------------MELFRGADPLA-VSVPLALPLPGHASPASAA--------------------MD-----EDM--LAAPAA-----TATVAGAAAAVASAT-------------MDLKRQ----------------------MM-Y-RGGVQ-------------MDL-K-HEEGL-LRLSDPGDGPGPT-------------

    25242424253138403535214834334139

    4936

    16161515162227292424144123223428

    3925

    :* QVKAEPGVSH---QVKAEPGV-H---QVKAEPGVST---QVKAEPGVSH---QVKAEPGVSH---VVKAEPD--HGG-LVKSEPQL-HSPCLVKSEPQL-FTSNYIKSEPRL-HSPVIIKSEPRL-HSPPLIKSEP---HG--IIK--PR---SPAQVKSEPRV-HSPCQVKSEPRV-HSPCVVKTEPRE-----SVKTEPRV-HSPC

    AVKAE-RV-QSPCLVKTEPRT-MSPC

    -------------

    DLKHE + ΨAYRG SUMO

    DLKHE ΨAYRG SUMO

    Figure 2 Type-2 A isoform-specific region. The type-2 A isoform-specific region contained four conserved microdomains and two conservedN-terminal sequences (DLKHE and ΨAYRG). (A) Schematic representation of the type-2 A isoform-specific regions. Positions of the two N-terminal sequences, the SUMOylation motif, the NLS, the (D/E)(D/E) residues, and the A-box are indicated by colored boxes. (B) The alignmentand Sequence Logo representation of the N-terminal region and the conserved microdomains of the type-2 A isoform-specific region. Theamino acid residues are represented in the default color scheme of ClustalX. Asterisks indicate identical residues and colons indicate similarresidues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 4 of 17

  • General structural features of the B1 isoform-specific regionThe N-terminal region of the B1 isoform-specific regionessentially contained three microdomains: the S-richmotif, the SP residues, and the DL-rich motif. The S-rich motif was composed of acidic residues (D and E)and neutral polar residues (S and T), and contained aconserved core EV(T/S)SS sequence. The DL-rich motifwas composed of repeats of acidic residues and aro-matic/bulky hydrophobic residues (W, A, F, I, L, M, andV). The region between the S-rich and the DL-richmotifs generally contains conserved SP residues. In addi-tion to these microdomains, the isoform-specific regionof the holometabolous insect EcR-B1 isoform containedan additional conserved (K/R)RRW motif at the N-terminus.Comprehensive structural comparison revealed several

    subgroup-specific structural modifications. Based on thestructural similarity, we classified the isoform-specificregion of the EcR-B1 isoform into seven structuraltypes.

    1 39-MCEDSRR--DEWSVGGG-----Q-NG---CPSPTMSSNSYDPYSPASKIG

    (D/E)(D/E)W A-box

    50 amino acids

    Corythucha marmorata

    Physopelta gutta

    Pachygrontha antennata

    Heteroptera(Order Heteroptera)

    (D/E)(D/E)W A-box

    Corythucha marmorataPhysopelta gutta

    Pachygrontha antennata

    1

    (D/E)(D/E)W + A-box

    50 * *: :* *:* * ** * ** ***************::*:*MMGEE-KRTEDDWMVTGGSPRTYQANGGAGFPSPTMSSNSYDPYSPSSKLG

    1 39-MCEESRR--DEWTVGGG-----Q-NG---CPSPTMSSNSYDPYSPATKIG

    Figure 3 Type-3 A isoform-specific region. The type-3 A isoform-specific region contained two conserved microdomains. (A)Schematic representation of the type-3 A isoform-specific regions.Positions of the (D/E)(D/E) residues and the A-box are indicated bycolored boxes. (B) The alignment and Sequence Logorepresentation of the full-length of the type-3 A isoform-specificregions. The amino acid residues are represented in the defaultcolor scheme of ClustalX. Asterisks indicate identical residues andcolons indicate similar residues.

    96122797258148

    85112696248135

    .* * ** *:.GKGAARSDD---WLANK-TARSDD---WLANK-TTRPDD---WLANK-RPRTDD---WLANK-RPRPDD---WLTNK-RLRIDDTSPWVV

    NLS + (D/E)(D/E)W

    175191143171164191

    151167119147140170

    .* *:: ** :: ***.:** : .NSNNGYA--SPMSTSSYDPYSPNSKIAVSNNGYA--SPMSTGSYDPYSPNGKIGVSNNGYA--SPMSTGSYDPYSPNGKIGPSNNGYA--SPMSSGSYDPYSPNGKIGPNNNGYA--SPMSSGSYDPYSPNGKIGLSNMGHTTLSP-TS-SYDSFSP--R-G

    A-box

    Pheidole megacephalaApis mellifera

    Camponotus japonicusNasonia vitripennis

    Urocerus antennatusPanorpa pryeri

    NLS (D/E)(D/E)W A-box

    Pheidole megacephalaApis mellifera

    Camponotus japonicusNasonia vitripennis

    Urocerus antennatusPanorpa pryeri

    4912

    1717729

    11

    1111

    :*** : ------------------------------------MDTS-DSSMDTTN----MGDVVLAAPSRLRRAINLSTAMTTTAKTETTTITLSMDTSGDSNMDTDN----------------------------------------MDTSGDSSLDTANRPLQ------------------------------------MDTSQQQQQQQQQQQDP------------------------------------MDTS-EGP-------------------------------------MSSLSIGKVDTSANGLSNHLSATLN

    D(T/S)S repeats

    D(T/S)S repeats

    377031201084

    :*.* * LLVKAETPEHLLVKAERPDNLTIKAERPDHGLVKAEAPEQARVKVETPEHSIVKVE-PR-

    SUMO

    467940291990

    SUMO

    Apis mellifera

    Pheidole megacephala

    Camponotus japonicus

    Nasonia vitripennis

    Urocerus antennatus

    Panorpa pryeri

    Hymenoptera

    50 amino acids

    Mecoptera

    (D/E)(D/E)W

    A-box

    SUMO

    NLSD(T/S)S repeats

    Figure 4 Type-4 A isoform-specific region. The type-4 A isoform-specific region contained four conserved microdomains and conserved N-terminal D(T/S)S repeats. (A) Schematic representation of the type-4 A isoform-specific regions. Positions of the D(T/S)S repeats, the SUMOylationmotif, the NLS, the (D/E)(D/E) residues, and the A-box are indicated by colored boxes. (B) The alignment and Sequence Logo representation ofthe N-terminal region and the conserved microdomains of the type-4 A isoform-specific region. The amino acid residues are represented in thedefault color scheme of ClustalX. Asterisks indicate identical residues and colons indicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 5 of 17

  • Type-1 B1 isoform-specific region (Figure 6)The type-1 B1 isoform-specific region contained threeconserved microdomains (the S-rich motif, the SP resi-dues, and the DL-rich motif). The consensus sequencesof the S-rich motif and the DL-rich motif of the type-1B1 isoform-specific region were GDExSxEVSSSS andDIGEVDLDFWDLDL, respectively. The N-terminalregion and the region between each two conservedmicrodomains varied in length and sequence. The EcR-B1 isoform with the type-1 B1 isoform-specific regionwas identified in non-insect arthropods and non-neop-teran insects.Moreover, the EcR isoforms identified from the filarial

    nematode Brugia malayi [EcR-A and -C isoforms (Gen-Bank accession numbers; ABQ28713 and ABQ28714)]contained the S-rich motif-like sequence and the DL-rich motif in the N-terminal A/B domain (amino acidresidues 1-153, both isoforms contained the commonA/B domain; Figure 6C).Type-2 B1 isoform-specific region (Figure 7)The type-2 B1 isoform-specific region contained threeconserved microdomains (the S-rich motif, the SP resi-dues, and the DL-rich motif). In addition, the type-2B1 isoform-specific region generally contained a

    partially conserved TxxΨW sequence at the N-termi-nus. The consensus sequences of the S-rich motif andthe DL-rich motif of the type-2 B1 isoform-specificregion were GxESSPEVTSSS and DIGEVDLEFWDLDL,respectively. The EcR-B1 isoform with the type-2 B1isoform-specific region was identified in Polyneopteraand Paraneoptera except for Heteroptera (OrderHemiptera).Type-2’ B1 isoform-specific region (Figure 8)The type-2’ B1 isoform-specific region structurallyresembled to the type-2 B1 isoform-specific region, butthe motif structures were modified. The consensussequences of the S-rich motif and the DL-rich motif ofthe type-2’ B1 isoform-specific region wereEDxxxQVSSS and EVDLELWDLGL, respectively. More-over, the region between the S-rich motif and the DL-rich motif were shortened. In some cases, these twomotifs were completely fused (e.g. EcR-B1 isoforms ofPhysopelta gutta and Pachygrontha antennata). Like thetype-2 B1 isoform-specific region, the type-2’ B1 iso-form-specific region contained the N-terminal TxxΨWsequence. The EcR-B1 isoform with the type-2’ B1 iso-form-specific region was identified in Heteroptera(Order Hemiptera).

    196186212226258268206208190253249

    SUMO NLS + (D/E)(D/E)W

    195174175165195205237247185187169232228

    *****.* ****.***.*NMSNGYASPMSAGSYDPYSPTGNMSNGYASPMSAGSYDPYSPTGNMSNGYASPMSAGSYDPYSPTG-MSNGYAS---EGSYDAYSPNGNMSNGYASPMSAGSYDPYSPNGNMSNGYASPMSAGSYDPYSPNGNMSNGYASPMSAGSYDPYSPNGNMSNGYASPMSAGSYDPYSPNGNMSNGYASPMSAGSYDPYSPNGNMSNGYPSPMSAGSYDPYSPNGTMSNGYSSPMSTGSYDPYSPNGTMSNGYSSPLSSGSYDPYSPNG

    8787781111191491459799

    140140

    7777681011091391368789

    129129

    :* **:. *. AIKIEPMP-DVIAIKIEPMP-DVITIKIEPMP-DVITIKIEPMA-DVITIKTEPMP-DVIAIKTEPMP-DVI-IKTEPMP-DVITIKIEPMP-DVITIKIEPMP-DVI

    AVKVEPLPMDTGAVKVEPLPSDTG

    ------------

    Drosophila melanogusterDrosophila simulans

    Drosophila yakubaDrosophila ananassaeDrosophila grimshawi

    Drosophila mojavensisDrosophila virilis

    Drosophila persimilisDrosophila pseudoobscura pseudoobscura

    Ceratitis capitataAedes aegypti

    Anopheles gambiae

    8879999771999

    . ------------MLTTSGQQ------------MLTTSGQQ------------MLTSEL-Q-----------MYRLNAIQQ-----------MYRLNATQQ-----------MYRLNATQQ-----------MYRLNATQQ-----------MYRLNAT-------------MYRLNAT--MNNGNNNNNIIALTVN-TLP-----------MYRLNIVST-----------MYRVNIVST

    111111111111

    149150140174180212222160162142205201

    134135125159165197207145147125191187

    ** * : *:*:*:PNKRPRLDVT---EDWMSTPNKRPRLDVT---EDWMSTPNKRPRIDVT---EDWMSTPNKRARLEVS---EDWMSAPTKRARLDAP---EDWMSTPNKRARLDAP---EDWMSTPNKRARLDAP---EDWMSTPSKRPRLDAP---EDWMSTPSKRPRLDAP---EDWMSTS-KRMRLECPPSNEEWISTSGKR-RLE---SNEEWISSGGKR-RHE---SNEEWISS

    A-boxYRLN

    YRLN SUMO NLS (D/E)(D/E)W A-box

    Drosophila melanoguster

    Drosophila yakuba

    Drosophila simulans

    Drosophila ananassae

    Drosophila grimshawi

    Drosophila mojavensis

    Drosophila virilis

    Drosophila persimilis

    Drosophila pseudoobscura pseudoobscura

    Ceratitis capitata

    Aedes aegypti

    Anopheles gambiae

    NLS

    (D/E)(D/E)W

    A-box

    SUMO

    YRLN

    50 amino acids

    Diptera

    Figure 5 Type-5 A isoform-specific region. The type-5 A isoform-specific region contained four conserved microdomains and conserved N-terminal YRLN residues. (A) Schematic representation of the type-5 A isoform-specific regions. Positions of the YRLN residues, the SUMOylationmotif, the NLS, the (D/E)(D/E) residues, and the A-box are indicated by colored boxes. (B) The alignment and Sequence Logo representation ofthe N-terminal region and the conserved microdomains of the type-5 A isoform-specific region. The amino acid residues are represented in thedefault color scheme of ClustalX. Asterisks indicate identical residues and colons indicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 6 of 17

  • Sympetrum infuscatumEphemera strigata

    114

    1630

    3341

    S-rich SP + DL-rich� � � � � � � � � � �

    50 amino acids

    Modi ed S-rich DL-rich

    . *: :* ATVTYHELPPLTSW

    DEGSXEV--SSS

    S-rich consensus

    (Type 1)

    4 18

    DL-rich consensus

    (Type 1)

    *.LS

    :*: *:* * ** RTDV-EID-DNFWAATSF

    LDIGEVDLD-FWDLD--

    93 110� � � � � � � � � � �

    Modi ed S-rich DL-rich

    ThysanuraCtenolepisma villosa

    Celuca pugilator

    Daphnia magna

    Thereuopoda clunifera

    Nephila clavata

    50 amino acids

    SPS-rich

    Crustacea

    Chelicerata

    Myriapoda

    Apterygota

    Insecta

    DL-rich

    Sympetrum infuscatum

    Ephemera strigata

    Thermobia domestica

    Ephemeroptera

    OdonataBasal Pteryogota

    S-rich

    : . ****: MQ-LEDEGDEEVSSTTPMQRLGAESSPEVSSSSPMQ-MGDEGSLEVSSSSPMQ-MGDEGSPEVSSSSPST-MGDESCSEVSSSSPMT-MGDHG--EVSSSSSMT-MGDVGSPEVSSSQRRS-LGDESSPEVSSSNI

    SP

    5765

    Thermobia domestica 5 20 26 49

    DL-rich

    ** .: **.****::****:*SPQ--PVLSSSSDIAEVDLDFWDLDLNSPN--PTGSSSSDIGEVDLDLWDLDLNSPV--PSLASS-DIGEVDLEFWDLDLNSPV--PSLASS-DIGEVDLEFWDLDLNSPP--TSLASS-DIGEVDLDFWDLDLNSPSDEHSLPSS-DIGEVDLDLWDLDINSPV--RSLVSTPDISEVDLEFWDLDINSPV--PSLAPS-DIGEVDLEFWDLDIN

    Ctenolepisma villosaCeluca pugilatorDaphnia magna

    Thereuopoda cluniferaNephila clavata

    5261158

    2041141673

    26631392287

    498616446110

    Figure 6 Type-1 B1 isoform-specific region. The type-1 B1 isoform-specific region contains three conserved microdomains. (A) Schematicrepresentation of the type-1 B1 isoform-specific regions. Positions of the S-rich motif, the SP residues, and the DL-rich motif are indicated bycolored boxes. (B) The alignment and Sequence Logo representation of the conserved microdomains found in the type-1 B1 isoform-specificregion. The amino acid residues are represented in the default color scheme of ClustalX. Asterisks indicate identical residues and colons indicatesimilar residues. (C) The N-terminal region of Brugia malayi EcR contained the S-rich motif-like sequence (modified S-rich motif) and the DL-richmotif. Positions of the modified S-rich motif and the DL-rich motif are indicated in the schematic representation of the N-terminal region of B.malayi EcR (amino acid residues 1-151). The alignment of the microdomains found in B. malayi with their corresponding microdomains in thetype-1 B1 isoform-specific region reveals their sequence similarity. The amino acid residues are represented in the default color scheme ofClustalX. Asterisks indicate identical residues and colons indicate similar residues.

    Achetus domesticus

    Locusta migratoria

    Anisolabis maritima

    Nemoura sp.

    50 amino acids

    TxxΨW

    S-rich

    SP

    DL-rich

    Paraneoptera

    PolyneopteraOrthoptera

    Dermaptera

    Plecoptera

    Gryllus bimaculatus

    Bothrogonia ferruginea

    Franklinothrips vespiformis

    Liposcelis sp.

    Tenodera angustipennis

    Reticulitermes speratus

    Periplaneta fuliginosa

    Oncotympana maculaticollis

    Aphrophora pectoralis

    Acyrthosiphon pisum

    Thysanoptera

    Hemiptera(without Heteroptera)

    Psocoptera

    Dictyoptera

    Graptopsaltria nigrofuscata

    Graptopsaltria nigrofuscataOncotympana maculaticollis

    11111111111

    1414

    1818

    31 49 73

    TxxΨW S-rich SP + DL-rich

    TxxΨW

    ----------MTTSIWL-RPGGIPI-----------MTTSIWL-RPGGIPI-----------MTASIWV-RPGGLPV-----------MTT-IWI-RPGIIPM---------------M-L-RLASQNDG---------MMTG-I-L-ARGGCPV-----------MKK-L-ITDRDMTDLY-----------------------MQY----------MSF-MWVSDKH--LQF----------MTS-IWIPS-----------------MTS-VWACGAGGVLGL----------MTS-VWACGAGGVLGLMERGMSVVSAMS--MWSRAGAGVL-L----------MAT--WVAN-----------------MTSTVWARF-------

    S-rich

    . .**:** MGDESSPEVTSSSAMGDESSPEVTSSSAMGDEGSPEVTSSSA--EDSSSEVTSSSA----SSSEVTSSSS--PESSPEVTSSSS-AEESSPEVTSSCGSGE-GSPEVTSSSGMGDEGSPEVTSSCSMGDEGSPEVTSSCSMGDESSPEVTSSGLMGDESSPEVTSSGLEGCDGSPEVSSSS-DG--SSSEVTSSSLDG-QGVPEVTSSSA

    SP DL-rich

    ::: *** ISPA--HSLGSSDIGEV-DLEFW-DLDLNISPA--HSLGSSDIGEV-DLEFW-DLDLNISPA--HSLGSSDIGEV-DLEFW-DLDLNMSPP--TSLGSSDIDEVVNIDLF-DLDL-NSPM------TRES-----FEFLQDLDDSISP--EHSLGSPDMGGV-DMEFW-DLDQT-------SN--SDFRDV-DLELW-DLDVNISPA--HSLGSSDIGEV-DLEFW-DLDLNISPA--HSHGSSDIGDV-AIEFW-DLDLDISPA--HSLGSSDIGEV-DLEFW-DLDLNISPA--HSLGSSDIGEV-DLDLF-DLDINISPA--HSLGSSDIGEV-DLDLF-DLDINLSPA--HSLTSS-IGEV-DIEFW-DLDINLSPSIASSNA-PDLGEV-YLEFW-DLDLNISPA--HSLGSSDIGEV-DLEFW-DLDLN

    Aphrophora pectoralisBothrogonia ferruginea

    Acyrthosiphon pisumFranklinothrips vespiformis

    Liposcelis sp.Tenodera angustipennisReticulitermes speratus

    Periplaneta fuliginosaGryllus bimaculatus

    111

    Achetus domesticusLocusta migratoria

    Anisolabis maritimaNemoura sp. 1

    1413101314313815152379

    21191421342938312530341619

    3134302332464151443843462731

    4949454953494976587882484237

    7373696677667310082102106716761

    Figure 7 Type-2 B1 isoform-specific region. The type-2 B1 isoform-specific region contained three conserved microdomains and the N-terminal TxxΨW sequence. (A) Schematic representation of the type-2 B1 isoform-specific regions. Positions of the TxxΨW sequence, the S-richmotif, the SP residues, and the DL-rich motif are indicated by colored boxes. (B) The alignment and Sequence Logo representation of the N-terminal region and the conserved microdomains of the type-2 B1 isoform-specific region. The amino acid residues are represented in thedefault color scheme of ClustalX. Asterisks indicate identical residues and colons indicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 7 of 17

  • Type-3 B1 isoform-specific region (Figure 9)The type-3 B1 isoform-specific region contained fourconserved microdomains [the (K/R)RRW motif, the S-rich motif, the SP residues, and the DL-rich motif]. Theconsensus sequences of the S-rich motif and the DL-rich motif of the type-3 B1 isoform-specific region wereEESSSEVTSSS and DIGDVDLEFWDLDL, respectively.The EcR-B1 isoform with the type-3 B1 isoform-specificregion was identified in Coleoptera, Strepsiptera, Neu-roptera, Megaroptera, and Raphidioptera.Type-4 B1 isoform-specific region (Figure 10)The type-4 B1 isoform-specific region contained fourconserved microdomains [the (K/R)RRW motif, the S-rich motif, the SP residues, and the DL-rich motif]. Inaddition, the type-4 B1 isoform-specific region containeda conserved LQTVPRVPVAGV sequence just N-termin-ally adjacent to the (K/R)RRW motif. The consensussequences of the S-rich motif and the DL-rich motif ofthe type-4 B1 isoform-specific region were ESSPEVSSSand EDLQLWDLDL, respectively. The EcR-B1 isoformwith the type-4 B1 isoform-specific region was identifiedin the aculeate Hymenoptera and horntails (Family Siri-cidae, Order Hymenoptera). The EcR-B1 isoform identi-fied from two vespine wasps (Vespa mandarinia andAnterhynchium flavomarginatum) contained a S/H-richinsertion between the (K/R)RRW and the S-rich motifs.Type-5 B1 isoform-specific region (Figure 11)The type-5 B1 isoform-specific region structurallyresembled to the type-4 B1 isoform-specific region, but

    contained an additional N-terminal extension region.The consensus sequences of the conserved N-terminalsequence, the S-rich motif and the DL-rich motif of thetype-5 B1 isoform-specific region were LAVPRVP-VAGV, ESSPEVSSS, and EDLQLWDLDL, respectively.The EcR-B1 isoform with the type-5 B1 isoform-specificregion was identified in sawflies, the basal lineage ofHymenoptera. Moreover, the isoform-specific region ofthe EcR-B1 isoform identified in Panorpa pryeri (OrderMecoptera) contained an N-terminal extension regionsimilar to that of the type-5 B1 isoform-specific region.The P. pryeri EcR-B1 isoform contained the S-rich motif(amino acid residues 75-83; ESSPEVSSS) and the DL-rich motif (amino acid residues 99-112;ELGEVDLDFWDLDI), which were structurally similarto the S-rich motif of the type-4 B1 isoform-specificregion and the DL-rich motif of type-3 B1 isoform-spe-cific region, respectively.Type-6 B1 isoform-specific region (Figure 12)The type-6 B1 isoform-specific region contained con-served microdomains [the (K/R)RRW motif, the S-richmotif, the SP residues, and the DL-rich motif]. The con-sensus sequence of the S-rich motif of the type-6 B1 iso-form-specific region was EESSSEVTSSS. Although theDL-rich motif of type-6 B1 isoform-specific region wascomposed of acidic residues and bulky hydrophobic resi-dues, its sequence was highly modified [consensus; (D/E)Y(C/G)(E/D)LWxxxxD)]. The EcR-B1 isoform withthe type-6 B1 isoform-specific region was identified inDiptera, Lepidoptera, and Trichoptera.

    Phylogenetic evolution of motif structures in the EcRisoform-specific regions in insectsBased on the phylogenetic relationship of insect orders,we constructed evolution models for the structural evo-lution of the isoform-specific region of the EcR isoformsin insects (Figure 13). The structural modifications inthe A isoform-specific region accompanied by insectevolution are represented in Figure 13A. The A iso-form-specific region of non-insect arthropods (type-1 Aisoform-specific region) was composed of four con-served microdomains [the SUMOylation motif, the NLS,the (D/E)(D/E)W residues, and the A-box]. The EcR-Aisoform of direct developing insects acquired two N-terminal sequences (DLKHE and ΨAYRG) (type-2 Aisoform-specific region), which were conserved amongmost direct-developing insect groups except for Hetero-ptera, whose EcR-A isoform lacked the N-terminal halfof the isoform-specific region including the SUMOyla-tion motif and the NLS (type-3 A isoform-specificregion). The two N-terminal sequences and four con-served microdomains were also conserved among mostholometabolous insect groups except for Hymenoptera,Mecoptera and Diptera. The isoform-specific region of

    323233

    11

    Physopelta guttaPachygrontha antennata

    Corythucha marmorata 4911

    Orius strigicollis

    TxxΨW + S-rich + SP + DL-rich

    Appasus japonicus

    Corythucha marmorata

    50 amino acids

    TxxΨW

    S-rich

    SP

    DL-rich

    Heteroptera(Order Heteroptera)

    Physopelta gutta

    Pachygrontha antennata

    Orius strigicollis

    TxxΨW S-rich SP DL-rich

    :*: * * :: **:**. * *****:**---------MTAMWVPR-FGQVSR-ED----QVSSSS---EV-DLELWDLG---------MTAMWVPR-FGQVSR-ED----QVSSSS---EV-DLELWDLG------------MWV-RGY-AM-R-EEG-CDQVTSSCSPG-VEDLELWDLGMRSVKNGSNEVMMWV-RGYAAM-RGEDGCCDQVSSSCSPGVVDDLELWDLG---------MTTLWL-RAGGG--R-DETSCDQVSSSCSPGQV-DLELWELGAppasus japonicus 371

    Figure 8 Type-2’ B1 isoform-specific region. The type-2’ B1isoform-specific region contained three conserved microdomainsand the N-terminal TxxΨW sequence. (A) Schematic representationof the type-2’ B1 isoform-specific regions. Positions of the TxxΨWsequence, the S-rich motif, the SP residues, and the DL-rich motifare indicated by colored boxes. (B) The alignment and SequenceLogo representation of the N-terminal region of the type-2’ B1isoform-specific region. The amino acid residues are represented inthe default color scheme of ClustalX. Asterisks indicate identicalresidues and colons indicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 8 of 17

  • ***** ------MKRRWAG------MKRRWNG------MKRRWSG------MKRRWS-------MKRRWTG------MKRRWSGMYTFSKMKRRWTG------MKRRWSG

    Anthonomus grandisLeptinotarsa decemlineata

    Tenebrio molitorTribolium castaneum

    Pseudoxenos iwataiHagenomyia micans

    Protohermes grandisInocellia japonica

    11111111

    777677137

    2013161216192516

    :.*.**:*** VDSSAEVTSSSSSEESSSEVTSSST-EESSSEVTSSSTTEESSSEVTSSS--EESSSEVSSSSTSDESSPEVTSSS--DESSPEVTSSST-DEGSPEVTSSS--

    3224282228293626

    3928322738354132

    :*. ::*.:: *:.:. :* ***:*::SPA------NSLVST-DLGEA-DLEFWDLDLNSPA------NSLASA-DIGDV-DLEFWDLDLNSPA------NSLAST-DIGDV-DLEFWDLDLNSPA------NSLAST-DIGDV-DLEFWDLDLNTPVTHTNNYQTLATT-DISDV-ELAFWDIDMNSPA------NSLAST-DIGDV-DLEFWDLDLNSPA------NSLASTTDIGDVVDLEFWDLDLQSPA------NSLAST-DIGDV-DLEFWDLDIN

    6251555067586655

    (K/R)RRW S-rich SP + DL-rich

    (K/R)RRW S-rich SP DL-rich

    Tenebrio molitor

    Anthonomus grandis

    Leptinotarsa decemlineata

    Tribolium castaneum

    Pseudoxenos iwatai

    Hagenomyia micans

    Protohermes grandis

    Inocellia japonica

    50 amino acids

    (K/R)RRW

    S-rich

    SP

    DL-rich

    Coleoptera

    Strepsiptera

    Megaroptera

    Neuroptera

    Raphidioptera

    Neuropterida

    Figure 9 Type-3 B1 isoform-specific region. The type-4 B1 isoform-specific region contained four conserved microdomains. (A) Schematicrepresentation of the type-4 B1 isoform-specific regions. Positions of the (K/R)RRW motif, the S-rich motif, the SP residues, and the DL-rich motifare indicated by colored boxes. (B) The alignment and Sequence Logo representation of the conserved microdomains of the type-4 B1 isoform-specific region. The amino acid residues are represented in the default color scheme of ClustalX. Asterisks indicate identical residues and colonsindicate similar residues.

    Apis melliferaBombus hypocrita

    Xylocopa appendiculataOsmia cornifrons

    Coelioxys fenestrataAmmophila infestaVespa mandarinia

    Anterhynchium flavomarginatumScolia oculata

    Anospilus sp.Amblyjoppa sp.

    Eretmocerus eremicusNasonia vitripennis

    Urocerus antennatus

    ** : **:*:**::***. MLQTV-PRVPVAGIKRRWG-MLQTV-PRVPVAGVKRRWG-MLQTM-PRVPVAGVRRRWG-MLQTV-PRVPVAGVRRRWG-MLQTV-PRVPIAGVRRRWG-MLQTV-PRVPVAGVRRRWGTMLQTV-PRVPVAGVRRRWGGMLQTV-PRVPVAGVRRRWG-MLQTM-PRVPVAGVRRRWG-

    MLQTM-PRVPVAGVRRRWGTMLQTM-PRVPVAGVRRRWG-ML-A-QPRLPVAGVKRRWASMLQTMQPRVPVAGVKRRWGGMLQTV-PRVPMAGVKRRWGG

    111111111

    11111

    181818181819191818

    1918182019

    252525252528624225

    2525272824

    ** * .****: :*. LQ------E-SSPEVSSSGVLSPPPLQ------E-SSPEVSSSGVLSPPPLQ------E-SSPEVSSSGVLSPPPLQ------E-SSPEVSSSGVLSPPLLQ------E-SSPEVSSSGVLSPPPLQ------E-SSPEVSSSGVLSPPPLQ------E-SCPEVSSSGVLSPPPLQ------E-SSPEVSSSGVLSPPPLQ------ETSSPEVSSSVVLSPPP

    LQ------E-SSPEVSSSGVLSP--LQ------E-SSPEVSSSGVLSPPPLQPSPAHGE---SEVSSSGMLSPPPLQ------E-SSSEVSSSGVLSPPPLQ------E-SSPEVSSTGVLSPPP

    424242424245795943

    4042484541

    5757575757611068361

    5558846555

    * *******: * EE-----LQLWDLDLH-RGEE-----LQLWDLDLH-RGEE-----LQLWDLDLH-RGEE-----LQLWDLDLH-RGEE-----LQLWDLDLH-RGED-----LQLWDLDLQ-RGED-----LQLWDLDLH-RGED-----LQLWDLDLH-RGED-----LQLWDLDLH-RG

    ED-----LQLWDLDLH-RGED-----LQLWDLDLQ-RGEGSPGNGAQLWDLDLHGRQED-----PQLWDLDLQPRQED-----LQLWDLDLQ-RG

    6969696969731189573

    Pheidole megacephala MLQTM-PRIPVAGVRRRWS-1 18 25 LQ------E-SSPEVSSSDTFSS-- 40 53 ED-----LQLWDLDLH-RG 6567701027867

    LQTVPRVPVAGV

    LQTVPRVPVAGV + (K/R)RRW S-rich + SP DL-rich

    (K/R)RRW S-rich SP DL-rich

    Apoidea

    Apis mellifera

    Bombus hypocrita

    Xylocopa appendiculata

    Osmia cornifrons

    Coelioxys fenestrata

    Ammophila infesta

    Vespa mandarinia

    Anterhynchium flavomarginatum

    Scolia oculata

    Pheidole megacephala

    Campsomeris schulthessi

    Anospilus sp.

    Amblyjoppa sp.

    Eretmocerus eremicus

    Nasonia vitripennis

    Urocerus antennatus

    50 amino acids

    SP

    DL-richLQTVPRVPVAGV

    (K/R)RRW

    S-rich

    Suborder Apocrita(Order Hymenoptera)

    Ichneumonoidea

    Vespoidea

    Campsomeris schulthessi MLQTM-PRVPVAGVRRRWG-1 18 24 LQ------ETSSPEVSSSEVLSPPA 42 61 ED-----LQLWDLDLH-RG 73

    Chalcidoidea

    Siricoidea

    Aculeata

    Suborder Symphyta(Order Hymenoptera)

    Figure 10 Type-4 B1 isoform-specific region. The type-4 B1 isoform-specific region contained four conserved microdomains and the N-terminal LQTVPRVPVAGV sequence. (A) Schematic representation of the type-4 B1 isoform-specific regions. Positions of the LQTVPRVPVAGVsequence, the (K/R)RRW motif, the S-rich motif, the SP residues, and the DL-rich motif are indicated by colored boxes. (B) The alignment andSequence Logo representation of the N-terminal region and the conserved microdomains of the type-4 B1 isoform-specific region. The aminoacid residues are represented in the default color scheme of ClustalX. Asterisks indicate identical residues and colons indicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 9 of 17

  • the hymenopteran/mecopteran EcR-A isoform and thedipteran EcR-A isoform lacked the two N-terminalsequences, but contained the subgroup-specificsequences: The A isoform-specific region of the hyme-nopteran/mecopteran EcR-A isoform (type-4 A isoform-specific region) contained the D(S/T)S repeats, and thatof the dipteran EcR-A isoform generally contained theYRLN sequence at the N-terminus. In addition,although the isoform-specific region of the lepidopteranEcR-A isoform structurally classified as the type-2 A iso-form-specific region, it lacked the NLS.The structural modifications in the B1 isoform-specific

    region that accompanies insect evolution are repre-sented in Figure 13B. All types of the B1 isoform-speci-fic region contained three conserved microdomains: theS-rich motif, the SP residues, and the DL-rich motif (theB1 isoform-specific region of several heteropteraninsects did not contain the SP residues). The DL-richmotif of the type-6 B1 isoform-specific region was struc-turally modified and showed a limited sequence similar-ity with the corresponding motif of other insects.Interestingly, although Mecoptera is thought to be a sis-ter taxon of Diptera [17], the P. pryeri EcR-B1 isoformhad a DL-rich motif quite similar to the correspondingmotif of the type-3 B1 isoform-specific region.In addition to the three conserved microdomains, the

    isoform-specific region of the EcR-B1 isoform contained

    subgroup-specific N-terminal sequences. The EcR-B1isoform of polyneopteran and paraneopteran insects(types 2 and 2’ B1 isoform-specific region) generally con-tained the N-terminal TxxΨW sequence. In the holome-tabolous insects, the TxxΨW sequence was replaced withthe (K/R)RRW motif, a novel conserved microdomain atthe N-terminal end of the holometabolous insect EcR-B1(types 3-6 B1 isoform-specific region). The hymenop-teran/mecopteran EcR-B1 isoform contained the N-term-inal LQTVPRVPVAGV (or LAVPRVPVAGV) sequencejust N-terminally adjacent to the (K/R)RRW motif (types4 and 5 B1 isoform-specific region). Moreover, the EcR-B1 isoform of the basal hymenopteran insects (sawflies)and the mecopteran insect had the N-terminal extensionregion (type 5 B1 isoform-specific region).

    DiscussionGenerally, the nuclear receptor A/B domain contains theligand-independent AF-1 transactivation domain that isinvolved in the interaction with transcriptional cofactors[18,19], and some nuclear receptors have multiple iso-forms with different A/B domains that exhibit isoform-specific transcriptional regulation and physiological func-tions [20-23]. In the present study, we performed a struc-tural analysis of the isoform-specific A/B domain of theEcR-A and -B1 isoforms. Our data revealed the presenceof the conserved microdomain structures as well as the

    Cimbex femoratusArge similis

    Allantus luctiferTenthredo fagiPanorpa pryeri

    :. * . :. * :**** *:* ::* MLVT-CPSVGSRLV-LVAKDCTLGGTVAS-DPSNH-----------------KVQEIAEMLAVPRV--------------------PVAGVKRRWGGMLGSLFP-GGSSVAALVAANGSAIEDI-SEEPTTATTTTNPPPKTPPPMLVVKVDE-GEMIAVPRV--------------------PVAGVKRRWG-MLVT-WPSGGSGLV-LLAKDSGL-DTLESEDTGSD-----------------KTGETAEMLAVPRV--------------------PVAGVKRRWGGMLVT-WPSGGSSLV-LVAKDSTFQ----SSDPSSD-----------------KIGETAEMLAVPRV--------------------PVAGVKRRWGG------------MVIKKAR-AVFPDDFMNEESM-------------------KLGPC----SVPRVKKEAAESSSRHASSSSGSLQPIA--RKRA--

    11111

    5773575457

    N-terminal extension + LAVPRVPVAGV+ (K/R)RRW

    N-terminal extension LAVPRVPVAGV (K/R)RRW

    6278625975

    ********* ESSPEVSSSGESSPEVSSSGESSPEVSSSGESSPEVSSSGESSPEVSSSQ

    7187716884

    7389737089

    :** * .: * : *:.:****:: LSPPPNSLPAVPECAMNAEDLQLWDLDLQ-RGLSPPPHFHPAVPENAVHAEDLHLWDLDLQ-RGLSPPPNFHPATPECAVNTEDLQLWDLDLQ-RGLSPPPNFHPSTPECAVNADDIQFWDLDLQQRGISPVPSLNSS--E--LGEVDLDFWDLDIN---

    103119103101113

    Cimbex femoratusArge similis

    Allantus luctiferTenthredo fagiPanorpa pryeri

    S-rich SP + DL-rich

    S-rich SP DL-rich

    Cimbex femoratus

    Arge similis

    Allantus luctifer

    Tenthredo fagi

    Panorpa pryeri

    50 amino acids

    Sawflies(Order Hymenoptera, suborder Symphyta )

    Mecoptera

    S-rich

    SP

    DL-rich

    N-terminal extension

    LAVPRVPVAGV

    (K/R)RRW

    Figure 11 Type-5 B1 isoform-specific region. The type-5 B1 isoform-specific region contained four conserved microdomains, the N-terminalLAVPRVPVAGV sequence, and the N-terminal extension region. (A) Schematic representation of the type-5 B1 isoform-specific regions. Positionsof the N-terminal extension, the LAVPRVPVAGV sequence, the (K/R)RRW motif, the S-rich motif, the SP residues, and the DL-rich motif areindicated by colored boxes. (B) The alignment and Sequence Logo representation of the N-terminal region and the conserved microdomains ofthe type-5 B1 isoform-specific region. The amino acid residues are represented in the default color scheme of ClustalX. Asterisks indicateidentical residues and colons indicate similar residues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 10 of 17

  • insect subgroup-specific structural variations in the iso-form-specific region in the A/B domain of each EcR iso-form. The conserved microdomain structures in the EcRisoform-specific regions might be the fundamental struc-tural basis for the EcR isoform-specific AF-1 functions.The A isoform-specific region generally contained the

    SUMOylation motif, the NLS, the (D/E)(D/E)W resi-dues, and the A-box. Among these structural motifs, the(D/E)(D/E)W residues and the A-box were highly con-served in the C-terminal half of the A isoform-specificregion across arthropod species, suggesting that thesetwo microdomains are the essential structures for the Aisoform-specific AF-1. Moreover, the NLS was con-served among all species except for Heteroptera andLepidoptera. The NLS in the isoform-specific region ofDrosophila EcR-A isoform is involved in nucleo-cyto-plasmic shuttling in mammalian cells [24]. Our datasuggest that the isoform-specific region-mediated

    nuclear localization mechanism of the EcR-A isoform isconserved among most species.The A/B domain of Drosophila EcR-A isoform exhi-

    bits weak transactivation activity in Drosophila Kc167cells [12], whereas it exhibits transcriptional inhibitionactivity in HeLa cells [13]. In the red flour beetle T. cas-taneum, the EcR-A isoform initiates ecdysone responsesby regulating the expression of downstream 20E-response genes, indicating that the EcR-A isoform func-tions as a transactivating factor. In the N-terminal halfof the A isoform-specific region, we found a conservedSUMOylation motif. SUMOylation is a reversible post-translational modification involved in various cellularprocesses, such as nucleo-cytoplasmic shuttling andtranscriptional regulation [25-27]. SUMOylation of tran-scription factors generally results in the repression oftranscriptional activation activity [28]. The high level ofconservation of the SUMOylation motif in the A

    Chilo suppressalisManduca sexta

    Stenopsych marmorata

    Drosophila melanogasterDrosophila simulans

    Drosophila yakubaDrosophila ananassaeDrosophila grimshawi

    Drosophila mojavensisDrosophila virilis

    Drosophila persimilisDrosophila pseudoobscura pseudoobscura

    Calliphora vicinaLucilia cuprina

    Ceratitis capitataAedes albopictus

    Bombyx moriSpodoptera frugiperdaOmphisa fuscidentalis

    1111111111111111111

    27272727272727272830302930876728282728

    :**..* * * * : MSPSSLDSHDYCDQDLWLCGNEMSPSSLDSHDYCDQDLWLCGNEMSPSSLDSHDYCDQELWLCGNEMSPSSLDSHDYCDQELWLCGNDMSPSSLDSHDYGEPEMWLCGNDMSPSPLDSPDYGDQGSWLCGNDMSPSSLDSHDYGEQELWLCGNDMSPSSLDSHDYCDQDLWLCGNDMSPSSLDSHDYCDQDLWLCGNDMSPSSLDSPVYGDQDMWLC-NDMSPSSLDSPVYGDQEMWLC-NDLSPSPLDSPVYGDQDLW--YD-MSPNSLGSPNYDELELWSSYEDMSPESLASPEYRALELW-SYDDMSPESLASPEYGGLELW-GYEDMSPESLASPEYSNLELW-TYEDMSPESLASPEYAGLELW-GYDDMSPESLASPEYGGLELW-SYDEMSPESLGSPEYGEIELW-GYDE

    37373737

    3840403736977738383737

    37373737

    58585858

    59606055571179758585757

    58585858

    *:*** *** * ::: ::**:**:*** -------------------------------------------------------------MKRRWSNNGGF--MRLPEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--MRLPEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--MRLPEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--MRLPEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--LRIQEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--LRIHEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--LRIQEESSSEVTSSSN-------------------------------------------------------------MKRRWSNNGGF--LRVPEESSSEVTSSSN------------------------------------------------------------MMKRRWSNNGGF--LRVPEESSSEVTSSSN------------------------------------------------------------MMKRRWSNNGGFAALKMLEESSSEVTSSSN------------------------------------------------------------MMKRRWSNNGGFAALKMLEESSSEVTSSSN------------------------------------------------------------MMKRRWSNNGGF-ALRMLEESSAEVSSSSN------------------------------------------------------------MMKRRWSNNGGFTALRMLDDSSSEVTSSSAMRVENVDNVSFALNGRADEWCMSVETRLDSLVREKSEVKAYVGGCPS-VITDAGAYDALFDMRRRWSNNGGF-PLRMLEESSSEVTSSS----------------------MSIESRLDSLVRGKSEVKAFTGGCPSALV-DTGACDTLADMRRRWYNNGGFQTLRMLEESSSEVTSSS--------------------------------------------------------------MRRRWSNNGGFQTLRMLEESSSEVTSSS--------------------------------------------------------------MRRRWSNNGGFQTLRMLEESSSEVTSSS--------------------------------------------------------------MRRRWSNNGCF-PLRMFEESSSEVTSSS--------------------------------------------------------------MKRRWSNNGGFQTLRMLEDSSAEVSSSS-

    (K/R)RRW + S-rich SP + Modi ed DL-rich

    (K/R)RRW S-rich SP Modi ed DL-rich

    50 amino acids

    Drosophila melanogaster

    Drosophila yakuba

    Drosophila simulans

    Drosophila ananassae

    Drosophila grimshawi

    Drosophila mojavensis

    Drosophila virilis

    Drosophila persimilis

    Drosophila pseudoobscura pseudoobscura

    Calliphora vicina

    Lucilia cuprina

    Ceratitis capitata

    Aedes albopictus

    Bombyx mori

    Spodoptera frugiperda

    Omphisa fuscidentalis

    Chilo suppressalis

    Manduca sexta

    Stenopsych marmorata

    Lepidoptera

    Diptera

    Trichoptera

    SP

    Modi ed DL-rich

    (K/R)RRW

    S-rich

    Figure 12 Type-6 B1 isoform-specific region. The type-6 B1 isoform-specific region contained four conserved microdomains. The DL-richmotif was structurally modified in the type-6 B1 isoform-specific region (termed as modified DL-rich motif). (A) Schematic representation of thetype-6 B1 isoform-specific regions. Positions of the (K/R)RRW motif, the S-rich motif, the SP residues, and the modified DL-rich motif are indicatedby colored boxes. (B) The alignment and Sequence Logo representation of the conserved microdomains of the type-6 B1 isoform-specific region.The amino acid residues are represented in the default color scheme of ClustalX. Asterisks indicate identical residues and colons indicate similarresidues.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 11 of 17

  • Figure 13 Structural diversity of the EcR isoform-specific region in insects. (A) Evolution model for the structural modification in the Aisoform-specific region in insects. (B) Evolution model for the structural modification in the B1 isoform-specific region in insects. Schematicrepresentation shows the phylogenetic relationship of insect subgroups with the structural types of the isoform-specific region. Conservedmicrodomains are indicated by colored boxes.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 12 of 17

  • isoform-specific region suggests that it is functionallyimportant. SUMOylation of the A isoform-specificregion might contribute to the cell-type/organism-dependent transcriptional regulation mediated by the A/B domain of the EcR-A isoform.All types of the B1 isoform-specific region contained

    the S-rich and the DL-rich conserved motifs. The iso-form-specific region of the holometabolous insect EcR-B1 isoform (types 3-6 B1 isoform-specific region) con-tained an additional (K/R)RRW motif at the N-terminus.In Drosophila, strong transactivation activity wasmapped at the N-terminal end of the A/B domain ofthe EcR-B1 isoform (amino acid residues 1-53) [13],which includes all three conserved motifs. Moreover,the S-rich motif-like sequences and the DL-rich motifare found in the A/B domain of the ecdysone receptoridentified from the filarial nematode B. malayi. Thehigh level of conservation of the S-rich and DL-richmotifs across ecdysozoan species suggests that thesemotifs are the essential structures for the B1 isoform-specific AF-1 function.The length and sequences of the linker regions

    between microdomains, as well as the distribution ofmicrodomains in the isoform-specific region variedacross species. For example, the B1 isoform-specificregion of the non-insect arthropod EcR-B1 isoforms(type-1 B1 isoform-specific region) contained a long lin-ker region between the S-rich and the DL-rich motifs(e.g., Daphnia magna EcR-B1 contained an 137-aminoacid linker region). In the holometabolous insects, thethree conserved motifs [the (K/R)RRW, the S-rich, andthe DL-rich motifs] were contained in the N-terminalhalf of the B1 isoform-specific region, and the linkerregions between the motifs were shortened (e.g. type-6B1 isoform-specific region). The isoform-specific regionof the EcR-B1 isoform identified in vespoid wasps con-tained a long S/H-rich insertion between the holometa-bolous insect-specific (K/R)RRW motif and the S-richmotif. These data suggest that the conserved microdo-mains in the EcR isoform-specific regions are structu-rally, and even functionally, independent of each other.In vitro and in silico structural analysis for the A/B

    domain of the Drosophila EcR isoforms revealed thatthe N-terminal region of the Drosophila EcR-B1 iso-form-specific region, which contains the conservedmicrodomains, is structurally disordered [29]. Theintrinsically disordered AF-1 region was found in manyother nuclear receptors, such as the androgen receptorand the glucocorticoid receptor [30-34]. The intrinsicdisordered regions are found in a lot of proteinsinvolved in protein-protein interactions [35,36] and thatthe nuclear receptor AF-1 region is involved in cofactorrecruitment and transcriptional regulation. Thus, theconserved microdomains found in the EcR isoform-

    specific region might function as signature motifs and/or target sites for the EcR isoform-specific transcriptioncofactors.The A/B domain of the Drosophila EcR-B1 isoform

    activates transcription even in yeast and mammaliancells [13,37,38], therefore it is likely that the AF-1 regionof the EcR-B1 isoform activates transcription throughmechanisms conserved among eukaryotic organisms.Among the conserved microdomains contained in theDrosophila EcR-B1 isoform-specific region, the DL-richmotif, which comprises tandem repeats of acidic resi-dues (D and E) and aromatic/bulky hydrophobic resi-dues (W, A, F, I, L, M, and V), was structurally similarto the acidic activation domain (Figure 14A). Acidicactivation domains are found in viral and cellular tran-scription factors such as VP16, GAL4 and p53 [39-42],as well as in the AF-1 region of several nuclear

    Direct-developing insect EcR-B1 AF-1

    Co-regulatory proteins

    essential for EcR-B1 AF-1

    Direct-developing insect EcR-B1 AF-1

    Holometabolous insect-specific

    Co-regulatory protein

    Holometabolous insect EcR-B1 AF-1

    (K/R)R

    RW

    S-ric

    h

    DL-

    rich

    DL

    -ric

    h

    S-rich

    447477

    437466

    * :D--ALD--DG--ALDMAD

    DIGEVDL-DDIGEVDL-E---EVDL-EDIGDVDL-E---E-DL-Q---E-DL-Q

    : :: F-DLDMF-EFEQ

    FWDLDLFWDLDLLWDLGLFWDLDLLWDLDLLWDLDL

    Type 1 Type 2 Type 2' Type 3 Type 4 Type 5

    DL-rich motif

    consensus

    Acidic activator

    domains of VP16

    Figure 14 Hypothetical model of the B1 isoform-specific regionmediated transcriptional regulation. (A) Sequence comparisonbetween two acidic activator domains of herpes virus protein VP16and the consensus sequences of the DL-rich motif of the EcR-B1isoform. Two acidic activation domains of VP16 (GenBank accessionnumber; NP_044650) were aligned with the consensus sequences ofthe DL-rich motifs of the type 1-5 B1 isoform-specific regions. TheDL-rich motif of EcR-B1 isoform and the VP16 acidic activationdomains comprise tandem repeats of acidic residues and aromatic/bulky hydrophobic residues. The amino acid residues arerepresented in the default color scheme of ClustalX. Asterisksindicate identical residues and colons indicate similar residues. (B)Schematic model of the action of the EcR-B1 isoform-specific AF-1.The S-rich and DL-rich motifs might interact with co-regulatoryproteins essential for B1 isoform-specific AF-1. The holometabolousinsect EcR-B1 isoform might have acquired a novel interactionpartner(s) in the holometabolous insect-specific (K/R)RRW motif.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 13 of 17

  • receptors [43,44]. Further studies, such as protein-pro-tein interaction studies, will shed light on the transcrip-tional regulation mechanism of the EcR-B1 isoform-specific AF-1.In the present study, we discovered that the N-termini

    of holometabolous insect EcR-B1 isoforms contain anovel conserved (K/R)RRW motif, which is lacking inthe direct-developing insects. The (K/R)RRW motif wasfound in the N-terminal region of the EcR-B1 isoformidentified in Hymenoptera, the most basal lineage ofholometabolous insects, suggesting that the (K/R)RRWmotif was acquired in association with the evolution ofholometabolous insects. Strikingly high conservation ofthe (K/R)RRW motif across holometabolous insect spe-cies suggests its importance in the AF-1 function of theholometabolous insect EcR-B1 isoform. Taken together,we hypothesize that the holometabolous insect EcR-B1isoform acquired a novel transcriptional regulationmechanism that is mediated by the (K/R)RRW motif(Figure 14B).

    ConclusionsA comprehensive structural comparison of the N-term-inal isoform-specific region in the A/B domain of theEcR-A and -B1 isoforms in insects revealed severalmicrodomain structures that are conserved acrossinsects or acquired/modified in a specific-subgroup ofinsects. These microdomains might be the essentialstructural basis for the EcR isoform-specific AF-1 trans-activation functions by serving as binding sites for co-regulatory proteins or as post-translational modificationsites. The novel (K/R)RRW motif in the isoform-specificregion of the holometabolous insect EcR-B1 isoformmight provide additional interaction sites for co-regula-tory proteins and mediate the holometabolous insect-specific regulation of the B1 isoform-specific AF-1 trans-activation function. Identification of binding partners ofthe EcR isoform-specific regions and structural analysisof the interaction interface will provide further insightinto the evolutionary importance of the structural modi-fications of the EcR isoform-specific AF-1 regions.

    MethodsAnimalsWe collected 51 species of insects and non-insectarthropods for EcR cDNA cloning. Some of them werecollected in the field and others were purchased. Theircollection sites are listed in Additional file 3, Table S3.Franklinothrips vespiformis, Orius strigicollis and Eret-mocerus eremicus were purchased from Arysta Life-Science (Tokyo, Japan). Colonies of Apis mellifera werepurchased from Kumagaya bee farm (Saitama, Japan).Pupae of Osmia cornifrons were purchased from MasonBee Research Institute (Sendai, Miyagi, Japan). Pupae of

    Nasonia vitripennis were purchased from Nosan cor-poration (Tsukuba, Ibaraki, Japan). Gryllus bimaculatus,Acheta domestica and Thermobia domestica were pur-chased from local pet stores.

    RNA isolation and reverse transcriptionTissues were dissected in ice-cold phosphate-bufferedsaline (138 mM NaCl, 3 mM Na2HPO4, 10 mMNaH2PO4, pH 7.4), and immediately homogenized inTRIzol reagent (Invitrogen, Carlsbad, CA) or stored inRNA later reagent (Ambion, Austin, TX) at -20°C untiluse. Total RNA was isolated with TRIzol reagent andtreated with DNase I (TaKaRa, Shiga, Japan) at 37°C for1 h. For standard reverse transcription-polymerase chainreaction (RT-PCR) experiments, total RNA (1 μg) wasreverse transcribed using Superscript III reverse tran-scriptase (Invitrogen) with a 3’ rapid amplification of thecDNA end (3’ RACE) adapter packaged in the First-Choice RLM-RACE kit as a primer. For 5’ RACE, totalRNA was modified using the FirstChoice RLM-RACEkit and reverse transcribed using Superscript III reversetranscriptase with a random decamer as a primer.

    Cloning of cDNA fragments that encode the A/B and Cdomains of EcR isoformsFirst, we cloned cDNA fragments encoding the Cdomain and the C-terminal region of the A/B domain ofEcR isoforms by RT-PCR. Then, we performed 5’ RACEusing the FirstChoice RLM-RACE kit (Ambion) todetermine translation initiation site of the gene. Finally,we cloned cDNA fragments encoding the full length ofthe A/B domain of EcR isoforms. The obtained cDNAsequences were registered with GenBank. Detailedexperimental procedures are described below.Generally, we performed nested or semi-nested PCR

    to amplify a desired cDNA fragment in the RT-PCR andthe 5’ RACE experiments. First, PCR was performedusing either KOD-plus polymerase (ToYoBo, Osaka,Japan) or TaKaRa LA Taq (TaKaRa), and nested PCRwas performed using either TaKaRa Ex Taq (TaKaRa)or TaKaRa LA Taq. The amplified DNA fragmentswere subcloned into the plasmid vector pGEM-T easy(Promega, Madison, WI), and the nucleotide sequenceswere determined using ABI PRISM 3100 Genetic Analy-zer (Applied Biosystems, Foster City, CA). Thesequences of the degenerate/consensus primers used forthe partial cDNA cloning are listed in Additional file 3,Table S3. The sequences of the primers used to amplifya cDNA encoding the full-length of the A/B domain ofEcR isoforms are listed in Additional file 4, Table S2.Cloning of cDNA fragments encoding the EcR C domainTo obtain the partial cDNA fragments encoding theecdysone receptor (EcR) C domain, we performedreverse transcription polymerase chain reaction (RT-

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 14 of 17

  • PCR) with primers designed on the basis of the highlyconserved amino acid residues among the insect EcR Cdomain (EELCLVCGD and TCEGCKGFF for forwarddegenerate primers, MYMRRKCQE and VGMRAECVfor reverse degenerate primers).Cloning of cDNA fragments encoding the C-terminal regionof the A/B domain of EcR-B1 isoform from insects and non-insect arthropods expect for Hemiptera, Hymenoptera, andTrichopteraTo obtain the cDNA fragment encoding the C-terminalregion of the A/B domain of EcR-B1 isoform frominsects and non-insect arthropods other than Hemipteraand Hymenoptera, we performed RT-PCR with a for-ward consensus primer designed on the basis of theconserved nucleotide sequence among three Coleop-teran EcR-B1s (GenBank accession numbers: CAL25731,CAA72296, and BAD99297) and two Crustacean EcRs(GenBank accession numbers: AAC33432 andBAF49033). The reverse gene-specific primers weredesigned on the basis of the obtained cDNA sequenceencoding the C domain. To determine the translationinitiation site, we performed 5’ RACE with gene-specificprimers designed on the basis of the obtained partialcDNA encoding the A/B domain of EcR-B1 isoform.Cloning of cDNA fragments encoding the C-terminal regionof the A/B domain of EcR-B1 isoform from HymenopteraWe designed an alternative forward primer on thebasis of the consensus nucleotide sequence conservedamong three hymenopteran insects. Briefly, we per-formed a genomic tBlastn search with an amino acidsequence of the Pheidole megacephala EcR-B1 isoform(GenBank accession number: BAE47510) against thegenomic DNA sequences of Nasonia vitripennis andApis mellifera to predict the DNA sequences encodingthe A/B domain of EcR-B1 isoform. We then designedtwo forward consensus primers on the basis of theconserved nucleotide sequence encoding the A/Bdomain of hymenopteran insect EcR-B1 isoform. Wesimultaneously designed a reverse consensus primer onthe basis of the conserved nucleotide sequence encod-ing the C domain of EcR. To obtain the partial cDNAfragment encoding the C-terminal region of the A/Bdomain of EcR-B1 isoform from Hymenoptera, we per-formed RT-PCR with the forward and reverse consen-sus primers.Cloning of cDNA fragments encoding the C-terminal regionof the A/B domain of EcR-B1 isoform from Hemiptera andTrichopteraBecause the forward degenerate primer described abovedid not work for hemipteran and trichopteran EcR-B1gene, we performed 5’ RACE with reverse gene-specificprimers designed on the basis of the obtained cDNAsequence encoding the C domain of EcR.

    Cloning of cDNA fragments encoding the C-terminal regionof the A/B domain of EcR-A isoformTo obtain the cDNA fragment encoding the A/Bdomain of EcR-A isoform from arthropods other thanHymenoptera, we performed 5’ RACE with gene-specificprimers designed on the basis of the obtained partialcDNA sequence encoding the C domain of EcR.To obtain cDNA fragment encoding EcR-A isoform

    from hymenopteran insects, we first designed a forwardconsensus primer encoding the C-terminal region of theA isoform-specific region. The forward consensus pri-mer for hymenopteran EcR-A isoform was designed onthe basis of the conserved nucleotide sequences of threehymenopteran EcR-A isoforms (GenBank accessionnumbers: XP_001602885, XP_394760, BAF79665, andBAE47509). We then performed RT-PCR with the for-ward and reverse consensus primers to obtain the par-tial cDNA encoding the C-terminal of the A/B domainof EcR-A isoform.5’ RACETo determine a translation initiation site of the gene, weperformed 5’ RACE using the FirstChoice RLM-RACEkit (Ambion) according to the manufacturer’s protocol.The reverse gene-specific primers were designed basedon the obtained cDNA encoding the isoform-specificregion of EcR isoforms.Cloning of cDNA fragments encoding the full-length of theA/B domain of EcR isoformsTo obtain a cDNA fragment encoding the full-length A/B domain of EcR isoforms, we designed a forward gene-specific primer at the 5’ untranslated region (UTR) ofthe gene. Reverse gene specific primers were designedon the basis of the obtained cDNA corresponding to theC domain of EcR. To clone A. mellifera EcR isoforms,we designed a reverse gene-specific primer at the 3’UTR of the gene on the basis of the predicted full-length cDNA encoding EcR-A isoform (GenBank acces-sion number: XM_394760).

    Sequence comparisonGenBank accession numbers of EcR-A and -B1 isoformsused for sequence comparison are listed in Additionalfile 1, Table S1 and Additional file 2, Table S2, respec-tively. The deduced amino acid sequences of the iso-form-specific region of EcR-A and -B1 isoforms werealigned with the ClustalX 2.0 program [45] or MAFFT6.0 program [46], and then manually adjusted. Predic-tion of potential SUMOylation sites was performedusing SUMOsp 2.0 program [47]. The Sequence Logosand the consensus sequences were generated using theGeneious 4.8 program [48] to represent sequence con-servation. All alignment files were supplemented inFASTA format (Additional file 5).

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 15 of 17

  • Additional file 1: Table S1. Taxa used in the structural comparison ofthe EcR-A isoform-specific region. These files can be viewed with:CLUSTAL X.Click here for file[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-40-S1.PDF ]

    Additional file 2: Table S2. Taxa used in the structural comparison ofthe EcR-B1 isoform-specific region. These files can be viewed with:CLUSTAL X.Click here for file[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-40-S2.PDF ]

    Additional file 3: Table S3. Degenerate/consensus primers used forcDNA cloning. These files can be viewed with: CLUSTAL X.Click here for file[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-40-S3.PDF ]

    Additional file 4: Table S4. Gene-specific primers used for cDNAcloning and the collection sites of animals. These files can be viewedwith: CLUSTAL X.Click here for file[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-40-S4.PDF ]

    Additional file 5: Sequence alignments of the isoform-specificregions of the EcR-A and -B1 isoforms. Aligned sequences of the fivetypes of the A isoform-specific regions and seven types of the B1isoform-specific regions. These files can be viewed with: CLUSTAL X.Click here for file[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-40-S5.ZIP ]

    AcknowledgementsThis work was supported by the Program for Promotion of Basic ResearchActivities for Innovative Bioscience (PROBRAIN) and Grant-in-Aid from theMinistry of Education, Science, Sports.

    Authors’ contributionsTW conceived of the study, collected specimen, carried out the molecularcloning studies and the sequence alignment and drafted the manuscript. TKhelped to draft the manuscript. TH advised on the manuscript. All authorsread and approved the final manuscript.

    Received: 21 August 2009Accepted: 12 February 2010 Published: 12 February 2010

    References1. Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M, Cherbas P,

    Evans RM: Functional ecdysone receptor is the product of EcR andUltraspiracle genes. Nature 1993, 366:476-479.

    2. Talbot WS, Swyryd EA, Hogness DS: Drosophila tissues with differentmetamorphic responses to ecdysone express different ecdysonereceptor isoforms. Cell 1993, 73:1323-1337.

    3. Robinow S, Talbot WS, Hogness DS, Truman JW: Programmed cell death inthe Drosophila CNS is ecdysone-regulated and coupled with a specificecdysone receptor isoform. Development 1993, 119:1251-1259.

    4. Truman JW, Talbot WS, Fahrbach SE, Hogness DS: Ecdysone receptorexpression in the CNS correlates with stage-specific responses toecdysteroids during Drosophila and Manduca development. Develoment1994, 120:219-234.

    5. Schubiger M, Wade AA, Carney GE, Truman JW, Bender M: Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and forneuron remodeling during metamorphosis. Development 1998,125:2053-2062.

    6. Davis MB, Carney GE, Robertson AE, Bender M: Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions duringDrosophila development. Dev Biol 2005, 282:385-396.

    7. Choi YJ, Lee G, Park JH: Programmed cell death mechanisms ofidentifiable peptidergic neurons in Drosophila melanogaster. Development2006, 133:2223-2232.

    8. Tan A, Palli SR: Ecdysone receptor isoforms play distinct roles incontrolling molting and metamorphosis in the red flour beetle,Tribolium castaneum. Mol Cell Endocrinol 2008, 291:42-49.

    9. Saleh DS, Zhang J, Wyatt GR, Walker VK: Cloning and characterization ofan ecdysone receptor cDNA from Locusta migratoria. Mol Cell Endocrinol1998, 143:91-99.

    10. Cruz J, Mané-Padrós D, Bellés X, Martín D: Functions of the ecdysonereceptor isoform-A in the hemimetabolous insect Blattella germanicarevealed by systemic RNAi in vivo. Dev Biol 2006, 297:158-171.

    11. Wärnmark A, Treuter E, Wright AP, Gustafsson JA: Activation functions 1and 2 of nuclear receptors: molecular strategies for transcriptionalactivation. Mol Endocrinol 2003, 17:1901-1909.

    12. Hu X, Cherbas L, Cherbas P: Transcription activation by the ecdysonereceptor (EcR/USP): identification of activation functions. Mol Endocrinol2003, 17:716-731.

    13. Mouillet JF, Henrich VC, Lezzi M, Vögtli M: Differential control of geneactivity by isoforms A, B1 and B2 of the Drosophila ecdysone receptor.Eur J Biochem 2001, 268:1811-1819.

    14. Wang SF, Li C, Sun G, Zhu J, Raikhel AS: Differential expression andregulation by 20-hydroxyecdysone of mosquito ecdysteroid receptorisoforms A and B. Mol Cell Endocrinol 2002, 196:29-42.

    15. Anckar J, Sistonen L: SUMO: getting it on. Biochem Soc Trans 2007,35:1409-1413.

    16. Boulikas T: Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr1993, 3:193-227.

    17. Grimaldi D, Engel MS: Evolution of the Insects. Cambridge: CambridgeUniversity Press 2005.

    18. Lavery DN, McEwan IJ: Structure and function of steroid receptor AF1transactivation domains: induction of active conformations. Biochem J2005, 391:449-464.

    19. Kumar R, Litwack G: Structural and functional relationships of the steroidhormone receptors’ N-terminal transactivation domain. Steroids 2009,74:877-883.

    20. Keightley MC: Steroid receptor isoforms: exception or rule?. Mol CellEndocrino 1998, 137:1-5.

    21. Bender M, Imam FB, Talbot WS, Ganetzky B, Hogness DS: Drosophilaecdysone receptor mutations reveal functional differences amongreceptor isoforms. Cell 1997, 91:777-788.

    22. Giangrande PH, McDonnell DP: The A and B isoforms of the humanprogesterone receptor: two functionally different transcription factorsencoded by a single gene. Recent Prog Horm Res 1999, 54:291-313.

    23. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP: The opposingtranscriptional activities of the two isoforms of the human progesteronereceptor are due to differential cofactor binding. Mol Cell Biol 2000,20:3102-3115.

    24. Gwóźdź T, Dutko-Gwóźdź J, Nieva C, Betańska K, Orłowski M, Kowalska A,Dobrucki J, Spindler-Barth M, Spindler KD, Ozyhar A: EcR and Usp,components of the ecdysteroid nuclear receptor complex, exhibitdifferential distribution of molecular determinants directing subcellulartrafficking. Cell Signal 2007, 19:490-503.

    25. Wilson VG, Rangasamy D: Intracellular targeting of proteins bysumoylation. Exp Cell Res 2001, 271:57-65.

    26. Zhao J: Sumoylation regulates diverse biological processes. Cell Mol LifeSci 2007, 64:3017-3033.

    27. Ulrich HD: The SUMO system: an overview. Methods Mol Biol 2009,497:3-16.

    28. Gill G: Post-translational modification by the small ubiquitin-relatedmodifier SUMO has big effects on transcription factor activity. Curr OpinGenet Dev 2003, 13:108-113.

    29. Nocula-Ługowska M, Rymarczyk G, Lisowski M, Ozyhar A: Isoform-specificvariation in the intrinsic disorder of the ecdysteroid receptor N-terminaldomain. Proteins 2009, 76:291-308.

    30. Takimoto GS, Tung L, Abdel-Hafiz H, Abel MG, Sartorius CA, Richer JK,Jacobsen BM, Bain DL, Horwitz KB: Functional properties of the N-terminalregion of progesterone receptors and their mechanistic relationship tostructure. J Steroid Biochem Mol Biol 2003, 85:209-219.

    Watanabe et al. BMC Evolutionary Biology 2010, 10:40http://www.biomedcentral.com/1471-2148/10/40

    Page 16 of 17

    http://www.ncbi.nlm.nih.gov/pubmed/8247157?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8247157?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8324824?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8324824?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8324824?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8306887?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8306887?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8306887?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9570770?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9570770?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9570770?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/15950604?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/15950604?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/15950604?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16672345?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16672345?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18583027?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18583027?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18583027?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9806353?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9806353?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16890931?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16890931?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16890931?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12893880?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12893880?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12893880?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12554759?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12554759?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/11248701?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/11248701?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12385823?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12385823?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12385823?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/18031233?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/8241603?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16238547?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/16238547?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19666041?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19666041?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9413987?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9413987?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/9413987?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/10548881?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/10548881?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/10548881?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/10757795?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/10757795?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/10757795?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/17011166?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/17011166?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/17011166?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/17011166?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/11697882?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/11697882?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/17763827?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19107407?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12672486?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12672486?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19156821?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19156821?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/19156821?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12943706?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12943706?dopt=Abstracthttp://www.ncbi.nlm.nih.gov/pubmed/12943706?dopt=Abstract

  • 31. Lavery DN, McEwan IJ: The human androgen receptor AF1 transactivationdomain: interactions with transcription factor IIF and molten-globule-likestructural characteristics. Biochem Soc Trans 2006, 34:1054-1057.

    32. Lavery DN, McEwan IJ: Structure and function of steroid receptor AF1transactivation domains: induction of active conformations. Biochem J2005, 391:449-64.

    33. McEwan IJ, Lavery D, Fischer K, Watt K: Natural disordered sequences inthe amino terminal domain of nuclear receptors: lessons from theandrogen and glucocorticoid receptors. Nucl Recept Signal 2007, 5:e001.

    34. Krasowski MD, Reschly EJ, Ekins S: Intrinsic disorder in nuclear hormonereceptors. J Proteome Res 2008, 7:4359-4372.

    35. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN: Flexiblenets. The roles of intrinsic disorder in protein interaction networks. FEBSJ 2005, 272:5129-5148.

    36. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN,Vidal M, Iakoucheva LM: Intrinsic disorder is a common feature of hubproteins from four eukaryotic interactomes. PLoS Comput Biol 2006, 2:e100.

    37. Dela Cruz FE, Kirsch DR, Heinrich JN: Transcriptional activity of Drosophilamelanogaster ecdysone receptor isoforms and ultraspiracle inSaccharomyces cerevisiae. J Mol Endocrinol 2000, 24:183-191.

    38. Beatty J, Fauth T, Callender JL, Spindler-Barth M, Henrich VC: Analysis oftranscriptional activity mediated by Drosophila melanogaster ecdysonereceptor isoforms in a heterologous cell culture system. Insect Mol Biol2006, 15:785-795.

    39. Cress WD, Triezenberg SJ: Critical structural elements of the VP16transcriptional activation domain. Science 1991, 251:87-90.

    40. Regier JL, Shen F, Triezenberg SJ: Pattern of aromatic and hydrophobicamino acids critical for one of two subdomains of the VP16transcriptional activator. Proc Natl Acad Sci USA 1993, 90:883-887.

    41. Ruden DM: Activating regions of yeast transcription factors must haveboth acidic and hydrophobic amino ac