11
Research Article Genetic and Biochemical Diversity among Valeriana jatamansi Populations from Himachal Pradesh Sunil Kumar Singh, 1,2 Rajan Katoch, 1 and Rakesh Kumar Kapila 1 1 Department of Biotechnology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur 176062, India 2 National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi 110012, India Correspondence should be addressed to Sunil Kumar Singh; [email protected] Received 17 November 2014; Revised 15 January 2015; Accepted 17 January 2015 Academic Editor: Rosa Rao Copyright © 2015 Sunil Kumar Singh et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Valeriana jatamansi Jones is an important medicinal plant that grows wild in Himachal Pradesh, India. Molecular and biochemical diversity among 13 natural populations from Himachal Pradesh was assessed using RAPD and GC-MS to know the extent of existing variation. A total of seven genetically diverse groups have been identified based on RAPD analysis which corroborated well with the analysis based on chemical constituents. e essential oil yield ranged from 0.6% to 1.66% (v/w). A negative correlation between patchouli alcohol and viridiflorol, the two major valued constituents, limits the scope of their simultaneous improvement. However, other few populations like Chamba-II and Kandi-I were found promising for viridiflorol and patchouli alcohol, respectively. e analysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituents indicating possibility of their collection/selection for specific end uses like phytomedicines. e prevalence of genetically diverse groups along with sufficient chemical diversity in a defined region clearly indicates the role of ecology in the maintenance of evolution of this species. Sufficient molecular and biochemical diversity detected among natural populations of this species will form basis for the future improvement. 1. Introduction Valeriana jatamansi Jones. (Valeriana wallichii DC), also known as Indian valerian, is an erect pubescent herb, having horizontal, thick rootstock/rhizomes, with thick descending fibrous roots [1]. e species is found growing on moist slopes in the Himalayas and Khasi hills in shrubberies and open slopes between 1500 and 4000 m elevation from Pakistan to Southwest China, Burma, and South-East Asia. e plant also grows well in different agroclimatic regions of India. In Himachal Pradesh, it grows profusely in Bharmour division of Chamba, Kanda area of Karsog, and Chansil of Rohru forest division [2]. Valeriana jatamansi has long been in use in the Ayurvedic and Unani system of medicine [3]. Herbal medicine remains one of the most common forms of the therapy available for much of the world’s population. In traditional medicines, the roots of the plant are used for various ailments like ulcers, convulsions, jaundice, cardiac debility, dry cough, asthma, seminal weakness, chronic and intermittent fevers, skin diseases, falling hairs, nephropathy, leprosy, general debility, and sleep enhancement [46]. Besides, Valeriana jatamansi is also known to possess fungicidal activity against Fusarium oxysporum and Macrophomina phaseolina [7]. e medicinal property of the plant is attributed to vari- ous chemical components present in its essential oil. e com- position of oil has been reported to vary with geographical location and altitude [812]. e assessment of the genetic composition of species collected from different phytogeograph- ical regions helps to assess the available diversity, whereas bio- chemical analysis of economical parts is important to know quantitative as well as qualitative aspects and to choose the economically superior genotypes for the active ingredients. Among different PCR based markers, random amplified polymorphic DNA (RAPD) is an easy method for discovering random polymorphism in the genome [13]. In contrast to other molecular markers, RAPD is a very simple technique for taxonomic and systemic analysis and phylogenetic studies Hindawi Publishing Corporation e Scientific World Journal Volume 2015, Article ID 863913, 10 pages http://dx.doi.org/10.1155/2015/863913

Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

  • Upload
    hatu

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

Research ArticleGenetic and Biochemical Diversity among Valeriana jatamansiPopulations from Himachal Pradesh

Sunil Kumar Singh12 Rajan Katoch1 and Rakesh Kumar Kapila1

1Department of Biotechnology CSK Himachal Pradesh Krishi Vishvavidyalaya Palampur 176062 India2National Research Centre on Plant Biotechnology Lal Bahadur Shastri Building Pusa Campus New Delhi 110012 India

Correspondence should be addressed to Sunil Kumar Singh agrilsunshinegmailcom

Received 17 November 2014 Revised 15 January 2015 Accepted 17 January 2015

Academic Editor Rosa Rao

Copyright copy 2015 Sunil Kumar Singh et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Valeriana jatamansi Jones is an important medicinal plant that grows wild in Himachal Pradesh India Molecular and biochemicaldiversity among 13 natural populations fromHimachal Pradeshwas assessed usingRAPDandGC-MS to know the extent of existingvariation A total of seven genetically diverse groups have been identified based on RAPD analysis which corroborated well with theanalysis based on chemical constituents The essential oil yield ranged from 06 to 166 (vw) A negative correlation betweenpatchouli alcohol and viridiflorol the twomajor valued constituents limits the scope of their simultaneous improvement Howeverother few populations like Chamba-II and Kandi-I were found promising for viridiflorol and patchouli alcohol respectively Theanalysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituentsindicating possibility of their collectionselection for specific end uses like phytomedicines The prevalence of genetically diversegroups along with sufficient chemical diversity in a defined region clearly indicates the role of ecology in the maintenance ofevolution of this species Sufficient molecular and biochemical diversity detected among natural populations of this species willform basis for the future improvement

1 Introduction

Valeriana jatamansi Jones (Valeriana wallichii DC) alsoknown as Indian valerian is an erect pubescent herb havinghorizontal thick rootstockrhizomes with thick descendingfibrous roots [1]The species is found growing onmoist slopesin the Himalayas and Khasi hills in shrubberies and openslopes between 1500 and 4000m elevation from Pakistan toSouthwest China Burma and South-East Asia The plantalso grows well in different agroclimatic regions of India InHimachal Pradesh it grows profusely in Bharmour divisionof Chamba Kanda area of Karsog and Chansil of Rohruforest division [2]

Valeriana jatamansi has long been in use in theAyurvedicand Unani system of medicine [3] Herbal medicine remainsone of the most common forms of the therapy available formuch of the worldrsquos population In traditional medicines theroots of the plant are used for various ailments like ulcersconvulsions jaundice cardiac debility dry cough asthma

seminal weakness chronic and intermittent fevers skindiseases falling hairs nephropathy leprosy general debilityand sleep enhancement [4ndash6] Besides Valeriana jatamansiis also known to possess fungicidal activity against Fusariumoxysporum andMacrophomina phaseolina [7]

The medicinal property of the plant is attributed to vari-ous chemical components present in its essential oilThe com-position of oil has been reported to vary with geographicallocation and altitude [8ndash12] The assessment of the geneticcomposition of species collected fromdifferent phytogeograph-ical regions helps to assess the available diversity whereas bio-chemical analysis of economical parts is important to knowquantitative as well as qualitative aspects and to choose theeconomically superior genotypes for the active ingredients

Among different PCR based markers random amplifiedpolymorphicDNA (RAPD) is an easymethod for discoveringrandom polymorphism in the genome [13] In contrast toother molecular markers RAPD is a very simple techniquefor taxonomic and systemic analysis and phylogenetic studies

Hindawi Publishing Corporatione Scientific World JournalVolume 2015 Article ID 863913 10 pageshttpdxdoiorg1011552015863913

2 The Scientific World Journal

GDG-I

GDG-IV

GDG-VIGDG-VII

GDG-III

GDG-II GDG-V

76∘09984000998400998400E 76∘309984000998400998400E 77∘09984000998400998400E

76∘09984000998400998400E 76∘309984000998400998400E 77∘09984000998400998400E

32∘309984000998400998400N

32∘09984000998400998400N

32∘309984000998400998400N

N

32∘09984000998400998400N

31∘309984000998400998400N

Sampling locations

0 5 10 20

(km)

GDG-I

GDG-IV

GDG-VIGDG-VII

GDG-III

GDG-II GDG-V

Figure 1 Sampling locations of thirteen populations of Valeriana jatamansi from three districts of Himachal Pradesh The seven geneticallydiverse groups (GDG) have been indicated by arrow

of plants [14ndash18]The usefulness of RAPDs in diversity analy-sis has been demonstrated at the species level [19] subspecieslevel [20] population level [21] and cultivar level [22] Thepresent studywas conducted to elucidate the biochemical andmolecular diversity among different representative popula-tion samples of Valeriana jatamansi collected from differentgeographical locations of Himachal Pradesh India

2 Materials and Methods

21 Plant Material A total of 64 samples from thirteen nat-ural populations (five from each population except Mandi-I having four samples) of Valeriana jatamansi Jones (Table 1and Figure 1) were collected from different locationregionsof Himachal Pradesh (HP) India for the present studySince the collections were made from the available naturalpopulations at different locations representative samplescollected were limited in number ranging from 4 to 5

22 DNA Extraction and PCR Amplification Genomic DNAwas isolated from young leaves using CTAB method givenby Murray and Thompson [23] The isolated genomic DNAwas stored at minus20∘C until being used Decamer primers ofarbitrary sequence from operon (A C D E F J P Q andX series) were used to amplify genomic DNA of twenty-sixsamples (2 per collections) and based on polymorphismobtained forty-five primers were selected (Table 2) for finalamplification of all the collections DNA amplification

Table 1 Geographical descriptors of collections of Valeriana jata-mansi from Himachal Pradesh India used in the present study

Population Sample size Altitude(m) Latitude Longitude

Kullu-I 5 3647 32∘0910158405610158401015840N 77∘0210158404110158401015840EKullu-II 5 2734 32∘0810158401910158401015840N 77∘0410158403710158401015840EKandi-I 5 854 32∘3610158405810158401015840N 76∘0210158404210158401015840ETisa-I 5 1220 32∘3210158405410158401015840N 76∘0810158405510158401015840EChamba-II 5 2104 32∘4010158403610158401015840N 76∘0810158400310158401015840ESalooni-I 5 1730 32∘4310158402910158401015840N 76∘0310158400810158401015840EMandi-I 4 764 31∘4210158400010158401015840N 76∘5110158400010158401015840EKullu-III 5 2541 32∘0610158402010158401015840N 77∘0610158403010158401015840EDehgram-I 5 2165 32∘4110158401110158401015840N 76∘0810158402510158401015840ELeg Valley 5 1720 31∘5810158404710158401015840N 77∘0610158405910158401015840EChamba-I 5 2368 32∘4010158400610158401015840N 76∘0910158402910158401015840EMandi-II 5 945 31∘3110158404110158401015840N 76∘5910158404110158401015840ESojha 5 2692 31∘4210158404710158401015840N 76∘5410158404710158401015840E

was carried out by making final reaction volume of 20120583Lcontaining 16 120583L of dNTPmix (02mM each of dATP dGTPdCTP and dTTP) 016 120583L of TaqDNA polymerase (5U120583L)20 120583L DNA template (25 ng120583L) 10 120583L of 5120583M primer20 120583L of 10X PCR buffer 12 120583L of MgCl

2(25mM) and

1204 120583L of sterilized distilled water

The Scientific World Journal 3

Table 2 Level of polymorphism detected using 45 RAPD primersin 13 populations of Valeriana jatamansi

Marker Scored bands Polymorphic bands PIC value ()OPA-01 9 8 8540OPA-02 9 9 8329OPA-03 9 9 8788OPA-04 10 9 8382OPA-09 7 6 8193OPA-11 11 10 8858OPA-13 10 4 8775OPA-14 10 7 8570OPA-15 8 6 8419OPA-19 9 8 8678OPA-20 10 7 8240OPC-06 11 11 8923OPC-20 6 5 6719OPD-07 7 5 8403OPD-12 9 9 8270OPD-13 9 9 8532OPD-16 6 5 7951OPD-18 5 5 7681OPD-19 7 7 7739OPE-07 7 6 7918OPF-01 3 2 6395OPF-02 6 5 7931OPF-10 7 7 8444OPF-12 7 5 6644OPF-13 12 12 8806OPJ-01 3 2 5540OPJ-04 11 10 8573OPJ-10 10 10 8562OPJ-11 5 4 7572OPJ-14 15 14 9225OPJ-18 7 5 8157OPP-08 10 8 8676OPP-10 7 2 8493OPP-11 8 4 8601OPQ-01 6 5 8608OPQ-04 12 7 8857OPQ-06 8 7 8225OPQ-09 8 1 8022OPQ-12 9 8 8328OPQ-13 8 8 8225OPQ-14 4 1 7009OPQ-15 6 3 7715OPQ-16 12 6 8959OPX-02 8 6 8186OPX-19 7 6 8420Total 368 293 8179 (mean)

The DNA amplification was carried out in a thermalcycler (Applied Biosystems) The PCR program was set atinitial cycle of 94∘C for 5minutes 37∘C for 1min and 72∘C for

2min Further amplificationwas repeated 40 times consistingof denaturation at 94∘C for 1 minute annealing at 37∘Cfor 1min and extension at 72∘C for 2min Final extensionof 5min at 72∘C was carried out before rapid cooling to4∘C Amplification products were separated by agarose gelelectrophoresis in 1 X TAE on 14 agarose containing05 ng120583L ethidium bromide Images were photographed andcaptured by Gel Doc (Bio-Rad) Molecular weights wereestimated using a 1000 bp DNA ladder

23 RAPD Data Scoring and Analysis The RAPD profilesgenerated by different primers were compared to determinerelatedness within and among different populations Thepresence and absence of each RAPD band of a particularmolecular weight in all genotypes were scored manually Abinary datamatrix with ldquo1rdquo indicating presence of a particularmolecular weight band and ldquo0rdquo indicating its absence wasgenerated separately for each primer The binary data wereused for principal coordinate analysis (PCA) analysis ofmolecular variance (AMOVA) and mantel test [24] of geo-graphic and genetic distance using GenAlEx software [25]PCA was done based on genetic distance measure calculatedfrom binary data for multiple samples with multiple popula-tions using GenAlEx softwareThe neighbor-joining tree andbootstrap analysis were executed using DARWIN version 60[26] The statistical analysis was done by using StatSoft Inc[27] STATISTICA (data analysis software system) version 7Fst and Nm values were calculated using GenAlEx softwarefollowing formula given by Nei [28 29]

24 GC-MS Analysis of Essential Oil Roots and rhizomesof Valeriana jatamansi dried for 20 days under ambientroom conditions in shade [30 31] were used for essential oilextraction by hydrodistillation in Clevenger apparatus Theessential oil was dried over anhydrous Na

2SO4 The purified

fraction was used for recording GC-MS data Two120583L ofessential oil fraction was used for injection GC-MS (70 eV)data were measured in MS-QP-2010 series Shimadzu TokyoJapan equipped with MS AOC-20i autosampler and BP-20capillary column (SGC International Ringwood Australia)30m length 025mm ID and film thickness 025120583m (polyethylene glycol) with helium as a carrier gas The injectortemperature was 220∘C with split ratio of 1 50 The GC oventemperature was programmed to hold at 70∘C for 4min andthen to increase up to 220∘C at increments of 4∘Cmin andfinally it holds at 220∘C for 5min Column flow rate wasset at 110mLmin Ion source temperature was 200∘C andinterface temperature was set at 220∘C The MS was scannedat 70 eVover 40ndash600 amuThe individual components of theessential oils were identified by comparing their mass spectrawith a computerized MS-database using WILEY7 NIST 147NIST 27 and SZTERP libraries

3 Results and Discussion

31 RAPDPolymorphism A total of 150 primerswere initiallyscreened for amplification of DNA of a subset of 26 sam-ples (two plants randomly selected from each population)Based on the polymorphic information content (PIC) [32]

4 The Scientific World Journal

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II Salooni-I Mandi-I Kullu-III Dehgram-I Legvalley Chamba-I Mandi-II Sojha

Figure 2 RAPD profile of thirteen populations of Valeriana jatamansi

1

234

567 8

910

1112 1314 1516171819

20 212223

242526272829

30

31323334

3536373839

40

41424344

4546

4748

4950

515253

54

5556

57

5859

60

6162

63

64Coo

rdin

ate 2

(21

23

)

Coordinate 1 (2378)

Principal coordinates

Kullu-I(1ndash5)Kullu-II(6ndash10)Kandi-I(11ndash15)Tisa-I(16ndash20)Chamba-II(21ndash25)Salooni-I(26ndash30)Mandi-I(31ndash34)

Kullu-III(35ndash39)Dehgram-I(40ndash44)Leg Valley(45ndash49)Chamba-I(50ndash54)Mandi-II(55ndash59)Sojha(60ndash64)

Figure 3 Principal coordinate analysis of genetic differences among 13 populations of Valeriana jatamansi Values in parenthesis show levelof variation explained by the coordinate

the signal intensity and number of bands 45 primers wereselected for final analysis (Table 2)The representative RAPDprofile generated by OPA-3 primer is shown in Figure 2 Allforty-five primers generated a total of 368 bands with ameanof 8 bands per primer ranging from 3 to 15 per primer Of 368bands only 75 (2039) amplified fragments were present inall the 64 plants whereas 293 (7961) were polymorphic Itindicated considerable variation among the 64 samples of 13populations Kumar [33] had reported 9018 while Rajku-mar et al [34] reported a range of 65ndash81 polymorphism inthe sampled populations of the species in their studies Thedifference in the level of polymorphism among these reportsmight be due to less number of primers used by Kumar [33]and lower number of polymorphic loci (241) obtained byRajkumar et al [34] as compared to the present investigationBesides it can also be due to inherent differences in the sam-ples collected fromdifferent geographical regions in our case

32 Genetic Diversity Analysis and Population Structure Thebinary data used for principal coordinates analysis (PCA)distributed the samples in two coordinates coordinate oneaccounted for 2378 whereas coordinate two accounted for

2123 of the total variation among populations (Figure 3)Distribution pattern of all the samples from different popu-lations revealed consistency with their geographical origin Itclearly revealed lesser intrapopulation variation as comparedto interpopulation variation The same was evident from theanalysis of molecular variance (AMOVA) wherein 48 (119875 =0001) variationwas recordedwithin population as comparedto 52 (119875 = 0001) among populations (Table 3) The pair-wise differences (Fst) between populations (calculated basedon allele sharing) varied from 025 to 074 (Table 4) The esti-mated extent of gene flow (Nm) among populations is 0253ranging from 008 (between populations from Salooni-I andLeg Valley-II) to 072 (between populations from Kullu-I andKullu-II) Based on Neirsquos genetic similarity index (Table 4) 13populations clustered in seven different groups are designatedhereafter as genetically diverse groups (GDGs) at 85 geneticsimilarity level (Figure 4 Table 4) This clustering into sevenGDGs was further corroborated based on biochemical pro-filing of their essential oil As evident from Figures 1 3 and4 most of the samples from a particular arearegion (pop-ulation) were grouped separately deciphering the level and

The Scientific World Journal 5

Table 3 Analysis of molecular variance (AMOVA) of 64 samples of 13 populations of Valeriana jatamansi

Source df Sum of squares Mean squareddeviation

Estimatedvariance Total variance Probability

Among populations 12 1778137 148178 25337 52 lt0001Within populations 51 1197050 23472 23472 48 lt0001df = degree of freedom SS = sum of squares and MS = mean square

Table 4 Pairwise Fst and Nm (in parenthesis) value among populations of Valeriana jatamansi (below diagonal) and and Neirsquos geneticsimilarity (above diagonal) index

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II

Salooni-I

Mandi-I

Kullu-III

Dehgram-I

LegValley

Chamba-I

Mandi-II Sojha

Kullu-I 0903 0853 0828 0838 0805 0846 0858 0784 0812 0812 0801 0842

Kullu-II 0256(0727) 0869 0822 0839 0780 0825 0853 0770 0798 0806 0778 0822

Kandi-I 0407(0364)

0394(0384) 0873 0872 0823 0789 0807 0812 0793 0837 0773 0831

Tisa-I 0467(0285)

0501(0249)

0421(0344) 0875 0790 0799 0805 0782 0799 0820 0784 0806

Chamba-II 0374(0418)

0393(0385)

0342(0481)

0347(0471) 0847 0808 0821 0829 0799 0835 0778 0806

Salooni-I 0528(0193)

0586(0152)

0549(0173)

0609(0137)

0448(0308) 0811 0801 0770 0743 0825 0787 0785

Mandi-I 0453(0419)

0521(0314)

0603(0244)

0605(0230)

0419(0347)

0529(0223) 0851 0750 0812 0812 0837 0801

Kullu-III 0451(0304)

0488(0262)

0593(0172)

0609(0160)

0498(0252)

0698(0108)

0468(0284) 0773 0785 0812 0813 0837

Dehgram-I 0525(0226)

0565(0193)

0529(0223)

0583(0179)

0433(0327)

0648(0136)

0575(0185)

0636(0143) 0820 0830 0776 0777

Leg Valley 0533(0219)

0579(0182)

0609(0161)

0615(0157)

0530(0222)

0740(0088)

0562(0195)

0680(0118)

0572(0187) 0855 0829 0813

Chamba-I 0468(0284)

0499(0251)

0469(0283)

0510(0240)

0407(0364)

0562(0195)

0463(0289)

0567(0191)

0483(0268)

0490(0261) 0881 0881

Mandi-II 0550(0205)

0604(0164)

0633(0145)

0633(0145)

0558(0198)

0706(0104)

0501(0249)

0644(0138)

0630(0147)

0619(0154)

0427(0335)

0872

Sojha 0390(0391)

0450(0306)

0454(0301)

0507(0243)

0434(0327)

0596(0170)

0458(0296)

0498(0252)

0538(0215)

0537(0215)

0329(0510)

0422(0342)

robustness of diversity analysis using large number of RAPDmarkers with high PIC value encompassing larger genomecoverageThepopulations from specific regions such asKulluChamba andMandi are grouped together except some of thesamples that exhibited variation and were grouped in differ-ent clusters This possibly can be due to their natural habitatand geographic confinement The clustering pattern furtherindicates that the populations are not much differentiatedduring the evolution and the slight genetic variation presentwithin population(s) might have evolved under the influenceof environmental factors The mantel test did not exhibitsignificant correlation (119903 = 0002 119875 = 005) between geneticdistance and geographic distance of populations (Figure 5)

33 Essential Oil Composition and Chemical Diversity Theessential oil yield from roots was found to vary from 06 to166 (Table 5) with a mean oil yield of 1090 plusmn 0052 among

13 populations studied The DMRT analysis revealed thatthe populations differ in oil content significantly from eachotherwithTisa-I andDehgram-I having highest oil content ascompared to others while populations Leg valley Chamba-IMandi-II and Kullu-I have the lowest oil content Based onthe GC and GCMS analysis ten major chemical constituentswere identified in all the populations namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) The correlation analysisindicated a negative trend of major chemical constituentsand essential oil with altitude though it was not significant(Table 6) while a significant positive and negative correlationexists among the chemical constituents of essential oil forexample calarene has a significant negative trend in relation

6 The Scientific World Journal

0 01

Kullu-IC1

Kullu-IC2Kullu-IC3

Kullu-IC4

Kullu-IC5

Kullu-IIC1Kullu-IIC2

Kullu-IIC3Kullu-IIC4

Kullu-IIC5

Kandi-IC1Kandi-IC2

Kandi-IC3

Kandi-IC4Kandi-IC5

Tisa-IC1

Tisa-IC2Tisa-IC3

Tisa-IC4

Tisa-IC5

Chamba-IIC1Chamba-IIC2

Chamba-IIC3

Chamba-IIC4Chamba-IIC5

Salooni-IC1Salooni-IC2

Salooni-IC3Salooni-IC4

Salooni-IC5

Mandi-IC1Mandi-IC2

Mandi-IC3

Mandi-IC4

Kullu-IIIC1Kullu-IIIC2

Kullu-IIIC3Kullu-IIIC4

Kullu-IIIC5

Dehgram-IC1Dehgram-IC2

Dehgram-IC3Dehgram-IC4

Dehgram-IC5

LegvalleyC1LegvalleyC2

LegvalleyC3LegvalleyC4

LegvalleyC5

Chamba-IC1Chamba-IC2

Chamba-IC3Chamba-IC4

Chamba-IC5

Mandi-IIC1

Mandi-IIC2Mandi-IIC3Mandi-IIC4

Mandi-IIC5

SojhaC1SojhaC2

SojhaC3SojhaC4

SojhaC5

69

51

39

9860

45

41

9699

100

9745

70

100

9591

54

92

56

100

8495

100

92

8173

100 70

53

56

9052

95

10079

100

7370

84

59

9493

100

100

97

100

55

100

56

74

41

89

76

85

89

51

66

86

46

67

49

GDG-I

GDG-II

GDG-III

GDG-IV

GDG-V

GDG-VII

GDG-VI

Figure 4 Dendrogram of 64 samples from 13 populations of Valeriana jatamansi representing clustering of samples in a separate groupshowing the population specific grouping Cluster analysis was performed using the neighbor-joining method Bootstrap values obtainedfrom 500 replicate analyses higher than 40 are indicated on nodes

to patchouli alcohol seychellene and pogostol whereas withepiglobulol it is positiveThis indicates that the accumulationof one type of constituent hinders the accumulation of otherforms The variation in chemical composition of essentialoil with change of altitude has already been documented inthe literature [9 35] Amongst constituents patchouli alcoholcontent was found to have significantly high positive corre-lation with alpha-guaiene (0816) seychellene (0884) and

azulene (0602) while it has significant negative associationwith calarene (minus0953) viridiflorol (minus0820) and epiglobulol(minus0954) As the patchouli alcohol and viridiflorol are themajor economic constituents of Valeriana jatamansi thesecorrelation analyses will provide a yardstick for the selectionof plants from the population having high contents of desiredconstituent in the essential oil It is also evident from the anal-ysis that the two major chemical constituents are negatively

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 2: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

2 The Scientific World Journal

GDG-I

GDG-IV

GDG-VIGDG-VII

GDG-III

GDG-II GDG-V

76∘09984000998400998400E 76∘309984000998400998400E 77∘09984000998400998400E

76∘09984000998400998400E 76∘309984000998400998400E 77∘09984000998400998400E

32∘309984000998400998400N

32∘09984000998400998400N

32∘309984000998400998400N

N

32∘09984000998400998400N

31∘309984000998400998400N

Sampling locations

0 5 10 20

(km)

GDG-I

GDG-IV

GDG-VIGDG-VII

GDG-III

GDG-II GDG-V

Figure 1 Sampling locations of thirteen populations of Valeriana jatamansi from three districts of Himachal Pradesh The seven geneticallydiverse groups (GDG) have been indicated by arrow

of plants [14ndash18]The usefulness of RAPDs in diversity analy-sis has been demonstrated at the species level [19] subspecieslevel [20] population level [21] and cultivar level [22] Thepresent studywas conducted to elucidate the biochemical andmolecular diversity among different representative popula-tion samples of Valeriana jatamansi collected from differentgeographical locations of Himachal Pradesh India

2 Materials and Methods

21 Plant Material A total of 64 samples from thirteen nat-ural populations (five from each population except Mandi-I having four samples) of Valeriana jatamansi Jones (Table 1and Figure 1) were collected from different locationregionsof Himachal Pradesh (HP) India for the present studySince the collections were made from the available naturalpopulations at different locations representative samplescollected were limited in number ranging from 4 to 5

22 DNA Extraction and PCR Amplification Genomic DNAwas isolated from young leaves using CTAB method givenby Murray and Thompson [23] The isolated genomic DNAwas stored at minus20∘C until being used Decamer primers ofarbitrary sequence from operon (A C D E F J P Q andX series) were used to amplify genomic DNA of twenty-sixsamples (2 per collections) and based on polymorphismobtained forty-five primers were selected (Table 2) for finalamplification of all the collections DNA amplification

Table 1 Geographical descriptors of collections of Valeriana jata-mansi from Himachal Pradesh India used in the present study

Population Sample size Altitude(m) Latitude Longitude

Kullu-I 5 3647 32∘0910158405610158401015840N 77∘0210158404110158401015840EKullu-II 5 2734 32∘0810158401910158401015840N 77∘0410158403710158401015840EKandi-I 5 854 32∘3610158405810158401015840N 76∘0210158404210158401015840ETisa-I 5 1220 32∘3210158405410158401015840N 76∘0810158405510158401015840EChamba-II 5 2104 32∘4010158403610158401015840N 76∘0810158400310158401015840ESalooni-I 5 1730 32∘4310158402910158401015840N 76∘0310158400810158401015840EMandi-I 4 764 31∘4210158400010158401015840N 76∘5110158400010158401015840EKullu-III 5 2541 32∘0610158402010158401015840N 77∘0610158403010158401015840EDehgram-I 5 2165 32∘4110158401110158401015840N 76∘0810158402510158401015840ELeg Valley 5 1720 31∘5810158404710158401015840N 77∘0610158405910158401015840EChamba-I 5 2368 32∘4010158400610158401015840N 76∘0910158402910158401015840EMandi-II 5 945 31∘3110158404110158401015840N 76∘5910158404110158401015840ESojha 5 2692 31∘4210158404710158401015840N 76∘5410158404710158401015840E

was carried out by making final reaction volume of 20120583Lcontaining 16 120583L of dNTPmix (02mM each of dATP dGTPdCTP and dTTP) 016 120583L of TaqDNA polymerase (5U120583L)20 120583L DNA template (25 ng120583L) 10 120583L of 5120583M primer20 120583L of 10X PCR buffer 12 120583L of MgCl

2(25mM) and

1204 120583L of sterilized distilled water

The Scientific World Journal 3

Table 2 Level of polymorphism detected using 45 RAPD primersin 13 populations of Valeriana jatamansi

Marker Scored bands Polymorphic bands PIC value ()OPA-01 9 8 8540OPA-02 9 9 8329OPA-03 9 9 8788OPA-04 10 9 8382OPA-09 7 6 8193OPA-11 11 10 8858OPA-13 10 4 8775OPA-14 10 7 8570OPA-15 8 6 8419OPA-19 9 8 8678OPA-20 10 7 8240OPC-06 11 11 8923OPC-20 6 5 6719OPD-07 7 5 8403OPD-12 9 9 8270OPD-13 9 9 8532OPD-16 6 5 7951OPD-18 5 5 7681OPD-19 7 7 7739OPE-07 7 6 7918OPF-01 3 2 6395OPF-02 6 5 7931OPF-10 7 7 8444OPF-12 7 5 6644OPF-13 12 12 8806OPJ-01 3 2 5540OPJ-04 11 10 8573OPJ-10 10 10 8562OPJ-11 5 4 7572OPJ-14 15 14 9225OPJ-18 7 5 8157OPP-08 10 8 8676OPP-10 7 2 8493OPP-11 8 4 8601OPQ-01 6 5 8608OPQ-04 12 7 8857OPQ-06 8 7 8225OPQ-09 8 1 8022OPQ-12 9 8 8328OPQ-13 8 8 8225OPQ-14 4 1 7009OPQ-15 6 3 7715OPQ-16 12 6 8959OPX-02 8 6 8186OPX-19 7 6 8420Total 368 293 8179 (mean)

The DNA amplification was carried out in a thermalcycler (Applied Biosystems) The PCR program was set atinitial cycle of 94∘C for 5minutes 37∘C for 1min and 72∘C for

2min Further amplificationwas repeated 40 times consistingof denaturation at 94∘C for 1 minute annealing at 37∘Cfor 1min and extension at 72∘C for 2min Final extensionof 5min at 72∘C was carried out before rapid cooling to4∘C Amplification products were separated by agarose gelelectrophoresis in 1 X TAE on 14 agarose containing05 ng120583L ethidium bromide Images were photographed andcaptured by Gel Doc (Bio-Rad) Molecular weights wereestimated using a 1000 bp DNA ladder

23 RAPD Data Scoring and Analysis The RAPD profilesgenerated by different primers were compared to determinerelatedness within and among different populations Thepresence and absence of each RAPD band of a particularmolecular weight in all genotypes were scored manually Abinary datamatrix with ldquo1rdquo indicating presence of a particularmolecular weight band and ldquo0rdquo indicating its absence wasgenerated separately for each primer The binary data wereused for principal coordinate analysis (PCA) analysis ofmolecular variance (AMOVA) and mantel test [24] of geo-graphic and genetic distance using GenAlEx software [25]PCA was done based on genetic distance measure calculatedfrom binary data for multiple samples with multiple popula-tions using GenAlEx softwareThe neighbor-joining tree andbootstrap analysis were executed using DARWIN version 60[26] The statistical analysis was done by using StatSoft Inc[27] STATISTICA (data analysis software system) version 7Fst and Nm values were calculated using GenAlEx softwarefollowing formula given by Nei [28 29]

24 GC-MS Analysis of Essential Oil Roots and rhizomesof Valeriana jatamansi dried for 20 days under ambientroom conditions in shade [30 31] were used for essential oilextraction by hydrodistillation in Clevenger apparatus Theessential oil was dried over anhydrous Na

2SO4 The purified

fraction was used for recording GC-MS data Two120583L ofessential oil fraction was used for injection GC-MS (70 eV)data were measured in MS-QP-2010 series Shimadzu TokyoJapan equipped with MS AOC-20i autosampler and BP-20capillary column (SGC International Ringwood Australia)30m length 025mm ID and film thickness 025120583m (polyethylene glycol) with helium as a carrier gas The injectortemperature was 220∘C with split ratio of 1 50 The GC oventemperature was programmed to hold at 70∘C for 4min andthen to increase up to 220∘C at increments of 4∘Cmin andfinally it holds at 220∘C for 5min Column flow rate wasset at 110mLmin Ion source temperature was 200∘C andinterface temperature was set at 220∘C The MS was scannedat 70 eVover 40ndash600 amuThe individual components of theessential oils were identified by comparing their mass spectrawith a computerized MS-database using WILEY7 NIST 147NIST 27 and SZTERP libraries

3 Results and Discussion

31 RAPDPolymorphism A total of 150 primerswere initiallyscreened for amplification of DNA of a subset of 26 sam-ples (two plants randomly selected from each population)Based on the polymorphic information content (PIC) [32]

4 The Scientific World Journal

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II Salooni-I Mandi-I Kullu-III Dehgram-I Legvalley Chamba-I Mandi-II Sojha

Figure 2 RAPD profile of thirteen populations of Valeriana jatamansi

1

234

567 8

910

1112 1314 1516171819

20 212223

242526272829

30

31323334

3536373839

40

41424344

4546

4748

4950

515253

54

5556

57

5859

60

6162

63

64Coo

rdin

ate 2

(21

23

)

Coordinate 1 (2378)

Principal coordinates

Kullu-I(1ndash5)Kullu-II(6ndash10)Kandi-I(11ndash15)Tisa-I(16ndash20)Chamba-II(21ndash25)Salooni-I(26ndash30)Mandi-I(31ndash34)

Kullu-III(35ndash39)Dehgram-I(40ndash44)Leg Valley(45ndash49)Chamba-I(50ndash54)Mandi-II(55ndash59)Sojha(60ndash64)

Figure 3 Principal coordinate analysis of genetic differences among 13 populations of Valeriana jatamansi Values in parenthesis show levelof variation explained by the coordinate

the signal intensity and number of bands 45 primers wereselected for final analysis (Table 2)The representative RAPDprofile generated by OPA-3 primer is shown in Figure 2 Allforty-five primers generated a total of 368 bands with ameanof 8 bands per primer ranging from 3 to 15 per primer Of 368bands only 75 (2039) amplified fragments were present inall the 64 plants whereas 293 (7961) were polymorphic Itindicated considerable variation among the 64 samples of 13populations Kumar [33] had reported 9018 while Rajku-mar et al [34] reported a range of 65ndash81 polymorphism inthe sampled populations of the species in their studies Thedifference in the level of polymorphism among these reportsmight be due to less number of primers used by Kumar [33]and lower number of polymorphic loci (241) obtained byRajkumar et al [34] as compared to the present investigationBesides it can also be due to inherent differences in the sam-ples collected fromdifferent geographical regions in our case

32 Genetic Diversity Analysis and Population Structure Thebinary data used for principal coordinates analysis (PCA)distributed the samples in two coordinates coordinate oneaccounted for 2378 whereas coordinate two accounted for

2123 of the total variation among populations (Figure 3)Distribution pattern of all the samples from different popu-lations revealed consistency with their geographical origin Itclearly revealed lesser intrapopulation variation as comparedto interpopulation variation The same was evident from theanalysis of molecular variance (AMOVA) wherein 48 (119875 =0001) variationwas recordedwithin population as comparedto 52 (119875 = 0001) among populations (Table 3) The pair-wise differences (Fst) between populations (calculated basedon allele sharing) varied from 025 to 074 (Table 4) The esti-mated extent of gene flow (Nm) among populations is 0253ranging from 008 (between populations from Salooni-I andLeg Valley-II) to 072 (between populations from Kullu-I andKullu-II) Based on Neirsquos genetic similarity index (Table 4) 13populations clustered in seven different groups are designatedhereafter as genetically diverse groups (GDGs) at 85 geneticsimilarity level (Figure 4 Table 4) This clustering into sevenGDGs was further corroborated based on biochemical pro-filing of their essential oil As evident from Figures 1 3 and4 most of the samples from a particular arearegion (pop-ulation) were grouped separately deciphering the level and

The Scientific World Journal 5

Table 3 Analysis of molecular variance (AMOVA) of 64 samples of 13 populations of Valeriana jatamansi

Source df Sum of squares Mean squareddeviation

Estimatedvariance Total variance Probability

Among populations 12 1778137 148178 25337 52 lt0001Within populations 51 1197050 23472 23472 48 lt0001df = degree of freedom SS = sum of squares and MS = mean square

Table 4 Pairwise Fst and Nm (in parenthesis) value among populations of Valeriana jatamansi (below diagonal) and and Neirsquos geneticsimilarity (above diagonal) index

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II

Salooni-I

Mandi-I

Kullu-III

Dehgram-I

LegValley

Chamba-I

Mandi-II Sojha

Kullu-I 0903 0853 0828 0838 0805 0846 0858 0784 0812 0812 0801 0842

Kullu-II 0256(0727) 0869 0822 0839 0780 0825 0853 0770 0798 0806 0778 0822

Kandi-I 0407(0364)

0394(0384) 0873 0872 0823 0789 0807 0812 0793 0837 0773 0831

Tisa-I 0467(0285)

0501(0249)

0421(0344) 0875 0790 0799 0805 0782 0799 0820 0784 0806

Chamba-II 0374(0418)

0393(0385)

0342(0481)

0347(0471) 0847 0808 0821 0829 0799 0835 0778 0806

Salooni-I 0528(0193)

0586(0152)

0549(0173)

0609(0137)

0448(0308) 0811 0801 0770 0743 0825 0787 0785

Mandi-I 0453(0419)

0521(0314)

0603(0244)

0605(0230)

0419(0347)

0529(0223) 0851 0750 0812 0812 0837 0801

Kullu-III 0451(0304)

0488(0262)

0593(0172)

0609(0160)

0498(0252)

0698(0108)

0468(0284) 0773 0785 0812 0813 0837

Dehgram-I 0525(0226)

0565(0193)

0529(0223)

0583(0179)

0433(0327)

0648(0136)

0575(0185)

0636(0143) 0820 0830 0776 0777

Leg Valley 0533(0219)

0579(0182)

0609(0161)

0615(0157)

0530(0222)

0740(0088)

0562(0195)

0680(0118)

0572(0187) 0855 0829 0813

Chamba-I 0468(0284)

0499(0251)

0469(0283)

0510(0240)

0407(0364)

0562(0195)

0463(0289)

0567(0191)

0483(0268)

0490(0261) 0881 0881

Mandi-II 0550(0205)

0604(0164)

0633(0145)

0633(0145)

0558(0198)

0706(0104)

0501(0249)

0644(0138)

0630(0147)

0619(0154)

0427(0335)

0872

Sojha 0390(0391)

0450(0306)

0454(0301)

0507(0243)

0434(0327)

0596(0170)

0458(0296)

0498(0252)

0538(0215)

0537(0215)

0329(0510)

0422(0342)

robustness of diversity analysis using large number of RAPDmarkers with high PIC value encompassing larger genomecoverageThepopulations from specific regions such asKulluChamba andMandi are grouped together except some of thesamples that exhibited variation and were grouped in differ-ent clusters This possibly can be due to their natural habitatand geographic confinement The clustering pattern furtherindicates that the populations are not much differentiatedduring the evolution and the slight genetic variation presentwithin population(s) might have evolved under the influenceof environmental factors The mantel test did not exhibitsignificant correlation (119903 = 0002 119875 = 005) between geneticdistance and geographic distance of populations (Figure 5)

33 Essential Oil Composition and Chemical Diversity Theessential oil yield from roots was found to vary from 06 to166 (Table 5) with a mean oil yield of 1090 plusmn 0052 among

13 populations studied The DMRT analysis revealed thatthe populations differ in oil content significantly from eachotherwithTisa-I andDehgram-I having highest oil content ascompared to others while populations Leg valley Chamba-IMandi-II and Kullu-I have the lowest oil content Based onthe GC and GCMS analysis ten major chemical constituentswere identified in all the populations namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) The correlation analysisindicated a negative trend of major chemical constituentsand essential oil with altitude though it was not significant(Table 6) while a significant positive and negative correlationexists among the chemical constituents of essential oil forexample calarene has a significant negative trend in relation

6 The Scientific World Journal

0 01

Kullu-IC1

Kullu-IC2Kullu-IC3

Kullu-IC4

Kullu-IC5

Kullu-IIC1Kullu-IIC2

Kullu-IIC3Kullu-IIC4

Kullu-IIC5

Kandi-IC1Kandi-IC2

Kandi-IC3

Kandi-IC4Kandi-IC5

Tisa-IC1

Tisa-IC2Tisa-IC3

Tisa-IC4

Tisa-IC5

Chamba-IIC1Chamba-IIC2

Chamba-IIC3

Chamba-IIC4Chamba-IIC5

Salooni-IC1Salooni-IC2

Salooni-IC3Salooni-IC4

Salooni-IC5

Mandi-IC1Mandi-IC2

Mandi-IC3

Mandi-IC4

Kullu-IIIC1Kullu-IIIC2

Kullu-IIIC3Kullu-IIIC4

Kullu-IIIC5

Dehgram-IC1Dehgram-IC2

Dehgram-IC3Dehgram-IC4

Dehgram-IC5

LegvalleyC1LegvalleyC2

LegvalleyC3LegvalleyC4

LegvalleyC5

Chamba-IC1Chamba-IC2

Chamba-IC3Chamba-IC4

Chamba-IC5

Mandi-IIC1

Mandi-IIC2Mandi-IIC3Mandi-IIC4

Mandi-IIC5

SojhaC1SojhaC2

SojhaC3SojhaC4

SojhaC5

69

51

39

9860

45

41

9699

100

9745

70

100

9591

54

92

56

100

8495

100

92

8173

100 70

53

56

9052

95

10079

100

7370

84

59

9493

100

100

97

100

55

100

56

74

41

89

76

85

89

51

66

86

46

67

49

GDG-I

GDG-II

GDG-III

GDG-IV

GDG-V

GDG-VII

GDG-VI

Figure 4 Dendrogram of 64 samples from 13 populations of Valeriana jatamansi representing clustering of samples in a separate groupshowing the population specific grouping Cluster analysis was performed using the neighbor-joining method Bootstrap values obtainedfrom 500 replicate analyses higher than 40 are indicated on nodes

to patchouli alcohol seychellene and pogostol whereas withepiglobulol it is positiveThis indicates that the accumulationof one type of constituent hinders the accumulation of otherforms The variation in chemical composition of essentialoil with change of altitude has already been documented inthe literature [9 35] Amongst constituents patchouli alcoholcontent was found to have significantly high positive corre-lation with alpha-guaiene (0816) seychellene (0884) and

azulene (0602) while it has significant negative associationwith calarene (minus0953) viridiflorol (minus0820) and epiglobulol(minus0954) As the patchouli alcohol and viridiflorol are themajor economic constituents of Valeriana jatamansi thesecorrelation analyses will provide a yardstick for the selectionof plants from the population having high contents of desiredconstituent in the essential oil It is also evident from the anal-ysis that the two major chemical constituents are negatively

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 3: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

The Scientific World Journal 3

Table 2 Level of polymorphism detected using 45 RAPD primersin 13 populations of Valeriana jatamansi

Marker Scored bands Polymorphic bands PIC value ()OPA-01 9 8 8540OPA-02 9 9 8329OPA-03 9 9 8788OPA-04 10 9 8382OPA-09 7 6 8193OPA-11 11 10 8858OPA-13 10 4 8775OPA-14 10 7 8570OPA-15 8 6 8419OPA-19 9 8 8678OPA-20 10 7 8240OPC-06 11 11 8923OPC-20 6 5 6719OPD-07 7 5 8403OPD-12 9 9 8270OPD-13 9 9 8532OPD-16 6 5 7951OPD-18 5 5 7681OPD-19 7 7 7739OPE-07 7 6 7918OPF-01 3 2 6395OPF-02 6 5 7931OPF-10 7 7 8444OPF-12 7 5 6644OPF-13 12 12 8806OPJ-01 3 2 5540OPJ-04 11 10 8573OPJ-10 10 10 8562OPJ-11 5 4 7572OPJ-14 15 14 9225OPJ-18 7 5 8157OPP-08 10 8 8676OPP-10 7 2 8493OPP-11 8 4 8601OPQ-01 6 5 8608OPQ-04 12 7 8857OPQ-06 8 7 8225OPQ-09 8 1 8022OPQ-12 9 8 8328OPQ-13 8 8 8225OPQ-14 4 1 7009OPQ-15 6 3 7715OPQ-16 12 6 8959OPX-02 8 6 8186OPX-19 7 6 8420Total 368 293 8179 (mean)

The DNA amplification was carried out in a thermalcycler (Applied Biosystems) The PCR program was set atinitial cycle of 94∘C for 5minutes 37∘C for 1min and 72∘C for

2min Further amplificationwas repeated 40 times consistingof denaturation at 94∘C for 1 minute annealing at 37∘Cfor 1min and extension at 72∘C for 2min Final extensionof 5min at 72∘C was carried out before rapid cooling to4∘C Amplification products were separated by agarose gelelectrophoresis in 1 X TAE on 14 agarose containing05 ng120583L ethidium bromide Images were photographed andcaptured by Gel Doc (Bio-Rad) Molecular weights wereestimated using a 1000 bp DNA ladder

23 RAPD Data Scoring and Analysis The RAPD profilesgenerated by different primers were compared to determinerelatedness within and among different populations Thepresence and absence of each RAPD band of a particularmolecular weight in all genotypes were scored manually Abinary datamatrix with ldquo1rdquo indicating presence of a particularmolecular weight band and ldquo0rdquo indicating its absence wasgenerated separately for each primer The binary data wereused for principal coordinate analysis (PCA) analysis ofmolecular variance (AMOVA) and mantel test [24] of geo-graphic and genetic distance using GenAlEx software [25]PCA was done based on genetic distance measure calculatedfrom binary data for multiple samples with multiple popula-tions using GenAlEx softwareThe neighbor-joining tree andbootstrap analysis were executed using DARWIN version 60[26] The statistical analysis was done by using StatSoft Inc[27] STATISTICA (data analysis software system) version 7Fst and Nm values were calculated using GenAlEx softwarefollowing formula given by Nei [28 29]

24 GC-MS Analysis of Essential Oil Roots and rhizomesof Valeriana jatamansi dried for 20 days under ambientroom conditions in shade [30 31] were used for essential oilextraction by hydrodistillation in Clevenger apparatus Theessential oil was dried over anhydrous Na

2SO4 The purified

fraction was used for recording GC-MS data Two120583L ofessential oil fraction was used for injection GC-MS (70 eV)data were measured in MS-QP-2010 series Shimadzu TokyoJapan equipped with MS AOC-20i autosampler and BP-20capillary column (SGC International Ringwood Australia)30m length 025mm ID and film thickness 025120583m (polyethylene glycol) with helium as a carrier gas The injectortemperature was 220∘C with split ratio of 1 50 The GC oventemperature was programmed to hold at 70∘C for 4min andthen to increase up to 220∘C at increments of 4∘Cmin andfinally it holds at 220∘C for 5min Column flow rate wasset at 110mLmin Ion source temperature was 200∘C andinterface temperature was set at 220∘C The MS was scannedat 70 eVover 40ndash600 amuThe individual components of theessential oils were identified by comparing their mass spectrawith a computerized MS-database using WILEY7 NIST 147NIST 27 and SZTERP libraries

3 Results and Discussion

31 RAPDPolymorphism A total of 150 primerswere initiallyscreened for amplification of DNA of a subset of 26 sam-ples (two plants randomly selected from each population)Based on the polymorphic information content (PIC) [32]

4 The Scientific World Journal

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II Salooni-I Mandi-I Kullu-III Dehgram-I Legvalley Chamba-I Mandi-II Sojha

Figure 2 RAPD profile of thirteen populations of Valeriana jatamansi

1

234

567 8

910

1112 1314 1516171819

20 212223

242526272829

30

31323334

3536373839

40

41424344

4546

4748

4950

515253

54

5556

57

5859

60

6162

63

64Coo

rdin

ate 2

(21

23

)

Coordinate 1 (2378)

Principal coordinates

Kullu-I(1ndash5)Kullu-II(6ndash10)Kandi-I(11ndash15)Tisa-I(16ndash20)Chamba-II(21ndash25)Salooni-I(26ndash30)Mandi-I(31ndash34)

Kullu-III(35ndash39)Dehgram-I(40ndash44)Leg Valley(45ndash49)Chamba-I(50ndash54)Mandi-II(55ndash59)Sojha(60ndash64)

Figure 3 Principal coordinate analysis of genetic differences among 13 populations of Valeriana jatamansi Values in parenthesis show levelof variation explained by the coordinate

the signal intensity and number of bands 45 primers wereselected for final analysis (Table 2)The representative RAPDprofile generated by OPA-3 primer is shown in Figure 2 Allforty-five primers generated a total of 368 bands with ameanof 8 bands per primer ranging from 3 to 15 per primer Of 368bands only 75 (2039) amplified fragments were present inall the 64 plants whereas 293 (7961) were polymorphic Itindicated considerable variation among the 64 samples of 13populations Kumar [33] had reported 9018 while Rajku-mar et al [34] reported a range of 65ndash81 polymorphism inthe sampled populations of the species in their studies Thedifference in the level of polymorphism among these reportsmight be due to less number of primers used by Kumar [33]and lower number of polymorphic loci (241) obtained byRajkumar et al [34] as compared to the present investigationBesides it can also be due to inherent differences in the sam-ples collected fromdifferent geographical regions in our case

32 Genetic Diversity Analysis and Population Structure Thebinary data used for principal coordinates analysis (PCA)distributed the samples in two coordinates coordinate oneaccounted for 2378 whereas coordinate two accounted for

2123 of the total variation among populations (Figure 3)Distribution pattern of all the samples from different popu-lations revealed consistency with their geographical origin Itclearly revealed lesser intrapopulation variation as comparedto interpopulation variation The same was evident from theanalysis of molecular variance (AMOVA) wherein 48 (119875 =0001) variationwas recordedwithin population as comparedto 52 (119875 = 0001) among populations (Table 3) The pair-wise differences (Fst) between populations (calculated basedon allele sharing) varied from 025 to 074 (Table 4) The esti-mated extent of gene flow (Nm) among populations is 0253ranging from 008 (between populations from Salooni-I andLeg Valley-II) to 072 (between populations from Kullu-I andKullu-II) Based on Neirsquos genetic similarity index (Table 4) 13populations clustered in seven different groups are designatedhereafter as genetically diverse groups (GDGs) at 85 geneticsimilarity level (Figure 4 Table 4) This clustering into sevenGDGs was further corroborated based on biochemical pro-filing of their essential oil As evident from Figures 1 3 and4 most of the samples from a particular arearegion (pop-ulation) were grouped separately deciphering the level and

The Scientific World Journal 5

Table 3 Analysis of molecular variance (AMOVA) of 64 samples of 13 populations of Valeriana jatamansi

Source df Sum of squares Mean squareddeviation

Estimatedvariance Total variance Probability

Among populations 12 1778137 148178 25337 52 lt0001Within populations 51 1197050 23472 23472 48 lt0001df = degree of freedom SS = sum of squares and MS = mean square

Table 4 Pairwise Fst and Nm (in parenthesis) value among populations of Valeriana jatamansi (below diagonal) and and Neirsquos geneticsimilarity (above diagonal) index

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II

Salooni-I

Mandi-I

Kullu-III

Dehgram-I

LegValley

Chamba-I

Mandi-II Sojha

Kullu-I 0903 0853 0828 0838 0805 0846 0858 0784 0812 0812 0801 0842

Kullu-II 0256(0727) 0869 0822 0839 0780 0825 0853 0770 0798 0806 0778 0822

Kandi-I 0407(0364)

0394(0384) 0873 0872 0823 0789 0807 0812 0793 0837 0773 0831

Tisa-I 0467(0285)

0501(0249)

0421(0344) 0875 0790 0799 0805 0782 0799 0820 0784 0806

Chamba-II 0374(0418)

0393(0385)

0342(0481)

0347(0471) 0847 0808 0821 0829 0799 0835 0778 0806

Salooni-I 0528(0193)

0586(0152)

0549(0173)

0609(0137)

0448(0308) 0811 0801 0770 0743 0825 0787 0785

Mandi-I 0453(0419)

0521(0314)

0603(0244)

0605(0230)

0419(0347)

0529(0223) 0851 0750 0812 0812 0837 0801

Kullu-III 0451(0304)

0488(0262)

0593(0172)

0609(0160)

0498(0252)

0698(0108)

0468(0284) 0773 0785 0812 0813 0837

Dehgram-I 0525(0226)

0565(0193)

0529(0223)

0583(0179)

0433(0327)

0648(0136)

0575(0185)

0636(0143) 0820 0830 0776 0777

Leg Valley 0533(0219)

0579(0182)

0609(0161)

0615(0157)

0530(0222)

0740(0088)

0562(0195)

0680(0118)

0572(0187) 0855 0829 0813

Chamba-I 0468(0284)

0499(0251)

0469(0283)

0510(0240)

0407(0364)

0562(0195)

0463(0289)

0567(0191)

0483(0268)

0490(0261) 0881 0881

Mandi-II 0550(0205)

0604(0164)

0633(0145)

0633(0145)

0558(0198)

0706(0104)

0501(0249)

0644(0138)

0630(0147)

0619(0154)

0427(0335)

0872

Sojha 0390(0391)

0450(0306)

0454(0301)

0507(0243)

0434(0327)

0596(0170)

0458(0296)

0498(0252)

0538(0215)

0537(0215)

0329(0510)

0422(0342)

robustness of diversity analysis using large number of RAPDmarkers with high PIC value encompassing larger genomecoverageThepopulations from specific regions such asKulluChamba andMandi are grouped together except some of thesamples that exhibited variation and were grouped in differ-ent clusters This possibly can be due to their natural habitatand geographic confinement The clustering pattern furtherindicates that the populations are not much differentiatedduring the evolution and the slight genetic variation presentwithin population(s) might have evolved under the influenceof environmental factors The mantel test did not exhibitsignificant correlation (119903 = 0002 119875 = 005) between geneticdistance and geographic distance of populations (Figure 5)

33 Essential Oil Composition and Chemical Diversity Theessential oil yield from roots was found to vary from 06 to166 (Table 5) with a mean oil yield of 1090 plusmn 0052 among

13 populations studied The DMRT analysis revealed thatthe populations differ in oil content significantly from eachotherwithTisa-I andDehgram-I having highest oil content ascompared to others while populations Leg valley Chamba-IMandi-II and Kullu-I have the lowest oil content Based onthe GC and GCMS analysis ten major chemical constituentswere identified in all the populations namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) The correlation analysisindicated a negative trend of major chemical constituentsand essential oil with altitude though it was not significant(Table 6) while a significant positive and negative correlationexists among the chemical constituents of essential oil forexample calarene has a significant negative trend in relation

6 The Scientific World Journal

0 01

Kullu-IC1

Kullu-IC2Kullu-IC3

Kullu-IC4

Kullu-IC5

Kullu-IIC1Kullu-IIC2

Kullu-IIC3Kullu-IIC4

Kullu-IIC5

Kandi-IC1Kandi-IC2

Kandi-IC3

Kandi-IC4Kandi-IC5

Tisa-IC1

Tisa-IC2Tisa-IC3

Tisa-IC4

Tisa-IC5

Chamba-IIC1Chamba-IIC2

Chamba-IIC3

Chamba-IIC4Chamba-IIC5

Salooni-IC1Salooni-IC2

Salooni-IC3Salooni-IC4

Salooni-IC5

Mandi-IC1Mandi-IC2

Mandi-IC3

Mandi-IC4

Kullu-IIIC1Kullu-IIIC2

Kullu-IIIC3Kullu-IIIC4

Kullu-IIIC5

Dehgram-IC1Dehgram-IC2

Dehgram-IC3Dehgram-IC4

Dehgram-IC5

LegvalleyC1LegvalleyC2

LegvalleyC3LegvalleyC4

LegvalleyC5

Chamba-IC1Chamba-IC2

Chamba-IC3Chamba-IC4

Chamba-IC5

Mandi-IIC1

Mandi-IIC2Mandi-IIC3Mandi-IIC4

Mandi-IIC5

SojhaC1SojhaC2

SojhaC3SojhaC4

SojhaC5

69

51

39

9860

45

41

9699

100

9745

70

100

9591

54

92

56

100

8495

100

92

8173

100 70

53

56

9052

95

10079

100

7370

84

59

9493

100

100

97

100

55

100

56

74

41

89

76

85

89

51

66

86

46

67

49

GDG-I

GDG-II

GDG-III

GDG-IV

GDG-V

GDG-VII

GDG-VI

Figure 4 Dendrogram of 64 samples from 13 populations of Valeriana jatamansi representing clustering of samples in a separate groupshowing the population specific grouping Cluster analysis was performed using the neighbor-joining method Bootstrap values obtainedfrom 500 replicate analyses higher than 40 are indicated on nodes

to patchouli alcohol seychellene and pogostol whereas withepiglobulol it is positiveThis indicates that the accumulationof one type of constituent hinders the accumulation of otherforms The variation in chemical composition of essentialoil with change of altitude has already been documented inthe literature [9 35] Amongst constituents patchouli alcoholcontent was found to have significantly high positive corre-lation with alpha-guaiene (0816) seychellene (0884) and

azulene (0602) while it has significant negative associationwith calarene (minus0953) viridiflorol (minus0820) and epiglobulol(minus0954) As the patchouli alcohol and viridiflorol are themajor economic constituents of Valeriana jatamansi thesecorrelation analyses will provide a yardstick for the selectionof plants from the population having high contents of desiredconstituent in the essential oil It is also evident from the anal-ysis that the two major chemical constituents are negatively

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 4: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

4 The Scientific World Journal

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II Salooni-I Mandi-I Kullu-III Dehgram-I Legvalley Chamba-I Mandi-II Sojha

Figure 2 RAPD profile of thirteen populations of Valeriana jatamansi

1

234

567 8

910

1112 1314 1516171819

20 212223

242526272829

30

31323334

3536373839

40

41424344

4546

4748

4950

515253

54

5556

57

5859

60

6162

63

64Coo

rdin

ate 2

(21

23

)

Coordinate 1 (2378)

Principal coordinates

Kullu-I(1ndash5)Kullu-II(6ndash10)Kandi-I(11ndash15)Tisa-I(16ndash20)Chamba-II(21ndash25)Salooni-I(26ndash30)Mandi-I(31ndash34)

Kullu-III(35ndash39)Dehgram-I(40ndash44)Leg Valley(45ndash49)Chamba-I(50ndash54)Mandi-II(55ndash59)Sojha(60ndash64)

Figure 3 Principal coordinate analysis of genetic differences among 13 populations of Valeriana jatamansi Values in parenthesis show levelof variation explained by the coordinate

the signal intensity and number of bands 45 primers wereselected for final analysis (Table 2)The representative RAPDprofile generated by OPA-3 primer is shown in Figure 2 Allforty-five primers generated a total of 368 bands with ameanof 8 bands per primer ranging from 3 to 15 per primer Of 368bands only 75 (2039) amplified fragments were present inall the 64 plants whereas 293 (7961) were polymorphic Itindicated considerable variation among the 64 samples of 13populations Kumar [33] had reported 9018 while Rajku-mar et al [34] reported a range of 65ndash81 polymorphism inthe sampled populations of the species in their studies Thedifference in the level of polymorphism among these reportsmight be due to less number of primers used by Kumar [33]and lower number of polymorphic loci (241) obtained byRajkumar et al [34] as compared to the present investigationBesides it can also be due to inherent differences in the sam-ples collected fromdifferent geographical regions in our case

32 Genetic Diversity Analysis and Population Structure Thebinary data used for principal coordinates analysis (PCA)distributed the samples in two coordinates coordinate oneaccounted for 2378 whereas coordinate two accounted for

2123 of the total variation among populations (Figure 3)Distribution pattern of all the samples from different popu-lations revealed consistency with their geographical origin Itclearly revealed lesser intrapopulation variation as comparedto interpopulation variation The same was evident from theanalysis of molecular variance (AMOVA) wherein 48 (119875 =0001) variationwas recordedwithin population as comparedto 52 (119875 = 0001) among populations (Table 3) The pair-wise differences (Fst) between populations (calculated basedon allele sharing) varied from 025 to 074 (Table 4) The esti-mated extent of gene flow (Nm) among populations is 0253ranging from 008 (between populations from Salooni-I andLeg Valley-II) to 072 (between populations from Kullu-I andKullu-II) Based on Neirsquos genetic similarity index (Table 4) 13populations clustered in seven different groups are designatedhereafter as genetically diverse groups (GDGs) at 85 geneticsimilarity level (Figure 4 Table 4) This clustering into sevenGDGs was further corroborated based on biochemical pro-filing of their essential oil As evident from Figures 1 3 and4 most of the samples from a particular arearegion (pop-ulation) were grouped separately deciphering the level and

The Scientific World Journal 5

Table 3 Analysis of molecular variance (AMOVA) of 64 samples of 13 populations of Valeriana jatamansi

Source df Sum of squares Mean squareddeviation

Estimatedvariance Total variance Probability

Among populations 12 1778137 148178 25337 52 lt0001Within populations 51 1197050 23472 23472 48 lt0001df = degree of freedom SS = sum of squares and MS = mean square

Table 4 Pairwise Fst and Nm (in parenthesis) value among populations of Valeriana jatamansi (below diagonal) and and Neirsquos geneticsimilarity (above diagonal) index

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II

Salooni-I

Mandi-I

Kullu-III

Dehgram-I

LegValley

Chamba-I

Mandi-II Sojha

Kullu-I 0903 0853 0828 0838 0805 0846 0858 0784 0812 0812 0801 0842

Kullu-II 0256(0727) 0869 0822 0839 0780 0825 0853 0770 0798 0806 0778 0822

Kandi-I 0407(0364)

0394(0384) 0873 0872 0823 0789 0807 0812 0793 0837 0773 0831

Tisa-I 0467(0285)

0501(0249)

0421(0344) 0875 0790 0799 0805 0782 0799 0820 0784 0806

Chamba-II 0374(0418)

0393(0385)

0342(0481)

0347(0471) 0847 0808 0821 0829 0799 0835 0778 0806

Salooni-I 0528(0193)

0586(0152)

0549(0173)

0609(0137)

0448(0308) 0811 0801 0770 0743 0825 0787 0785

Mandi-I 0453(0419)

0521(0314)

0603(0244)

0605(0230)

0419(0347)

0529(0223) 0851 0750 0812 0812 0837 0801

Kullu-III 0451(0304)

0488(0262)

0593(0172)

0609(0160)

0498(0252)

0698(0108)

0468(0284) 0773 0785 0812 0813 0837

Dehgram-I 0525(0226)

0565(0193)

0529(0223)

0583(0179)

0433(0327)

0648(0136)

0575(0185)

0636(0143) 0820 0830 0776 0777

Leg Valley 0533(0219)

0579(0182)

0609(0161)

0615(0157)

0530(0222)

0740(0088)

0562(0195)

0680(0118)

0572(0187) 0855 0829 0813

Chamba-I 0468(0284)

0499(0251)

0469(0283)

0510(0240)

0407(0364)

0562(0195)

0463(0289)

0567(0191)

0483(0268)

0490(0261) 0881 0881

Mandi-II 0550(0205)

0604(0164)

0633(0145)

0633(0145)

0558(0198)

0706(0104)

0501(0249)

0644(0138)

0630(0147)

0619(0154)

0427(0335)

0872

Sojha 0390(0391)

0450(0306)

0454(0301)

0507(0243)

0434(0327)

0596(0170)

0458(0296)

0498(0252)

0538(0215)

0537(0215)

0329(0510)

0422(0342)

robustness of diversity analysis using large number of RAPDmarkers with high PIC value encompassing larger genomecoverageThepopulations from specific regions such asKulluChamba andMandi are grouped together except some of thesamples that exhibited variation and were grouped in differ-ent clusters This possibly can be due to their natural habitatand geographic confinement The clustering pattern furtherindicates that the populations are not much differentiatedduring the evolution and the slight genetic variation presentwithin population(s) might have evolved under the influenceof environmental factors The mantel test did not exhibitsignificant correlation (119903 = 0002 119875 = 005) between geneticdistance and geographic distance of populations (Figure 5)

33 Essential Oil Composition and Chemical Diversity Theessential oil yield from roots was found to vary from 06 to166 (Table 5) with a mean oil yield of 1090 plusmn 0052 among

13 populations studied The DMRT analysis revealed thatthe populations differ in oil content significantly from eachotherwithTisa-I andDehgram-I having highest oil content ascompared to others while populations Leg valley Chamba-IMandi-II and Kullu-I have the lowest oil content Based onthe GC and GCMS analysis ten major chemical constituentswere identified in all the populations namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) The correlation analysisindicated a negative trend of major chemical constituentsand essential oil with altitude though it was not significant(Table 6) while a significant positive and negative correlationexists among the chemical constituents of essential oil forexample calarene has a significant negative trend in relation

6 The Scientific World Journal

0 01

Kullu-IC1

Kullu-IC2Kullu-IC3

Kullu-IC4

Kullu-IC5

Kullu-IIC1Kullu-IIC2

Kullu-IIC3Kullu-IIC4

Kullu-IIC5

Kandi-IC1Kandi-IC2

Kandi-IC3

Kandi-IC4Kandi-IC5

Tisa-IC1

Tisa-IC2Tisa-IC3

Tisa-IC4

Tisa-IC5

Chamba-IIC1Chamba-IIC2

Chamba-IIC3

Chamba-IIC4Chamba-IIC5

Salooni-IC1Salooni-IC2

Salooni-IC3Salooni-IC4

Salooni-IC5

Mandi-IC1Mandi-IC2

Mandi-IC3

Mandi-IC4

Kullu-IIIC1Kullu-IIIC2

Kullu-IIIC3Kullu-IIIC4

Kullu-IIIC5

Dehgram-IC1Dehgram-IC2

Dehgram-IC3Dehgram-IC4

Dehgram-IC5

LegvalleyC1LegvalleyC2

LegvalleyC3LegvalleyC4

LegvalleyC5

Chamba-IC1Chamba-IC2

Chamba-IC3Chamba-IC4

Chamba-IC5

Mandi-IIC1

Mandi-IIC2Mandi-IIC3Mandi-IIC4

Mandi-IIC5

SojhaC1SojhaC2

SojhaC3SojhaC4

SojhaC5

69

51

39

9860

45

41

9699

100

9745

70

100

9591

54

92

56

100

8495

100

92

8173

100 70

53

56

9052

95

10079

100

7370

84

59

9493

100

100

97

100

55

100

56

74

41

89

76

85

89

51

66

86

46

67

49

GDG-I

GDG-II

GDG-III

GDG-IV

GDG-V

GDG-VII

GDG-VI

Figure 4 Dendrogram of 64 samples from 13 populations of Valeriana jatamansi representing clustering of samples in a separate groupshowing the population specific grouping Cluster analysis was performed using the neighbor-joining method Bootstrap values obtainedfrom 500 replicate analyses higher than 40 are indicated on nodes

to patchouli alcohol seychellene and pogostol whereas withepiglobulol it is positiveThis indicates that the accumulationof one type of constituent hinders the accumulation of otherforms The variation in chemical composition of essentialoil with change of altitude has already been documented inthe literature [9 35] Amongst constituents patchouli alcoholcontent was found to have significantly high positive corre-lation with alpha-guaiene (0816) seychellene (0884) and

azulene (0602) while it has significant negative associationwith calarene (minus0953) viridiflorol (minus0820) and epiglobulol(minus0954) As the patchouli alcohol and viridiflorol are themajor economic constituents of Valeriana jatamansi thesecorrelation analyses will provide a yardstick for the selectionof plants from the population having high contents of desiredconstituent in the essential oil It is also evident from the anal-ysis that the two major chemical constituents are negatively

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 5: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

The Scientific World Journal 5

Table 3 Analysis of molecular variance (AMOVA) of 64 samples of 13 populations of Valeriana jatamansi

Source df Sum of squares Mean squareddeviation

Estimatedvariance Total variance Probability

Among populations 12 1778137 148178 25337 52 lt0001Within populations 51 1197050 23472 23472 48 lt0001df = degree of freedom SS = sum of squares and MS = mean square

Table 4 Pairwise Fst and Nm (in parenthesis) value among populations of Valeriana jatamansi (below diagonal) and and Neirsquos geneticsimilarity (above diagonal) index

Kullu-I Kullu-II Kandi-I Tisa-I Chamba-II

Salooni-I

Mandi-I

Kullu-III

Dehgram-I

LegValley

Chamba-I

Mandi-II Sojha

Kullu-I 0903 0853 0828 0838 0805 0846 0858 0784 0812 0812 0801 0842

Kullu-II 0256(0727) 0869 0822 0839 0780 0825 0853 0770 0798 0806 0778 0822

Kandi-I 0407(0364)

0394(0384) 0873 0872 0823 0789 0807 0812 0793 0837 0773 0831

Tisa-I 0467(0285)

0501(0249)

0421(0344) 0875 0790 0799 0805 0782 0799 0820 0784 0806

Chamba-II 0374(0418)

0393(0385)

0342(0481)

0347(0471) 0847 0808 0821 0829 0799 0835 0778 0806

Salooni-I 0528(0193)

0586(0152)

0549(0173)

0609(0137)

0448(0308) 0811 0801 0770 0743 0825 0787 0785

Mandi-I 0453(0419)

0521(0314)

0603(0244)

0605(0230)

0419(0347)

0529(0223) 0851 0750 0812 0812 0837 0801

Kullu-III 0451(0304)

0488(0262)

0593(0172)

0609(0160)

0498(0252)

0698(0108)

0468(0284) 0773 0785 0812 0813 0837

Dehgram-I 0525(0226)

0565(0193)

0529(0223)

0583(0179)

0433(0327)

0648(0136)

0575(0185)

0636(0143) 0820 0830 0776 0777

Leg Valley 0533(0219)

0579(0182)

0609(0161)

0615(0157)

0530(0222)

0740(0088)

0562(0195)

0680(0118)

0572(0187) 0855 0829 0813

Chamba-I 0468(0284)

0499(0251)

0469(0283)

0510(0240)

0407(0364)

0562(0195)

0463(0289)

0567(0191)

0483(0268)

0490(0261) 0881 0881

Mandi-II 0550(0205)

0604(0164)

0633(0145)

0633(0145)

0558(0198)

0706(0104)

0501(0249)

0644(0138)

0630(0147)

0619(0154)

0427(0335)

0872

Sojha 0390(0391)

0450(0306)

0454(0301)

0507(0243)

0434(0327)

0596(0170)

0458(0296)

0498(0252)

0538(0215)

0537(0215)

0329(0510)

0422(0342)

robustness of diversity analysis using large number of RAPDmarkers with high PIC value encompassing larger genomecoverageThepopulations from specific regions such asKulluChamba andMandi are grouped together except some of thesamples that exhibited variation and were grouped in differ-ent clusters This possibly can be due to their natural habitatand geographic confinement The clustering pattern furtherindicates that the populations are not much differentiatedduring the evolution and the slight genetic variation presentwithin population(s) might have evolved under the influenceof environmental factors The mantel test did not exhibitsignificant correlation (119903 = 0002 119875 = 005) between geneticdistance and geographic distance of populations (Figure 5)

33 Essential Oil Composition and Chemical Diversity Theessential oil yield from roots was found to vary from 06 to166 (Table 5) with a mean oil yield of 1090 plusmn 0052 among

13 populations studied The DMRT analysis revealed thatthe populations differ in oil content significantly from eachotherwithTisa-I andDehgram-I having highest oil content ascompared to others while populations Leg valley Chamba-IMandi-II and Kullu-I have the lowest oil content Based onthe GC and GCMS analysis ten major chemical constituentswere identified in all the populations namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) The correlation analysisindicated a negative trend of major chemical constituentsand essential oil with altitude though it was not significant(Table 6) while a significant positive and negative correlationexists among the chemical constituents of essential oil forexample calarene has a significant negative trend in relation

6 The Scientific World Journal

0 01

Kullu-IC1

Kullu-IC2Kullu-IC3

Kullu-IC4

Kullu-IC5

Kullu-IIC1Kullu-IIC2

Kullu-IIC3Kullu-IIC4

Kullu-IIC5

Kandi-IC1Kandi-IC2

Kandi-IC3

Kandi-IC4Kandi-IC5

Tisa-IC1

Tisa-IC2Tisa-IC3

Tisa-IC4

Tisa-IC5

Chamba-IIC1Chamba-IIC2

Chamba-IIC3

Chamba-IIC4Chamba-IIC5

Salooni-IC1Salooni-IC2

Salooni-IC3Salooni-IC4

Salooni-IC5

Mandi-IC1Mandi-IC2

Mandi-IC3

Mandi-IC4

Kullu-IIIC1Kullu-IIIC2

Kullu-IIIC3Kullu-IIIC4

Kullu-IIIC5

Dehgram-IC1Dehgram-IC2

Dehgram-IC3Dehgram-IC4

Dehgram-IC5

LegvalleyC1LegvalleyC2

LegvalleyC3LegvalleyC4

LegvalleyC5

Chamba-IC1Chamba-IC2

Chamba-IC3Chamba-IC4

Chamba-IC5

Mandi-IIC1

Mandi-IIC2Mandi-IIC3Mandi-IIC4

Mandi-IIC5

SojhaC1SojhaC2

SojhaC3SojhaC4

SojhaC5

69

51

39

9860

45

41

9699

100

9745

70

100

9591

54

92

56

100

8495

100

92

8173

100 70

53

56

9052

95

10079

100

7370

84

59

9493

100

100

97

100

55

100

56

74

41

89

76

85

89

51

66

86

46

67

49

GDG-I

GDG-II

GDG-III

GDG-IV

GDG-V

GDG-VII

GDG-VI

Figure 4 Dendrogram of 64 samples from 13 populations of Valeriana jatamansi representing clustering of samples in a separate groupshowing the population specific grouping Cluster analysis was performed using the neighbor-joining method Bootstrap values obtainedfrom 500 replicate analyses higher than 40 are indicated on nodes

to patchouli alcohol seychellene and pogostol whereas withepiglobulol it is positiveThis indicates that the accumulationof one type of constituent hinders the accumulation of otherforms The variation in chemical composition of essentialoil with change of altitude has already been documented inthe literature [9 35] Amongst constituents patchouli alcoholcontent was found to have significantly high positive corre-lation with alpha-guaiene (0816) seychellene (0884) and

azulene (0602) while it has significant negative associationwith calarene (minus0953) viridiflorol (minus0820) and epiglobulol(minus0954) As the patchouli alcohol and viridiflorol are themajor economic constituents of Valeriana jatamansi thesecorrelation analyses will provide a yardstick for the selectionof plants from the population having high contents of desiredconstituent in the essential oil It is also evident from the anal-ysis that the two major chemical constituents are negatively

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 6: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

6 The Scientific World Journal

0 01

Kullu-IC1

Kullu-IC2Kullu-IC3

Kullu-IC4

Kullu-IC5

Kullu-IIC1Kullu-IIC2

Kullu-IIC3Kullu-IIC4

Kullu-IIC5

Kandi-IC1Kandi-IC2

Kandi-IC3

Kandi-IC4Kandi-IC5

Tisa-IC1

Tisa-IC2Tisa-IC3

Tisa-IC4

Tisa-IC5

Chamba-IIC1Chamba-IIC2

Chamba-IIC3

Chamba-IIC4Chamba-IIC5

Salooni-IC1Salooni-IC2

Salooni-IC3Salooni-IC4

Salooni-IC5

Mandi-IC1Mandi-IC2

Mandi-IC3

Mandi-IC4

Kullu-IIIC1Kullu-IIIC2

Kullu-IIIC3Kullu-IIIC4

Kullu-IIIC5

Dehgram-IC1Dehgram-IC2

Dehgram-IC3Dehgram-IC4

Dehgram-IC5

LegvalleyC1LegvalleyC2

LegvalleyC3LegvalleyC4

LegvalleyC5

Chamba-IC1Chamba-IC2

Chamba-IC3Chamba-IC4

Chamba-IC5

Mandi-IIC1

Mandi-IIC2Mandi-IIC3Mandi-IIC4

Mandi-IIC5

SojhaC1SojhaC2

SojhaC3SojhaC4

SojhaC5

69

51

39

9860

45

41

9699

100

9745

70

100

9591

54

92

56

100

8495

100

92

8173

100 70

53

56

9052

95

10079

100

7370

84

59

9493

100

100

97

100

55

100

56

74

41

89

76

85

89

51

66

86

46

67

49

GDG-I

GDG-II

GDG-III

GDG-IV

GDG-V

GDG-VII

GDG-VI

Figure 4 Dendrogram of 64 samples from 13 populations of Valeriana jatamansi representing clustering of samples in a separate groupshowing the population specific grouping Cluster analysis was performed using the neighbor-joining method Bootstrap values obtainedfrom 500 replicate analyses higher than 40 are indicated on nodes

to patchouli alcohol seychellene and pogostol whereas withepiglobulol it is positiveThis indicates that the accumulationof one type of constituent hinders the accumulation of otherforms The variation in chemical composition of essentialoil with change of altitude has already been documented inthe literature [9 35] Amongst constituents patchouli alcoholcontent was found to have significantly high positive corre-lation with alpha-guaiene (0816) seychellene (0884) and

azulene (0602) while it has significant negative associationwith calarene (minus0953) viridiflorol (minus0820) and epiglobulol(minus0954) As the patchouli alcohol and viridiflorol are themajor economic constituents of Valeriana jatamansi thesecorrelation analyses will provide a yardstick for the selectionof plants from the population having high contents of desiredconstituent in the essential oil It is also evident from the anal-ysis that the two major chemical constituents are negatively

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 7: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

The Scientific World Journal 7

Table 5 Essential oil contents and their major constituents in 13 populations of Valeriana jatamansi

Endobornylacetate ()

Calarene()

alpha-Guaiene()

Seychellene()

Azulene()

Selinene()

Viridiflorol()

Epiglobulol()

Patchoulialcohol()

Pogostol()

Oil (DW)(VolWt)

Kullu-I 21 204 215 297 249 117 1662 025 5629 21 067h

Kullu-II 456 1543 055 227 133 122 291 167 1473 0 117e

Kandi-I 084 058 354 439 623 212 182 00 6504 236 137cd

Tisa-I 00 2421 073 089 051 199 2672 316 098 00 166a

Chamba-II 272 1041 051 139 04 038 488 149 157 075 112ef

Salooni-I 076 235 123 377 153 085 1492 026 5929 229 15bc

Mandi-I 027 309 26 346 375 143 1958 034 5096 215 093g

Kullu-III 05 239 263 356 515 157 1553 021 4847 212 125de

Dehgram-I 199 1346 119 243 158 093 2271 17 3016 132 156ab

Leg Valley 00 072 416 529 673 212 315 00 6017 227 064h

Chamba-I 026 155 304 312 024 195 642 00 5993 239 069h

Mandi-II 076 706 242 313 389 167 2447 076 3852 166 06h

Sojha 101 107 318 394 584 221 807 00 5911 211 10fg

Superscripts on oil content value denote significant homogeneous grouping at 119875 le 005 using DMRT

020406080

100120

0 02 04 06 08 1 12 14 16

GD

GGD

GGD versus GD

Y

Linear (Y)y = minus14989x + 74719

R2 = 00021

Figure 5 Test of correlation between genetic and geographicdistances among 13 populations of Valeriana jatamansi

correlated and selection for one will hinder the selection ofthe other Hence for a particular type of chemical constituentand end use one has to choose specific population In presentstudy Chamba-II and Kandi-I were observed as best popula-tions for viridiflorol and patchouli alcohol respectively

Singh et al [36] reported prevalence of chemotypes ofValeriana jatamansi in Himachal Pradesh according to thearea of their natural habitat Table 7 documents the area wisediversity of genetic groups present and the chemical diversitydocumented for each group in a particular area The tableclearly indicates that there is prevalence of microclimate onthe chemical composition of the essential oil from plantsinhabiting the particular area For example the samplesfrom Kullu region have been divided into two distinctgroups on the basis of genetic identity and the chemicalconstituents also corroborating molecular analysis Basedupon information generated under the present investigationspecific population of a region can be selected and targeted fora particular chemical constituent for example the samples

collected from Chamba region will in general be havinghighest level of oil content (148) with highest chemicalconstituents such as viridiflorol (2231) longifolenaldehyde(202) calarene (918) and alpha-patchoulene (498)Similarly samples from Mandi could be targeted for highestlevel of pogostol (210) (minus)-alpha-selinene (233) andspathulenol (095)

4 Conclusion

RAPD profiling of 13 populations of Valeriana jatamansiwith 45 oligo primers generated a total of 368 ampliconsand showed 7961 polymorphism as a whole The PCAand AMOVA revealed that variation among populations wasslightly higher than that within population(s) It might bedue to local environmental effect during adaptation of plantto given environment The chemical analysis of essential oilwhich ranged from 06 to 166 (vw) led to identificationof ten major chemical constituents namely endobornylacetate (0 to 456) calarene (058 to 2421) alpha-guaiene(051 to 416) seychellene (089 to 529) azulene (024to 673) selinene (038 to 221) viridiflorol (182 to488) epiglobulol (0 to 316) patchouli alcohol (098 to6504) and pogostol (0 to 239) Two major componentsof oils namely patchouli alcohol and viridiflorol exhibitednegative association thus limiting scope of simultaneousgains from selection for both constituents Chamba-II andKandi-I populations were found to be best populations forviridiflorol and patchouli alcohol respectively Since variablecontents of patchouli alcohol and viridiflorol can potentiallyaffect therapeutic efficacy of the plant it will be important tounderstand and consider negative association between twomajor constituents while making any attempts of geneticenhancement in order to breed new cultivars with moredesirable chemical constituents This study also providesindicative guideline for collection of samples from a suitable

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 8: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

8 The Scientific World Journal

Table6Correlatio

nam

ongessentialoilcontents

itsconstituentsandaltitud

eofgrowth

habitatin13

Valer

iana

jataman

sipo

pulatio

ns

Endo

bornyl

acetate

Calarene

alpha-

Guaiene

Seychellene

Azulene

Selin

ene

Virid

iflorol

Epiglobu

lol

Patcho

ulialcoh

olPo

gosto

lOil(D

W)

Altitude

Endo

bornylacetate

10334minus0598lowast

minus040

7minus037

minus0584lowast

0554lowast

0301

minus044

5minus0558lowast

0091

0502

Calarene

1minus0774lowastlowast

minus0844lowastlowast

minus060

0lowastminus0224

0649lowast

0993lowastlowast

minus0953lowastlowast

minus0940lowastlowast

0535minus0102

alpha-Guaiene

10862lowastlowast

0804lowastlowast

0728lowastlowast

minus0837lowastlowast

minus0785lowastlowast

0816lowastlowast

0796lowastlowast

minus0358minus0148

Seychellene

10816lowastlowast

0469

minus0819lowastlowast

minus0861lowastlowast

0884lowastlowast

0824lowastlowast

minus0366minus0105

Azulene

10584lowast

minus0625lowast

minus060

6lowast0602lowast

0561lowast

minus0271minus0194

Selin

ene

1minus0734lowastlowast

minus0265

0362

0295

minus0229minus0244

Virid

iflorol

10680lowast

minus0820lowastlowast

minus0742lowastlowast

0289

004

2Ep

iglobu

lol

1minus0954lowastlowast

minus0924lowastlowast

0432minus0118

Patcho

ulialcoh

ol1

0969lowastlowast

minus0387

0045

pogosto

l1

minus0417minus003

Oil(D

W)

1minus0186

Altitude

1lowast

Sign

ificant

at005

levellowastlowast

Sign

ificant

at001

level

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 9: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

The Scientific World Journal 9

Table 7 Highly diverse biochemical profile revealed by oil constituents analysis of population from different ecological niches which alsopossess high level of genetic diversity

GDG Kullu Mandi ChambaI IV Avg V II Avg III VI VII Avg

Viridiflorol () 2113 315 1214 1324 1992 1658 2733 1518 2441 2231Isopatchoulane () 062 067 064 060 055 057 081 087 045 071Longifolenaldehyde () 091 153 122 186 073 130 380 038 189 202Patchouli alcohol () 3983 6017 5000 5252 5096 5174 2724 5929 3016 3890Pogostol () 141 227 184 205 215 210 104 229 132 155Juniper camphor () 155 155 155 149 166 158 210 114 081 135DL-Limonene () 042 034 038 033 024 028 029 000 000 010Camphene () 090 050 070 041 022 032 025 000 000 008p-Cymene () 093 000 047 017 000 008 042 000 000 014beta-Patchoulene () 137 132 135 103 064 084 011 000 000 004Endobornyl Acetate () 239 000 119 068 027 047 119 076 199 131Calarene () 662 072 367 323 309 316 1173 235 1346 918alpha-Guaiene () 178 416 297 288 260 274 159 123 119 134cis-Farnesol () 013 000 006 026 046 036 020 243 034 099alpha-Patchoulene () 089 058 074 212 000 106 565 107 822 498Seychellene () 293 529 411 340 346 343 222 377 243 281alpha-Humulene () 099 186 143 152 114 133 106 070 083 086Azulene () 299 673 486 332 375 354 238 153 158 183(minus)-alpha-Selinene () 134 307 220 260 206 233 274 085 093 151ar-Curcumene () 044 000 022 029 000 015 054 000 024 026Isoaromadendrene epoxide () 015 037 026 006 042 024 027 078 051 052Valerenal () 053 047 050 014 080 047 074 026 000 033Spathulenol () 060 094 077 044 145 095 014 024 000 013Oil content () 103 064 084 076 093 085 138 150 156 148

region for a particular end use based on the predominance ofparticular chemical constituents in its oil

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors are thankful to the Department of Biotechnol-ogy Government of India for funding and Department ofAgricultural Biotechnology CSKHPKV Palampur India forproviding facilities to carry out the experiments

References

[1] R Sharma Medicinal Plants of IndiamdashAn Encyclopedia DayaPublishing House 2003

[2] S S Purohit and S P Vyas Medicinal Plant CultivationmdashAScientific Approach Agrobios Jodhpur India 2005

[3] L K Gupta and S C Shah ldquoCultivation and importance ofValeriana wallichii in the hills of Uttar Pradeshrdquo Indian Drugsvol 18 no 11 pp 393ndash395 1981

[4] N Prajapati and U Kumar Agros Dictionary of MedicinalPlants Agrobios 2003

[5] S Bent A Padula D Moore M Patterson and W MehlingldquoValerian for sleep a systematic review and meta-analysisrdquoTheAmerican Journal of Medicine vol 119 no 12 pp 1005ndash10122006

[6] T Komori T Matsumoto E Motomura and T ShiroyamaldquoThe sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalationrdquo Chemical Senses vol 31no 8 pp 731ndash737 2006

[7] C Arora and R D Kaushik ldquoFungicidal activity of plantsextracts from Uttaranchal hills against soybean fungalpathogensrdquo Allelopathy Journal vol 11 no 2 pp 217ndash227 2003

[8] R Bos H J Woerdenbag F M S van Putten H Hendriks andJ J C Scheffer ldquoSeasonal variation of the essential oil valerenicacid and derivatives and valepotriates in Valeriana officinalisroots and rhizomes and the selection of plants suitable forphytomedicinesrdquoPlantaMedica vol 64 no 2 pp 143ndash147 1998

[9] J Ibanez and A Usubillaga ldquoAnalysis of the essential oil of twodifferent altitudinal populations of Coespeletia moritziana (SchBipex Wedd) cuatrecrdquo Flavour and Fragrance Journal vol 21no 5 pp 760ndash763 2006

[10] P C Santos-Gomes and M Fernandes-Ferreira ldquoOrgan- andseason-dependent variation in the essential oil composition ofSalvia officinalis L cultivated at two different sitesrdquo Journal ofAgricultural and Food Chemistry vol 49 no 6 pp 2908ndash29162001

[11] S Echeverrigaray F Fracaro A C A dos Santos N ParoulR Wasum and L A Serafini ldquoEssential oil composition of

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 10: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

10 The Scientific World Journal

south Brazilian populations of Cunila galioides and its relationwith the geographic distributionrdquo Biochemical Systematics andEcology vol 31 no 5 pp 467ndash475 2003

[12] M J Oliveira I F P Campos C B A Oliveira et al ldquoInfluenceof growth phase on the essential oil composition of Hyptissuaveolensrdquo Biochemical Systematics and Ecology vol 33 no 3pp 275ndash285 2005

[13] J G KWilliams A R Kubelik K J Livak J A Rafalski and SV Tingey ldquoDNApolymorphisms amplified by arbitrary primersare useful as geneticmarkersrdquoNucleic Acids Research vol 18 no22 pp 6531ndash6535 1990

[14] P Rath G Rajaseger C J Goh and P P Kumar ldquoPhylogeneticanalysis of Dipterocarps using random amplified polymorphicDNA markersrdquo Annals of Botany vol 82 no 1 pp 61ndash65 1998

[15] I V Bartish L P Garkava K Rumpunen andHNybom ldquoPhy-logenetic relationships and differentiation among and withinpopulations of Chaenomeles Lindl (Rosaceae) estimated withRAPDs and isozymesrdquoTheoretical andAppliedGenetics vol 101no 4 pp 554ndash563 2000

[16] A Chaveerach H Kunitave S Nuchadomrong N SattayasaiandHKamulsu ldquoRAPDpatterns as a useful tool to differentiateThai Piper from morphologically alike Japanese Piperrdquo ScienceAsia vol 28 pp 221ndash226 2002

[17] L A Hug and A J Roger ldquoThe impact of fossils and taxonsampling on ancient molecular dating analysesrdquo MolecularBiology and Evolution vol 24 no 8 pp 1889ndash1897 2007

[18] P Mokkamul A Chaveerach R Sudmoon and T TaneeldquoSpecies identification and sex determination of the genusNepenthes (Nepenthaceae)rdquo Pakistan Journal of Biological Sci-ences vol 10 no 4 pp 561ndash567 2007

[19] K Isoda S Shiraishi SWatanabe andK Kitamura ldquoMolecularevidence of natural hybridization between Abies veitchii andA homolepis (Pinaceae) revealed by chloroplast mitochondrialand nuclear DNAmarkersrdquoMolecular Ecology vol 9 no 12 pp1965ndash1974 2000

[20] J B dos Santos J Nienhuis P Skroch J Tivang and M KSlocum ldquoComparison of RAPD and RFLP genetic markersin determining genetic similarity among Brassica oleracea Lgenotypesrdquo Theoretical and Applied Genetics vol 87 no 8 pp909ndash915 1994

[21] J Herbert P M Hollingsworth M F Gardner R R Mill P IThomas and T Jaffre ldquoConservation genetics and phylogenet-ics of new Caledonian Retrophyllum (Podocarpaceae) speciesrdquoNew Zealand Journal of Botany vol 40 no 2 pp 175ndash188 2002

[22] K Wolff and R J Peters-Van ldquoRapid detection of genetic vari-ability in chrysanthemum (Dendranthema grandiflora Tzvelev)using random primersrdquo Heredity vol 71 pp 335ndash341 1993

[23] M G Murray and W F Thompson ldquoRapid isolation of highmolecular weight plant DNArdquoNucleic Acids Research vol 8 no19 pp 4321ndash4326 1980

[24] N Mantel ldquoThe detection of disease clustering and a general-ized regression approachrdquo Cancer Research vol 27 no 2 pp209ndash220 1967

[25] R Peakall and P E Smouse ldquoGENALEX 6 genetic analysis inExcel Population genetic software for teaching and researchrdquoMolecular Ecology Notes vol 6 no 1 pp 288ndash295 2006

[26] X Perrier A Flori and F Bonnot ldquoData analysis methodsrdquo inGenetic Diversity of Cultivated Tropical Plants P Hamon MSeguin X Perrier and J C Glaszmann Eds pp 43ndash76 EnfieldScience Publishers Montpellier France 2003

[27] StatSoft STATISTICA (Data Analysis Software System) version7 StatSoft 2004 httpwwwstatsoftcom

[28] M Nei ldquoGenetic distance between populationsrdquoThe AmericanNaturalist vol 106 pp 283ndash392 1972

[29] M Nei ldquoEstimation of average heterozygosity and geneticdistance from a small number of individualsrdquo Genetics vol 89no 3 pp 583ndash590 1978

[30] K Javidnia R Miri M Kamalinejad and H Khazraii ldquoChem-ical composition of the volatile oil of aerial parts of Valerianasisymbriifolia Vahl grown in Iranrdquo Flavour and FragranceJournal vol 21 no 3 pp 516ndash518 2006

[31] R Bos H J Woerdenbag H Hendriks H F Smit H VWikstrom and J J C Scheffer ldquoComposition of the essentialoil from roots and rhizomes of Valeriana wallichiiDCrdquo Flavourand Fragrance Journal vol 12 no 2 pp 123ndash131 1997

[32] S K Singh Gopichand P S Ahuja and S Rajkumar ldquoEstima-tion of genetic diversity in Ginkgo biloba trees from northwest-ern India using AFLP and microsatellite markersrdquo Journal ofPlant Genetics and Transgenics vol 1 no 1 pp 16ndash20 2010

[33] A Kumar Molecular characterization of Indian valerian(Valeriana jatamansi) germplasm in Himachal Pradesh usingmolecular markers [MS thesis] Dr Y S Parmar University ofHorticulture and Forestry Himachal Pradesh India 2003

[34] S Rajkumar S K Singh A Nag and P S Ahuja ldquoGeneticstructure of Indian Valerian (Valeriana jatamansi) populationsin western Himalaya revealed by AFLPrdquo Biochemical Geneticsvol 49 no 9-10 pp 674ndash681 2011

[35] M A Curado C B A Oliveira J G Jesus S C Santos JC Seraphin and P H Ferri ldquoEnvironmental factors influenceon chemical polymorphism of the essential oils of Lychnophoraericoidesrdquo Phytochemistry vol 67 no 21 pp 2363ndash2369 2006

[36] S K Singh R Katoch and R K Kapila ldquoChemotypic variationfor essential oils in Valeriana jatamansi Jones populations fromHimachal Pradeshrdquo Journal of Essential Oil Research vol 25 no2 pp 154ndash159 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology

Page 11: Research Article Genetic and Biochemical Diversity among ...downloads.hindawi.com/journals/tswj/2015/863913.pdf · Genetic and Biochemical Diversity among Valeriana jatamansi Populations

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Anatomy Research International

PeptidesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Molecular Biology International

GenomicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioinformaticsAdvances in

Marine BiologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Signal TransductionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

Evolutionary BiologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Biochemistry Research International

ArchaeaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Genetics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporationhttpwwwhindawicom

Nucleic AcidsJournal of

Volume 2014

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Enzyme Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Microbiology