375
MIL-HDBK-781 14 July 1987 Ml LITARY Reliability Test HANDBOOK Methods, Plans, and Environments for Engineering Development, Qualification, and Production No deliverable data required by thk document. AREA RELI DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited.

Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

14 July 1987

Ml LITARY

Reliability Test

HANDBOOK

Methods, Plans,

and Environments for

Engineering Development,

Qualification, and Production

No deliverable data required by thk document.

AREA RELI

DISTRIBUTION STATEMENT A:Approved for public release: distribution is unlimited.

Page 2: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Department OF DEFENSEWashington. Or 20363 .s100

Reliability Tesl Methods Plan% And Environments For Engineering

Oevelopmenl, Qualification, And Production

I Thi$ Military Handbook is approved for use by all Departments and Agencie$ of the DeparImenl of

Oefen$e

2. Beneficial commen!s [recommendations. addmom, deletions) and any perlinenl data which may

be of use in improving thi$ document should be addressed 10: Commander, Space and Naval WarfareSptem$ Command, AlTN: SPAWAR 003-121. Wa$hmglon, DC 20363-5100. by u~ing the self -addressedStandardization Document Improvement Propmal (OD Form 1426) appearing al the ●nd of lhIS document orby letter

0

t!

1!

L . . . ..___-_._../_.

Page 3: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

..

MIL-HDBK-781

FOREWORD

1. MIL. HDBK.7B1 ii designed to be u$ed with MIL.STD-781. The test methods, te!l plan!, andenvironmental profile data are presented ,n a manner which facilitates their use with the ta,lor able ta~k$ ofMI L-STD.781.

2. The testing of electronic equipment procured for new military $yslem$ is an increasingly complexprocess Reliability engineers and ma~er$ must select test methods. test plans, and t.?$t ●nv!ronmenl$which will enwre that cont,accually required reliability Ievel$ are attained in the field and early defectfailures are removed prtor to field deployment MIL-HD8K-781 provides reliability ●ngineers and managerswith a menu of test plans, test methods, and environmental profiles. The mo$t appropriate material maybeselected for each program and incorporated into lhe tailored reliability test program derived fromMIL-STD-781.

3. This handbook IS wr, tten for use by the reliability engineer and manager. The sections onrel, abil, ty Ie$t methods and lest plan$ presenl melhods for growth monitoring. environmental stress

screen, ng, mean. ume. between. failufe a$wrance testing, sequential tests. fixed-durat!on Ies:s, and all-

equtpmen! tests The wctmns on Ies! enwronmemal profiles provide test environments for f,xed-grou~dequ, pment. momte ground vehicle, shipboard. jet aircraft, turboprop and helicopter. and m,ss,les and

assembled ealerna! stores eau, pment The references provided will expand the u$er’> knowledge and ?mdInthe destgn and implementation of re)!ab!l,ly Ie%l programs through more delailed data

Ill

Page 4: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

CONTENTS

I

Paragraph

1

111.21,2 I1.2 :

1.31.4

2

2. i2.1 “.2., :

33. a.,:;

3:?3.!3

3.1.4

3.1.53.1.6

3.1.7

3.1.83.1.9

4.4.14.!.14.1.2

4.1.34.1,44.2

&2. i4.2.24.34.3.14.3,24.4

4.4. !

4.4.24.4.34.5

4.5.1

4.s.24.5

SCOPE .,,

Purpose . . . . . . . . . . . . . . . . .

Applicability . . . . . . .Application of handbook.Taiioring.h~e;h,cdci!refe:eeoce

Equipmentcategori=

REFERENCE DOCUMENTS

Government documents . . . . . . . .specificaliGns, Siafidard$, and %m%ak.$Olher Government documents

DEFINITIONS . . . . . . . . .Term% . . . . . . . . .

Contractor . . . . . . . .Corrective maintenance (repair)Decision risk~Failures . . . . . . . . .Independent chargeable failure categories

Measures oirei!abiiity . . . . . .

Mis$ion profile . . . . . . . . . . . . . .Life-cycle profile

Procuring activity . . . . . .

RELIABILITY TEST METIIODSANDTEST P@NSPurpos e . . . . . . . . . . . . . . . .c.. ---p . . . . . .Applicatiomm atria.... . . . . . . . .Te%t methods . . . . . . . . . . . . . . .

Te\t plans . . . . . . . . . . . . . . . . . .Test method and test plan selection factors

Test melhti and test pliir, $ekder,

Tes! method and%! plan pararnew$ebc!icmReliability DevelopmenVGrowth Evaluation Methods

The Duane Method . . . . . . . . . . . . . . . . .The AMSAAMethod . . . . . . . . . . . . . . . . . .E.SmOnilOringm etho6s

Ccmpti:ed CA time irotewa! m.et%dGraphical me!h~

Standard EMS . . . . . . . . .;;;;;;.~;MTBFaswrance test....

Derivation of equation.Procedure . . . . . . . .

Sequen:ia! :enp!an: . . . . . . .

iv

Page

1

111

i

11

4Q~

44A

4

5s

5

5

66666

6667

8811;5Is

16161718

1919

Page 5: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Paragraph

cONTENTS(Continued)

Page

.

.

4.6.14.6.2

4.6.34.6.44.6.54.6.6

4.6.74.6.8

4.74.7.14.7.24.7.3

4,7.44.7.54.7.64.7.747.8

4.7.94.7.10A8

4.8.14.8.2

4.8.34.84

4.94.9,14.9.2

4.9.34.9.44.9.54.9.64.9.74.9.8

5.s 1

5.1.15.2

5.2.15.2.25.3

5.315.3.2

5.3.3

Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . j:Application . . . . . . . . . . . . . . . . . . . . .Theoretical background 21

Test truncation . . . . . . . . . . . . . . . . . . . . . . . .?3

Sequential testexamP1e 23

Standard PRST accepl-rejecl criteria and OC curves 2s

Confidence limits for sequential test$ . 25

Sequential tetts: Program Manager’$ as$e$$ment. . 2-I

Fjxed-duralion leS1s . . . . . . . . . . . . . . . . . . 28

Symbols . . . . . . . . . . . . . . . . . . . . . . . . 28

Example problem . . . . . . . . . . . . . . . . . . . . . 29

Standard fixed.durat,on test plans and OC curves 29

Alternative fixed-duration te$t plans 30

MTBF est, mat, on from observed lest data 30

Exclusion of hypothesm lesivalue$ 30

Specified con f,denceinlerval 30

MTBF est$matton from f,xed-duralion test plans 30

Projecuonof erper,ed field MTBF 32

Fixed-duration tesls. Program Manager’s a%%es%ment 32

All-equipment Production Reliability Acceptance Test Plan 33

Tesldurauon . . . . . . . . . . . . . . . . . . 33

Evaluation . . . . . . . . . . . . . . . . . . . . . . 33

Accepl. re)ect criteria for the ail-equipment IeSl 33

Add, uonal al!-equ, pmenl production reliability

acceptance lest plans.. . . . . . . . . . . . . 34

Reloabll,ty estimate% from unit.level results 34

Calculawmm ethos . . . . . . . . . . . . . . . . . . . . 34

Numertical esample$ . . . . . . . . . . . . . . . . 36

The ca%eolonlyone failure Insomesubsyslem(s) 38

An estimator of the failure rate upper bound AO

Depaflure$ from AO method requirements 40

Noobsecved failures . . . . . . . . . . . . . . . . 41

Typelcemoring . . . . . . . . . . . . . . . . 42

Compmerp rogram . . . . . . . . . . . . . . . . 42

COMBINEO ENVIRONMENTAL TEST CONDITIONS 44

Purpose . . . . . . . . . . . . . . . . . . . . . . . . 44

Scope . . . . . . . . . . . . . . . . . . . . . . . 44

M#ss,on and Ii fe.cycle en.lronmental PrOfile$ and ~e~tconditions . . . . . . . . . . . . . . . . . . . A4

Mission and life-cycle environmental Profiles 44

Environmental testcond,tlons. 44

Combined environments for fixed-ground equipmenl 44

Electrmwc stress and duly cycle 44

Vbbralion stress . . . . . . . . . . . . . . . . . . . . . 45

Thermal stress . . . . . . . . . . . . . . . . . . . . . 45

v

Page 6: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

CONTENTS (ContinueO)

Paragrapt,

5.3.4

5.45.4.15.4.2

5.4.35.4.45.5

551

5.5.25.535.54

5656!56.25.635.6.456.5

5.7

5.7.15.7.2

5.7.35.7.4

57.55.7.65.7.7

5.8

5.8.1S.8 2

5.9

S.9 1S.9.2

5.9.3S.lo5.10.1

6.

6.16.1.16.2

6.2.1

6226.2.3

Hum, d,ty

Combbned environments for mobile ground equipment

Electrical $IressanddutycycleVibration Stre$s

Thermal stress . .

Moisture .

Combined environment% for shipboard and underwatervehicle equipment$

Naval surface crall .,.

Naval wbmanneMar$ne crab (Army) .,. .

Underwalervehicle$Combined environments for [et aircraft equipmentMission profilesEnv, ronmemal test profde~Comtrucbon of anenv,ronmenlal profileTest proftle development .,.

COmpOslle enwronmental Iesl profile formultlm, sslonappl, cattons

Comb, ned environments f,>, VfiTOL equtpmeniM,s%ion de$cr, pl, on

Thermal \tress

V, bralion $IressElectr!ca~ %uessHum!d81~

Equipment operationTest pro fnle~

Comb, ned environments for wrbopropeller atrcratl andhel, coplerequipmenl . . . . . . . . . . . . . . .Turbopropeller alrcrah environments

Heljcopler environments

Comb,ned environments for a,r-launched weaponsand a$!embled external storesM,won’proftle%, . . . . . . . . . . . . . . . . . .

Environmental lest profile%

Example of construction of environmental profileW$sile transponauon, handl!ng, and storageRail transpon condluom . . . .

TEST INSTRUMENTATION AND FACILITIES.Purp05e . . . . . . . . . . . . . . . . . . . . . . . .

Scope . . . . . . . . . . . . . . . . . . . . . . . . . .Te$I Iacilltie$and apparatus.

Te$l chambers, . . . . . . . . . . . . . . . . .

Equipment cooling . . . . . .Test in%trumenlat!on .

Page

4s4s

4s46

4646

46464849

so50so50S&S4

5558S9

59

595960

6060

6060

61

61

6162

666767

69

6969

69696970

VI

Page 7: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

6,2.4

6.2.56.2.6

6.2.7

7.

TABLE

1

2

345

67

89A

96

10A

108

1112

13

1415

16

17

lB

19

20

21

22

MIL-HDBK-781

CONTENTS IContinuedl

Cdibrmiona nd. ccumcv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tes!ing the:est focilky . . . . . . . . . . . . . . . . . . . . . . . . . . .Installation oftietest tiamintk test facilii . . . . . . . . . . . . . . . . . . . . .

Sub;ect WJm{Keywordlfk iW... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TA6LES

Apdicntion mmri x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Summarv olvariables forthe AMSAA model . . . . . . . . . . . . . . . . . . . . . . .

Summarv ofeauations, AMSAA model . . . . . . . .Equalion 6election guide, AMSAA model . . . . . . . . .Critical va!ues of C: mvamettic form of the

Cramm.Von M,sesstatintic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Confidence intervals for MTOF. Iailure.terminmed test

Confidence intervals for MTBF, time.terminated tesl . . . . . . . .AMSAAmodel eaamole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

( 1 .>1 100 oercem standard confidence limits on MTBF atiet

Bccenldecision llowet. OL”l>.i)l . . . . . . . . . . . . . . . . . . . . . . . .

(1 II 100 oe.rcent acertdare Canf idence limits on MTBF aher,,accepldec,s#on luvper.0u17,all . . . . . . . . . . . . . . . . . . . . . .

(1 .>1 1Od percent standard Conf idnnce limits on MTBF afterreiectdecicion llowe, -R,”l>.1)) . . . . . . . . . . . . . . . . . . . . . .

11 .,1 100 percent mnndard confidence Iimim on MTeF after

rejec!decision (upper .O~lv.111 . . . . . . . . . . . . . . . . . . . . . . . . . .Summarv oftixed4wntion te.l plans. . . . . . . . . . . . . . . . . . . . . . . . . . . .Summary of high risk freed-duration test plans . . . . . . . . . . . . . . . . .Demonstrnled MTBF confidence limit multipliers. for failure calculatmn

Dnmonstcnted MT9F confidence limit mu ftipliefs, for time cnlculalionAccept times of fixedduralion test plans, Proeram Manager’s

Assessment !.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compari80n of risks. standard fixed. duration tests versus PrOQ,BmMamwer’sAs sessmant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Test times, .Wmdafd fixad-dumtion tes! plans versus ProgramManaQer.a Assessmanl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Failure times fofthe numerical example . . . . . . . . . . . . . . . . . . . . . . . . . .

Example of correct ordering in the AO bound calculation . . . .

Example of incorrect ordering in the AO bound calculation

Example data for computer program. . . . . . . . . . . . . . . . . . . . . . . . . . . . .Exnmple computer run fordatain TA8LE 21 . . . . . . . . . . . . . . . . . . . . . . .

vii

I—.

7070

70

70

71

Page

73

74

75

76

7778

79

80

81

66

90

95100

100101102

103

106

107106

109110

111112

—..——

Page 8: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

CONTENTS (Continued)

I TASLE Page

2324

I 25

26

27

I 29

30

31323334

353637

E404142

4344

454647

4.9

49

so

515253

54

Thermal stress environments for marine crabEnvironmental profile data (example)

Test profile data (example)HOI day temperatures ~C) for Cla$s I equipment in air-

conditioned compartmentsHOI day ambient temperature (“C) for Class II equipmentinair<ond, tioned companmentsHot day ambient temperatures ~C) for ●quipment in ram

air-cooled companmemsCold day arnb, enl temperatures ~C) for equipment ir?

ram air-cooled compartmentsTemperatures ~C) for Clasi I and Class II equipmenl,n air-conditioned companments

Jet aircrafi random vibration lest.Tabulation of temperature valuesSummary of temperature valuesTabula; ,onof wbrallon Ievel$

Summary of vi brat$on levelsComposite test prof,le t,mel, neTemperature level Iab”lat, on hot day(example)Temperature summary - hot day (example)Temperature level labulation - cold day (e,ample)

Temperature summary cold day (example)V, bral,on level Iabulal,on (e,ample)V, bral, on level wmmary (example)Temperaw,e rate of change (example)

Composite test prof,le timeli,>e (example)Random vibration test for Vf5TOLaircratlEnv8r0nmenlal pro f,lesequence

Stores hosl a,rcrati m,ssion utlllzat, on ratei forenwronmental testing

Random wbratmn. 9,-, [OVL), level adluslmenl fanorsfor the max, mum predicted environment (951h percentilewith 50 percent confidence based on one+ide tolerancelimO1)

113

114115

116

116

lt7

117

118119

120120121121

122123123124

124125125

126

127128129

130

131Method of calculating the acceleration power spectral den!ily

u

spectrum to produce ~ A, ●qual 10a unit - g,m, (OVL) 132

,.1Preliminary operational des,gn requirements (expected

lifeof5years) . . . . . . . . . 135

Life cycle environments 140

Assumed typ!cal a!tack mission profiles 158

A method for calculating test profde ttmes for a

specific number of test cycles 159

Attack a!rcran caplive-carriage mission profole

data (e~ample) 161

VIII

.

,

Page 9: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TAELE

2324

2526

27

28

29

30

313233

343536

3738394041

42

4344454647

4a

49

so

S152

53

54

cONTENTS (Continued)

Thermal stress environments for marine crafl

Environmental profile data (example)Ten orofile data (example)

. .

Hot day temperatures rC) for Class I equipment in air-conditioned companmentsHot day ambient temperature ~C) for Clas\ II equipmentin air-conditioned compaflments

Hot day ambient temperatures CC) for equipment in ramair-cooled companmentsCold day ambient temperatures ~C) for equipment inram air-cooled companmenls

Temperature ~C) for Class I and Clasi II equipmentin air-conditioned companment$Jet aircrafi random vi brationte$l.Tabulation of temperature values

5ummary0f lemperaturevaluesTabulat# on of vi bratl on levels

Summary of vibration le.elsComposite test pro file ttmehneTemperature ievel tabulal,on hotday(example)

Temperature summary - hot day (example)Temperature level tabulation - cold day (example)Temperature summary. co!d day(e~ample)Vlbralion level tabulatmn (example)

Vibralion level summary (example)Temperature rale of change (example).

Composite :est prof,le timeliew (example)Random viblation tesl for V/5TOL aircratl.

Enwronmenlal profnle sequenceStores host a,rcraft m,ssion utilization rate% for

environmental testingRandom wbration, g,-, (OVL). level adjustment factorsfor the max!mum predicted environment (95th percentile

with SO percent confidence based on one-side tolerancelimit) . . . . .

Mel hod of calculati ng the acceleration power spenral den!ity

spectrum to produce ~+ equaltOauni~-g,m,(OvL)

Preliminary operational design requirements (expected

life0f5years) . . . . . . . . . . . . . . . . . . . . . . .Lifecycle environmentsAssumed typical attack mimion profilesA method for Calculal, ng test profile times for a

specific number of test cyclesAttack aircrafl captive-carriage mission profile

data (example) . . . . . . . . . . . . . . . . . . . .

Page

113

114115

116

116

117

117

118119120

120121

121

122123

123124124

125125

126127128

129

130

131

132

135140158

159

161

Vlll

Page 10: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

CONTENTS (Continued)

FIGuRE

27

2829

303132

33343s36

37383940414243

444541!

51

52

53

5455

56

s?

58

59

60

Te$t Plan ”Xlli-D . . . . . .Test Plan XIV-D . . . . . . .Test Plan XV-DTest Plan XVI-D . . . . . . . . . . . . . .Test Plan XV1l-D . . . . . . . . . . . . . . .

Test Plan XIX-D . . . . . . .‘lest Plan XX-D

Tes\Plan XXI-DTest Plan XVllI-D . . . . .Bounda~line cri!eriun for rejet~ -accept decision .All Equipment lestplan derived from Tesl Plan I-DAll Equipment teslplan derived from Test Plan II-DAIIEquipment leslplan dertved frOm Tes:Plan 111.D

All Equipment lest plan derived from Test Plan IV. DAll Equipment leslplan derived from Test Plan V-DAll Equipment te>lplan deri.ed from Test Plan W-DAll Equipmenl!est planderived frOm Tes3Plan Vii-DAll Equipment testplan der, vedf<om Tesl Plan Vlll-DTime truncauon( lypelcen%or, ng)Combnned envlronmenta( lest profkle for fixed.groundequipment

Combined env, ronmenlal Ie$t prof,le for mobile groundequipment . . . . . .

Naval Wrfa<e Crak, mtssion enwronmenlal profde $or

externally mounled equipmenl(cold cycle).Naval surface craft, mwion enwronmental profile for

externally mounted equipment (hot cycle)Naval surface CfafI, M#SiOrT efWi10nr_IW71a1 profile for

imernally mounted equ!pmenl (cold cycle)Naval surface crab, miwon env, ronmenl~l profile fori nterna!ly mounted equipment (hot cycle)Naval surface Craft, miss, on enwronmental profile forinternally mounted temperature controlled

Naval surface craft, m,s%ion environmental profile forinternally mounted temperature comrolled

Surface craft and submarine vibration spectrumSubmarine pro file . . . . . . . . . . . . . . .Combined environmental test profile, for marine craftequipment . . . . . . . . . . . . . . . . .

General mission profile and characteristic for sixaircraft types and twelve m,wons

General mismon profile and characteristic! for sixa!rcrafl typei and Iwelve mt$~!ons

Genera! miwon prof,le and characteristics for fouraircraft types and seven m,s%ions

General mts%ion profole and characteristics for an

attach aircraft ona high.low.low-h,ghmtsslon

Page

218220222

22422622a230

232234

236/237238240242

244

246248250

252254

255

256

257

258

259

260

261

262

263264

26s

266

268

270

272

x

Page 11: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Page

I

I

.

FIGURE

61

62

63646566676659

70717273

-te7576

777879808182

83

M85068788899091

92939495%97

9899100101,Q

103106

10s

General mission profile and characteristics for afighter air~rafl cm an intercept mission

General mission profile and characteri$ticf fOr a,econna; y=r,:e ~~cr=f~ ofi a hiqh+upemonic mis5i0n

Mis$ion profile for temperature rate of cha~e calculaliOnDynamic ~rewre (q) as function of Mach number and altitudeRa”dOm vibration tesl envelope. for jet aircrafi

Environmental profile (example)

Missionpi6f;:=f?~~~cPJe)

Teap:Ofite(=amPle!Attack aircrafl test priflte ( 10w-lOw-lOw)

Attack a,rcra~tesl prOfile (clOse$up~n)Attack aircrah test prOfile (hi9h-10w”hlgh)

;+.h!gh.high)Attack aircraft test pro~tle (h.=.~t:ack ~,rc:ep. !eg p,ofile (h, gh-low40w. hi9h)

Af!ack atrcrafl iestorOfile(ferry) :ASW al,craft teSI profile (contact investigation - h19h)ASW ~,rcrah IeSI profile (contacl investigation intermediate).

Asw a,rcrahlesl prOfile(mln?lafi@*YVV ~ircrap, ;eil ~:cf{!e (h:gh.high. high!.

ASW Z,r<ratl tesl profile (search and attack).

ASW aircrah te$l Profile (surface ‘Surveillance)ASW alrCtaf LteSt PrOflle(ferry).

EcM alrcra~t e~tpfOfiie( penefrat;or~

ECM alrcraf~ ~e~,Pr~!;l@ @tJnd-Of~EC~wl~ir::af~~e$~pfQf!lP(f@rr~)

Flghler aircrafi test PrOfile (high-hi9h-high).F,ghter aircraft lest pro flh?(escoti).flghler air<ratlte$t profile (a, r deiense and capiive ti~gfi,i).

FighWr afircrati 1e51PrOiiie @;er~eWL).;ighter aircrak :EW wfile (high-[ ow-low”high)F,ghler aircrafi tes~ PrOfile (Iow-lOw-lOw)Fighter aircfati test prOfile (10w.10w-hi9h)

Fighler a,~crah te$t PrOfile (cl~e $“pWn)Fighter airc,af! te$t proiiie (ferry).

. ..,.-.fila /high-l@w-high!Reco””aistii,ce aircratt W%. p.- ..-.

Reconnaissance air~rafi test prOfile [lOw-10w’h’gh)Reconnaissance aircrafi test PrOfile (low-lOw-lOw) :

Reconnaissance airc~afi test prOfile (high-$ uper$On’cJ ‘Reconnaissance aircrah tes1 PrOiiie (hi9h.QJb@ic;ReC0nna15SanCe aircrafi tes: FJr6fi:~ ffe:w)Ta”ke, ai,craft Iest profile (high-low.high refuel).Tanker a,rcraft {low-low-low refuel).

Tanke, aircrafl le$lprofile (%trikerefuel)

COmpOsilelesl prOfi@(example)Compos,lelesl pro file(example)

Type A VfiTOL airborne early warnln9 miS~lOn PrOfile

272

273273274

215

276277278

27’32s0201282

283

2&4~g~

286287

288-@290291292

293

294295296297298299366

301302

303

304305306

307308

309310311

312

313

314

315

I

xi

Page 12: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

CONTENTS (Continued)

FIGuRE

106107

108109110111112

113114

115

116

I117

118119120121

I I 22

123

124

12s

126127

128

129

130

~

131

I 132

133

134

135

Type A VSTOL anti-wbmarine warfare mis~ion profileType A VfSTOL contact investigation mi$!ion profile

Type A VtSTOL marine a$$ault mission profile .Type A VE.TOL wrface attack mission profileType A V/STOL tanker mission profileType AV/5TOLveflica! onboard delivew rnis;on profileType B V/STOL combat air patrol mision profileType B V/5TOL deck launched intercept mi$sion profileType B VfiTOL subsonic nmface NHVeillance missionprofiles . . . . . . . . . . . . . . . . . .

Type A V/STOL airborne early warning environmentalpro file, . . . . . . . . . . . . . .

Type A VfSTOL anti-submarine warfare environmentalpro files .,, . .. ~... . . . . . . . .

Type A V/5TOL contact investigation environmentalpr0ftle5, . . . . . . . . . . . . . . . . .

Type AV/STOL marine as$ault environmental prOfileType AVISTOL surface altackenvirOnmenta fprOfile.

Type AVISTOL tanker environmental profile

Type A VISTOL venical onboard delivery environmentalprofiles.

Type BV/5TOL combalair paNolenvironment profileType B VISTOL deck lwnched mtercepl environmentalprofiles, . .

Type B V/STOL sub$onic surface surveillance environmental

profiles. . , .Turbopropeller vibration test spectra forequipment mounted within lhefuselage (example)

Thermal pro file forturbopropeller aircvaflTypical mission test cycle pro ffile

Combined environmental test profile for rolarywingaircrah .

Combined mission profile for rotary wing aircrak(hot andcold dayoperation) . .

Typical reliability captive flight test sequence(onecycle). . . . . .

Typical reliability free flight test sequence(onecycle) . . . . .

Random vibration maximum predicted ~nvi,o”ment forcombined air-launched weapons and as!embledexternalslores .

Random vibration maximum predicted environment for

air-to-surf ace(AGM) air-l aunched weapons

Random vibration maximum predicled environment foralr-to.ai r{ AAM)air-l aLInched weapons

Assembled external $tures and a,r.launched weapons -vi bra[ional reiponte accelerate on PSD versus frequencyspeclra

. . . . .. . . . .

..

. . .. . . . .. . . . . . .. . . . . . .

. . . .

. . . .

. . . .

. .

.,..

. . .

. .

. . . .

. . . .

. . . . .

. .

.

Page

315316

316317317318318319

319

320

320

321321322

322

323;~j

324

324

325

326

327

328

329

330

331

332

333

334

335

.

.

xii

Page 13: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

cONTENTS (Continued)

Page

I

FIGuRE

136

137

138

139140141

142

143

144

14s

146

1b?

148

149

150151152153

Equipment installed in amembled ●xternal stores andair-launched weapons - vibrational refponae acceleration

noversus frquencyspectraInduced buffet maneuver random vibration response

spectrum . . . . . . . . . . . . . . . . . . . . . .Low- low free-flight mimion profile (example)Environmental engineering program KhemalicLogistics functional schematic diagramEuropean scenario assumed maintenance

$chedule and po$$ible operational utilization rate forenvironmental analfie} (example)

Target movement timeline for ●nvironmental

design criteria (European scenario) - largequantities (example) . . . . . . . . . .

Estimated percentage of time distribution for

lranspoflalion, holdldelay, and handling, fornominal .probable factory-to-theater movement

beeline . . . . . . . . . . . . . .Assumed typical attack aircrafi operating envelope

[standard day) showing the a~$umedhigh. medium.low mlmonprofile

Assumed typical attack aircrafi operating ●nvelope

(standard day) showing the assumedh,gh.low-h,gh mis~ion profile

Vibrauon faclor (g,”, (OVL))~ flight missiofl

profile high-medium-low use with FIGu RE5 130 and 143

except(”), verw$minimum g,~, (OVL)~(elample)Vibration factor (g, ~$ (OVL))~ fhght missionprofile high-low-high use with FIGURES 130 and 144

except (“), versus MiniI’IWm (g,,m (OVL))? (example)Store free. fitght vibration facwr

(g,~, (OVL))2 flight mis~iOn PrOflle IOW-IOW USewith FIGURES 131 thru 134 and TABLE 4B(example)

Unit-grm, (OVL)-acceleration P5D

verws frequency spectra . .Vibration profile$ for rail transportationRail transpofiationtest profileProgram listing for FORTMN programProgram listing for FORTWN program

336

337338

339340

341

341

344

345

347

349

350

351

352

354355356

358

xiiifiiv

. . .. .. ... .- .-— ___ _____ ___ .

Page 14: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDE!K-781

1. SCOPE

1.1 -. Thi$ handbook provides test methods, test plans, and test enwronmenlal pro f,leswhich can be used ,n reliabtltty Iest, ng dur#ng the development, qualification. and producuon of systemsand equipment

1,2 Acml,cabilitf Th,s handbook ●xplaim techniques for use in reliability test% performed during Iheimegraled lest programs $pecil,ed in MI L-STO-785. Procedures. plans, and environments which can be usedm Reliability DevelopmentiGrowth Tests (RD/GT), Reliability Qualification Tesls (RC)T), and PfoduclionReliability Acceptance Tests (PRAT) arediscus$ed. In addition, Environmental Stress Screening (ESSI methodsare provided.

1.2,1 APII Iicatmn of handbook. Data provided inthk handbook can ba u$ed $eIeclively on reliability

te$t program~ and can be \pecifted m Depanmem o! Defense contracted prctcutements, reques!s forpropo~al$. statement$ of work. and Government in-houw development wh,ch reqwre reliability testing

1.2.2 Tailorinq. The data provided herein can be selected for use on tailored reliability test programsas reQu# red by govern, ng regulauons and as appropriate 10 the particular system or equtpmenl, tintended

aPPl, Cation, Pr09ram lYPe, magnitude, and funding,

1.3 Method of refeten<e When referencing the lest methods, test plans. and environmental lestconditions of thts hand booh, the handbook and the fpecific paragraph number(s) are 10 be rated

1.4 Equ, preen\ ca!eqornes The methods in this handbook are apPhcable 10 SIXbroad calegones ofequipment, dlst, ngufshee accord, ng to each equipment’s field $arvice applicatmn:

Calegory 1

Category 2

Category 3

Category 4.

Calegory 5

Calegory 6.

F,,ed.grcwnd equipmenl

Mobile ground equipmemA Wheeled vehicleB Tracked .eh, cleC. Sheller con f,gurat, onD. Manpack

Shipboard equipmenlA. Naval surface craftB Naval submarineC Mar!ne crafiD Underwater vefwcle

Eqwpment for jet aircratiA. Ft,ed-wingB vertical and Shorl Takeoff and Landing (v/5TOL)

Turboprop aircrah and helicopter ●quipmentA TwbopropE Hel Kop:er

Ml$sile$ and assembled external $mresA A,r.launched miwlesB Assembled elternal storesC. Ground.launched mmiles

1

Page 15: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

2. REFEflENCF D():LJMENTS

2 I ~v.e~!a!nen! documen!>

2..1.”! Soecbfocat,on%, standard~, and handbooks Unless olherw!se SPeclf, ed. the followongspe,.iff cation%, standard%, and handbooks of the Issue hsled In the Department of Defense Indes ofSpecifocatlom and Standards (DODISS) and ,1s supplements specif, ed m the solicllatmn form a par! of Ih, $documer,t to the exk’ol specifted herein.

SPECIFIuTIONS

MILITARY

MIL. E-5400MIL-E-605!MIL-P-9024

STANDARDS

MILITARY

MIL.STD-167-1

MIL-STD-21OMIL.STO-280MIL.STD-461

MILSTD.648MIL.STD.721

MII .s1 0-781

~,, L.5TD.785

MIL.STD-81OMIL-STD.1385

MI L-STD.2164MIL.STD-45662

HANDBOOKS

MILITARY

MI L-HDBK.189MI L. HDBK-237

MIL.HDBK.2S3

Electronic Equjpmenl, Aero$pace, General Specifocauon ForElectromagnetic Compatibilny Requirement For SystemsPackaging. Materials Handling And Trampoflab!lity, SyJtem And SyslemSegmenw General Specification For

Mechanical Vibrations of Shipboard Equipment (Type I - Environmental hndType II. Internally ExctledlCl,maltc Extremes For M,lllary EqubpmentDe flnil,om Of Item Levels, Item E,changeabilily. Model%. And Related TermsElectromagnetic Em, won 4nd 5u5ceplab,l, ty 17equlrements For The ControlOf Electrc.magnel, c InterferenceDes, gnCr, te, +a For Speclall?ed Sh#pping Contaoner%De{, n,t, omUf Etlect, ven,:$%le(, tl\ For Rel, ab,llly. Matntatnab,l, ty, HumanFaclors, And SafetyReltab,l!ty Te$l, ng For Eny, neermg Development. CJual, focal, on, AndProducuonRel(ab,l,iy Program For 5y!1em\ And Equipment Development AnaProducuonEnvironmemal Teit Melhnd% And Engineering Gwdeline$Preclus, on Of Ordnance Hazard% lnElectromagnetlc F#elds, Gener~’Requirements ForEnwronmental Stress Screening Process For Electronic EquipmentCal#bra!ton System Requtremenl>

Reltab,lnly Growlh ManagemenlEleclromagnet,c Compatib,llty Management Gutde For platforms, SystemsAnd EquipmentGwoanre For The Des,gn And Tesl Of Sy$tem* Protected Against The Effecl\Of Electtomagnet,c Energy

2

I .

Page 16: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

2.1.2 Other Governme~t documents The following other Government documents form a part of Ih,ihandbook m the ealent spec, f#ed here, n

PuBLICATIONS

NAVAL AIR SYSTEMS COMMAND (NAVAIR)

AR70.38 Reiearch. Development, lest And Evaluation Of Material Far E.lremeChmatic Conditions

AD.lll S Electromagnetic Compatibility Design Guide For Avionic$ And RelatedGround SuppcIrt

(Copies of specifications. standard$. handbooks, and publications required by contractors in connection withspecific procurement functions should be obtained from the procuring activity or a! directed by thecontracting of ficer.)

I

..

I 3

Page 17: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

3 UFFINITION\

3 \ ~ Term> used herein arein accordance with l&wdef, nitlons in MI L.5TD.2Lf0, MI L. STD.721,iv:,, ,. TO.785. MI L-STD-81O. and MI L-HDSK-189, w,lh the Pxcept, on andadd, uon of Ihetermsspecafoed O.~ I ! through3 1,9.

3.1. \ Contractor. Contraaor includes Governmental or ,ndustnal acthwl,es developing or producang{nliitary sys!ems and equipment.

3.1.2 Corrective n,aintenance (reoair]. The acciom performed, as a result o{ failure. to reslore an,Iem to a specified cendiuon

3.1.3 Decision r,$k$ Deci!ion ri$ks shall be as fpecified in 3.1.3.1 through 3.1.3.3.

3.1.3.1 Consumer’s risk @. Consumer”% risk (&) i$ the probability of accepting equipment whichhe! a true n!ean-lime.&lween-fa,lure (MTBF) equal 10 the lower te$I MT8F (01 ), The p,obab(l,ty ofaccepting equipment which ha~ a lrue MTBF less than the lower ?%1 h4TklF (o, ) will be Ie!$ than @)

3.1.3.2 Producer”$rtsk (~ Producer’s risk (CY) IS the probabllltyof refecungequipment which ha> atrue MTBF equal to the upper lest MTBF (8D ) The probability of rejecl, ng eqtopmenl wh, ch has a lrueMTSF greater than the upper test MT8F (L90 ) w,II be less than (a)

3.1.3,3 C%<riminaiion ratm (d!. The dmcrimmation ral,o (d) usone of the standard lest planparameters; it osthe ratio of the upper tesl MTBF (80) 10 Ihe Iowertesl MTBF fe, ): lhat is, d . C?UI0..

3.1.4 _ Failure iypesand clas$ii!ca(ion$ arespec, iled In MIL.5TD.721, wtththe ezcepl)onoimultiple, paltern, and chargeable fa,lureswhnchare $per,l, ed ,$. : ~ 4 1 through 3 1.43

3.1.4.1 Multiple failure% Mull,ple fa,lu!es are !he wmultaneous occurrence of IWO or moreindependent fatlures When two or more faded parts ale found durtng lrouble$hoollflg and Iaolure$ csnn6:be \hown 10 be dependefll. mul!lple fa!lures are prmumed to have occurred,

3 ~.d.2 Pattern fa,lures The occurrence of IWO or more Ia,lure%of the%ame pan #n ,dent, cal o.equ$valenl applucatoons when Ihe fa,lures are cau%ed by the same bawc failure mechanwm ano the teIlu#esoccur M a rale wh,ch n tnconsislenl wnh the pan”% predlcled fa!lure ra!e

3 1 4.3 Chargeable failure Arelevanl, Independent failure of equ,pment under test and anyCfependent failure$cau%ed lhereby wh, chareclasmi, eo a%one ia,lure and used todelermine contractualcompfaance with acceptance and reject, on criteria

3 1.5 Independent! chargeable fa,lure caleaorte$ Fa,luresdef, ned, n 3.1 5.1 lhrough 3 1 55 arecategorized as independent chargeable Ia$lures

3 1.S 1 Eauipment des,qn fa,lure Any Ia,lure wh,ch can be traced dmectly 10 the des$gn of theequspmenl; that ,s. the des#gn of the equtpment caused lhe part tn questoon to degrade or fall. rewlttcg tnanequ, pmenl failure

3.1.5.2 Eau,pmenl manufaclunno failure A failure wh,ch i$caused by poor workmanship orfinadequ ale ma”ufactur,”g process conl, ol d“r, ng equipment construction. Iestlng, Or ,epalr Prl Or 10 Iheslar! of testing: for example, the failure of an ai$embly d“e to cold solder jmnls

3.1.5.3 PandeS!Qn fa,lure The fajlureof pans wh!ch can be traced d,reclly loonadequatedes,gn

3.1.54 pan Manufaclurtna failure Parl fa,lureswh+<h are the rewllof poor workmanship orinadequate manufacturing process control dur, ng par{ assembly, tinad equate nnspecl, on, or Improper

te51tng

3 1 55 So flwa~e erro, fa,lure k fa, ture caused by an error inlhe computer pro$~am a%so<$ated wtnthe hardware

4

—.

Page 18: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

3 1 6 Meawrwol rel+abil, tt Reliability measurement shall be as speofhed !n 3 16.1 through 3 1.69

3 1.6.1 Demonstrated f4TBF interval (8 d I Demon$tralid MTBF irnerval (@d ] is the probable range

of true MTBF under lest cond,l, ens; that I%,an interval e518mate of MTBF al a stated conlldence level

3. 1.6.2 Observed MTff F (j). Observed MTBF [j) is equal to the total operating time of theequipmem divided by the number of relevant failures.

3.1.6.3 Lower test MTE~ (c?L). .Lower tesl MTBF W! ) it that value which ii unacceptable. The$tandard test plans will reject. with high probability, ●quipment with a true MTBF lhat approached (f?, )

d~,r,.i..ti..ra~3.1.6.4 Upper test MTBF f ). Upper test MTBF (L70) is an acceptable value of MTBF ●qual to thet!me$ the lower te$t MTBF (& ). The !tandard test plans WIII accept, witn high

probability, equipment with a true MTBF that approached (@.), This value (00) shall be realistically

alla, nable, based on experience and ,nformali on.

3.1.6.5 Predicled MTBF (6’Q). Pred!ded MTBF (OP ) i$ that value of MTBF determined by reliabilitypred, cuon method%. tit asa {unctmn of the equtpmetm design and the uce environment. (&P) should beequal 10 or greater than (8U ) in value. to ensure with high probability, that the ●quipment will be acceptedduring the reloabollly qual, f,cation lest.

31.6.6 Ob$er.ed cumulali.e failure rate (P(t)l. The observed cumulative failure rate (P(t)) at time (t)I%equal to the number of relevant system Iailurei N(t) accumulated by (t), divided by (I).

3.1 6.7 Intensitv function (P(t)) The intensity function (P(t)) i$ the change per unot lime of theexpected value of N(t), the number of system failure$ muluplled by time (t). This is writlen as:

P(i) = dE(N(t))/d!

where E ,epre%ent% the expected value

3. 1.6.B hmtamaneous MT8~ function (M(t)). The instantaneous MTBF function at (t) is equal to thereciprocal of the failure rate {unclmn.

3 1.6.9 Ob$er.ed reltabil,tv (R(t)) A point eslimale 0( reliability equal to the probabfl, [y of survivalfor a $pecif, ed operaling !tme. (1). g,ven that the equipment was OpwaliOnal at the beginmng of the per80d

31.7 Mission orof,le A genenc definition is specified on MIL-STD.72 I Thi$ ampliflcal,on of thatde ftnitqon appltes 10 rel,abilily test programs. A thorough description of all of the major planned events andcond, t,c.ns associated with one spec,fbc miwon. A mission profile is one ~gment of a Ii{e-cycle prof#le (for

example. a mil$ile caplive. carry phase or a miisile free-f ligh: pha$e). The profile depicti the Ilme \pan of theevent, the expected enwmnmental Cond, tmns, energized and nonenergized periods, and so fonh.

3.1 B Life-cvcle orofile A thorough time-life description of the events and conditions a5socoaled withan item of equipment from the lime of f,nal factory acceptance unlil its ultimate dispositmn (for example,facxo,y.to.target sequence) Each significam life-cycle event. such as tran$pofiation. dormant storage, te%land checkout. standby and ,eady modes, operational deployment. and mission profiles, #saddressed.

includbng alternate po$!, bil, ues The profile depicts the time span of each event. the environmental

conditions, and lhe operating modes

3 1 9 Procur#nq acl,. (ty As used on Ih, s handbook, procuring ac[tvily refers to a Government agencyor toa prime contractor on tran%acuomwtth itswppl, en

5

Page 19: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

4 RELIABILITY TEST METHOOSANDTEST PLAN5

4.1 -. Section 4 provides information and gwdance tor Y?lecIing the Iesl melhods and Ies..plans required 10 implemeni the left program~ specif}ed in MIL.STD-7E1

4.1.1 ~. Section 4 provides test method% and test plans which can be used when performing the

reliability test programs $pecified tn Task\ 200.300, and 400 of MI L-STD.7E1. Methods are provided for

e.aluatincl data Drocfuced durina RDIGT and ESSDroaram$. lest Dlans are Drovided for MTBF assurance andfixed-d ur;!ion aid sequential re;iabili!y demons~ral;on and awe;srnent le~ts and all-equipment reliabilityiestk Thaw test plain can ba selected for u$e in ROT and PWT.

..

4.1.2 Agolications matrix, The interrelation$hip~ between the test methods and test plans describedherein and the tasks $pacified in MIL-STD-7BI are provided in TABLE 1.

4.1.3 Test methods Methods for evaluating reliability growth during RD/GT and for evaluating ESS

programs are provided in4.1.3.l and 4.1.3.2.

4.1.3.1 Growlh monitor!na method Two growth momloring (data evaluation) methods are

described: the Duane Method and the Army Material Systemf Analysis Agency (AMSMJ Method TheDuane Method is a graphical and nonstatistical technique which can be used 10 graphically plot changes inreliability. The AMSAA Melhod is based on Ihe a}wmphcm that the time> between successive failures ca” bemodeled as the intensity funct, on of a nonimmogeneow Poisson process. Th!$ ,mensity f“ncuon isexpre;%ed a$ a Mult!ple of the cumula18ve Ie$t tame raised 10 wme power. The Ouane and AMSm methodsare described in MIL-HDBK.1B9

4.1.32 ESS evaluation methods Two ESSevaluat#on melhods are described which prowde a meam

to determine when the ESS procetiure should be terminated One of the methods provides a techn,que forcalculating a required ESS time Interval (which must be $au$f,ed 10 $IOP screening) prior to the slarf of Ihe

ESS The second method make% use of arbitrary Inmes based on hmlor,cal data.

4. 1.4 Test plarm MTBF ajwrance Iesl$ and the f,.andard test plan, provide a wide selection of Ieits

suitable for tailoring IO conform 10 the requirements of any rel#abillty program

4. 1.4,1 MTBF aswrzmce lesl$ The MTBF asswance Iesll we a failure-free interval concept 10 ver, ff

MTBF. Thetestsprowde ades!reo ajwrance Ihal a mln!mum specifoed MTBF level i$achleved inadditnon toprovidang assurance thal early defect failures have been eliminated This test can be used on production

equipments which have prewoudy pa%sed qualnflcatton tewng The MTBF assurance :e>t provides theproducef with a high probability of wccess.

4.1.4.2 Stzmdmd test olans The standard lesl plans conta, n slalist!cal criteria for deIerm8nungC0mp18a~Ce w,th spectif,ed rehabillty requtremenl$ and are based on the assumption that the underlyingdistribution of tnme+belween-fail ures ISexponential The exponential assumption impltes a constant fa)lurerate; therefore, thew test plans cannot be used for the purpose of el)minat$ng design defects or infantmortality failures The standard tell plans are as categorized In a through d:

a. Probability Ratio Sequential Test plans (PRST) (Test Plain I-O through VI-D)b. Shon-run h!gh.r!sk PRST plans (Test Plans VII-O and VIII-D)c. Ftxed-duratmn lest plans (Test Plain IX-O through XVII-D and XIX-O through XXI. D)d. Ail-equipment reliab!hcy te$l plan (Test Plan XVIII-O)

These statistical test plans are to be used to determine contractual compliance with pre-e$tabl!shed accep!.reject criteraa and should not be used m project equ$pme”t MTa F

~

4.2 lest method and tesI elan selectnon factor% The rnOSI important factors to be c.anmdetee when

selecl, ng an approprna!e lest plan or method are prowded tin 42.1 through 422 S

I 4.2 1 Tesl method and te%! elan selection Thelejl rnethod%and te%: plans to be uwd in RD:GT, RQ7,

PRA?, and ESSshall be selected from lrw malerml prowded m a Ih,ough f The test melhom or lest plans

6

. . . . . .._ ~ — —. ..- .. .._-_—_

Page 20: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

$hould be specified fin the contracl and Ihe equlpmenl specification and described. an delatl, ,n the reliabilitytest plan document.

a. The rel!abil!ty grotih monitoring method should be selected under condtuom whereparameters of the ume-to-failure d,stributmn are ●xpected 10 be changing with t#me.

b. The ESSmethods are 10 ba wed to eliminate ●arly defecu (infant morcalily). The StandardEnvironmental Streis Screen i$ a form of ESSused when ic muff be verifkd that equipn%en!, which has passedprevious reliability testing, has not been degraded by the production process

c. The MTBf as$urance I-I can be used to provide assurance that a minimum specifwd MTBFhas been achieved and that early defect failure$ have been ●laminated.

d. A flaed-duration lest plan must ba aelecced when it i$ necc.fmry to obtain an estimate of thetrue MTBF demonstrated by the lest, as well a%an accept-reject decision, or when total test lime must beknown in advance.

e. A sequential lest plan maybe aelectad when it is desired toaccepl or reject predeterminedMTBF values (eO. @!) with predetermined risks of error (ca~). and when uncertainty in total test ome isrelatively unimportant. Tht$ lest will fave test lime, as compared 10 fJxed-du ration le$t plan$ having iimilarrisks and doscr, m,naticm ratio%, when the true MTBF is much greater than (@O) O, much less Ihe” (81]

f. The all.eqwpment test plan maybe selected when all units of the production run mustundergo a reliability lot acceptance test.

These Stau$tical lest plans are 10 be used to determine conlracluat compliance with pre. e$labtished accept-reject criteria and \hould not be used toproject equipment MTBF.

4.2.2 Tesl me:hod and te$l plan paramelerwlecoon. Themoslimponant pa~ametersmbe

considered when select, ng test methods and test plain are discussed in 4.2.2.1 through 4.22.5

4.22 1 Ectu,oment performance. The parameter! to be measured during reliability le%:i and the

applicable acceptance I!mtl% should be delermmed by the performance requirements of the equipmentdestgn control specif,cat,on ana should be included in the test procedures.

A.2 2.2 Equipment auamity lhe number of equipmenl 10 be \ested, not necessarily $,mullaneousby,

shall be aelerm$ned as described herein or as specified in the carnracl.

a Sample s,ze [reliab,l,ty growth andqualificat,on). The$ample vzerequired for thegrowlh and qua! tf,cat,on pha!e lest plain should be as spec!f,ed on the contractor as agreed to by Ihe

conwactor and the procur, ng acu., tyb. Sample $ize (production reliability acceptance). Unles$ olherw45e specif,ed by the

procuring acttwty, the mmimum o{ samples ta be tested per [ott% three p,eces al eqwpmenl. Therecommendeci Jample s;ze #s10 pewent of the equipment per 101. up 10a maximum of 20pieces of

eqwpment per lotc. All-equipment praductian reliability acceptance test. Under this Iesl plan. all producuon

equopment is subjecled to the rel!abtlity acceptance le5t. All-equipment acceptance Iesung (100 percentsample) should only be specif ted under exceptional circumstances. as determined by the requ, remenls af~fety or mosston success

d Sample $ize (ESS) Unless otherwise $pecif,ed by the procuring aCli.itY. ielected

development equipment and all equ,pment in production Iats should be wb]ected to ESS In h!gh volumeproduction runs, the sample sflze from each lot shauld be selected by the procuring activity. In,taal 101$

should be 5creened al lhe 100 percent level. Sample size on later lot> may be reduced by the procurtng

acttw:y baaed on the screening results.

e $ampiesize (opltonal nonstatistical te$l). The sample stze far1h#5 Iesl isal! equlpmenl tina lal whase ver,l, ed reliabil,ly charac(er!$ticj may be degraded by m.inufaclur, ng and qu.31f1ydefeC!>

7

1’””

Page 21: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MII.-HDBK-781

I

4215 1*.1 du,.+t, o,> Ttw test duratton for ftDIGTshou10 bespec, f,ed ,n advance, by Ihc.

bovemmer. t, 10 the request for proposal. contfacl, and spec, ftcah on, Dur, ng the test program, add, (,ona!test time may Ix> specif ted ,f needed lo achieve reliabi~!ty goal% ESS lime i$avar, able, wfmchdepencf son 1o,,size, fa,lure d,,.lrf bution 01 the early faiiures, types ofenvi tonmental >Iressappl, ed, and stress levels Somemaximum allo.v.lb[e lest tlme$hcwld he wed for test plann, ng For%equenlial lest plans, lest cfwat, or,should be plafi.wd on the baits of maxtmum allowable lest lame (truncation), rather than the expecteo

dectision poii~l, (o avoid the probability of ~~nplanned tesl cost and schedule overruns. Testing should

continue imt; i (he total UI18t hours together with the total COunt of relevam equipment failures permiteither am accepl or rejeci decision in accordance with the specified test plan. However. for the all.

equipment reliability test. testing should contanue until a reject decision is made or all contractually requiredequipment has been tested. Equipment ON time (that i% equipment Operating time) should be used to

determine ten duration and compliance with accept-reject criteria. Testing should be monitored so that thetimes of fai!ule may be recorded accurately. The monitoring instrumentation and techniques and themethod ofesbnating fiA7BF should be included in the proposed reliability test procedures. Each equipmenlshould operate al least one. hali the average operating lime of all ●quipmem on test. The duration of fixed-time tests should be speci {tied in the request for proposal, contract. and equipment specification. Thus testduration should be the max, mum allowed by the schedule and l,scal constraints of the program.

4.2.24 Deciwon ris}, > Theconsurner’snsh (fS) i$ the probabiltly lhatequtpmentwilh MTBF equa! :0

the lower test MTBF WIII be accepted by the test plan. The producer’s risk(a) 15the probability Ihatequipments with MTBF equal to the upper test MTBF will be rejected by the test plan. In general. the use oflow deckion ri~ks will resull In longer test I,me However. low dec, s,on nsk$ prowde protection aga, nit therejecu. a” O( satisfactory equipment or acceptance of unsatisfactory equ, pmenl For each of the truncatedsequential plain (PRST), the ezact nskswe, e calculated. ShifKsi” the accep[. reject I,nesa”d truncation po, mswere made to bring the True ,isks closer 10 the dewgnated risk~ and 10 make the two risks more nearly equalIoreach plan Thedecis, on nsksof the all-equipment rellab,litytest vary w,lh the lolal teslt!meancf have!AtIle ~ig,),ft<ance .?! ,><cason forchoos!ng thss plan

4? > 5 >,%t,#,o,ondt,o,~.tilau di I The d,scr, m,nation ralio (d) M the rallo 01 the upper Iesl MTBF( 80) to tile lower test MTBF (6’:) and Isa measure of the power of the te%llo reacha decision qu, cklyand,together w,th the dec, saon risks, define a sequential tesis accept-reject crtiteria In general, the hsgher the

d,scriminat, on ralto (d), the shoner the lest The dtscrim, nalion rauo (d) (and corresponding lesl p!an) m~slhc chosen carefully 10 pre.enl the resulung (@O)from becoming unalminable due to de$ign I,tn,lat,on$

.I 7 Rel, abilitv DevelopmenUGrov.nh Evaluation Methods

a. The Duane Mel hod was originally developed by J. T. Duane ($ee Reference 1). Thns methodmake> use of a graphical and non%tat,$t,cal technique wh!ch provides a p,clorial presentation of the changes

occurring In the measu reti rel!ab, hty parameter. Numerical estimales of the reliability parameler also can beobtained.

b The AMSAA Melhod for evaluating reliability growth presented here#n was developed byAMSAA. Th, i method t> d,scussed ,n some deta!l in MIL-HDBK-189. Additional ,nformattcm is prowded !nReference 2, The AMSAA model was selected for inclusion In thi$ handbook becauw it is an analyucal modei

which permits confidence interval est, males to be computed from the test data fof current and future valuesof reliability (MTBF) or failure raie (k), In addition, the model can be applied to wther conwmmus (ume) or

discrete (rounds. roiled reliab,lnly systems. single or multiple systems, and testf which are time or failure

truncated

4.3.1 The Duane Method. The Duane Method is a graphical technique which is useful in the analystsof reliability growlh data. The :echn,que is quick, simple. and easy to understand The Duane plot or graphcan dep!ct facts that may be h!dden by a purely $lalmt!cal analysis For example, a goodness. of. flt Ies! maycalf for rejecting the AIVISAA mocJe!, but VVIII “c,t ,“d!cate pombfe reasons for che ,eject’on A plot of the

same data may find, cate some reason for the problem, Howevev. (he rel, abil,ly parameter> cannot be

estimaled by the Duane Method aswell a$ they can by a $talIshcal model and, of course, no ,r.ter. ai

8

Page 22: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

.

esl, mates can recomputed lnadd#l, on, the Duane plot uses a%traight line which is ftltedby eyetothedalapoints. Thegraphtcal andstat, st, calmethods should beviewed ascomplemenlary techniques

43 1.1 ~ The%ymbols used, nlheequat, On$oflhe Duane Melhod are:

C(t) = expected number oflailures in(l) un,t$ofdevelOpment lesl,ng dtivided by(t)

f(i) = eapected numhcof failures in(t) units ofdeveJopmenl te$1ing

m = dOpe Oflhe Duane plOt

* = reciprocal of theordinate of the Duane plolat(t) = 1

e(() = current MTBF

r(t) = current failure rate

~ = a.erage failure rateofgrouped datainintemal(i)

4.3 1.2 Construct, onofa Duane olot The Duane plotcan ticon$trucled asspecifted inathroughg:

a. The Duane model can reexpressed in the form:

c(l)= Al-”’

where:

c,,) . y

Since (F(I)) 15Ihe expected number of failures experienced by the sy5tem during (t) units of developmentIe\ling, it can be e$timated by (N(t)), the observed number of failures during (1) units. Therefore,

Iv(()/( . .\ I - “

usthe observed relationship. Thrs may be expressed as a linear relationship. suitable for plotting, by takingIogar!Ihms

ln(h’(f)lfl = (n(k)– m In(l)

However. since il is easier m wsualize growth a%an upward doping line. a more commonly used reta:lonship

is:

ln(Uh’(0) = m 1.[!1 - In (A )

b. As the Iest#ng progresses. record is kept of (1), Ihe total units of operation accumulatedamong all the systems Thus, !f three systems have been tested for 100 hours each, t = 300 Record alio ISkept of (N(l)), the cumulative number of failure! experienced during the (t) units of OPeralion.

c. Al selected .alue% of (1), the quantily (UN(1)) is computed.d. .Uvng full-log graph paper, the value$ of (t) and (UN(1)) are plotted on the ab$o$$a and

ordlnale, respectively

e If Ihe plolted po!nts form a rea$onably$tra, ghl I,ne. II can be concluded Ihal lhe Duanemode! ,$ & reamnable me!hod for tiescrtb, ng the growth pattern observed

f After f,tt, nga $ua, ghl Ilne through these po, nls, (), ) may be esltmaled bylhe reC@ro;alof the orddnate al(t)= 1 The paramele, (m) maybe estimated by Ihearnlhmel!c slope of Ihel, ne Each

9

Page 23: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

successive point contains all the in fcwna toon contained in earlier points. Therefore. the most recent po,ntsshould be given heavie$t weight in plol. ung the lane.

9. An e$timate may be made of the current value% oi MTBF (f?(u) and the iatlure rate (r(t)),

by means of the relationships:

G(i) - im/(i - m)k

and

Any ●xtrapolations beyond the test period are Sen$itive to the a5SumPU0n of using the Guane mOdCl, andme-a ..,* ~swi.mmal S55U%P4WOU.8,-. ..,= ~,q, . .. . . . . . I. o rem.t.. . . . ..-1. .I. -.+ 4... . . . . . h-., .h - .,.-,.,” ++ ,. ~ =.’- r-mctant i“ the ●!?s~,i.ng pened, The

●nalfiis of data from several identical $ystemi being tefted simultaneously may be complicated by (he factthat d-ign modifications may not be introduced on all $fitem~ simultaneously. This will result in a mixtureof configuration ages wtiIcn wiii make data anaifiis more aifficuii

4,3.1.3 Ezamole. As an ●xample, three systems were teswd simultaneously until a Iolal of

1000 hours of operation was accumulated among the Ihree $y$tem$. As failure! occurred, appropriate

design modifications were introduced on all three symems. The cumulative number of failures encomferedafler selected peraods of testing and the Corresponding vaiues of iu”Nii)) are given beiow:

N(I) UN(1)(hundred~of hours) —.

1.00 3 0.3332.00 6 0.3335.00 !3 03135

8.00 18 0.44410.00 22 0.454

The MaIue$ of (1) and (1/N(tjj a,e ihowm piotle.j in iiGURE 1. The points form a reasonably straighi i!fle,

suggesting thal the Duane model ISappropriate for describing Ihe glOWth pattern observed. A straight l#neis then f!!!ed ~.hrough th?s? poinw

The ord$nate at (t) = 1 1s0.31. Therefore. ).= 1/0.31 = 3.22 Thear#thmetic slopem = 15 milltmelers(mml

divided by 95 mm = 0.1SS. This may ai$o be determined by:

fn(o .445) - ;fi:o.3; o) _ 0,,57m.

in[l Gj – in(l) –

The MTBF curretwly achieved a! 1000 hours may be esiimated as:

, 0 +0.::?e(!~o~) . = 0.52 SSAu.ndmdhoum = 52.813 hOUI%

(1 - 0.157)(3.22)

and ihe current failure rate may be estimated as:

r(li2@2j = (; - 0.;57 )(3.22) iO+.:$~ = i .8% fuiiutea per hundred hotirs

= 9.0; S9 {iiilures Fr hour

10

Page 24: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

.

MIL-HDBK-7B1

The MTBF expected al 2000 hours maybe esumated as:

*O +0 1s7

e[2000) = = 0.5696 Aundrcd hours - 58.96 houm(1 -0. IS7K3.22)

This ●$timate assumes that the Duane model i$ valid for the growth pattern being ●xperienced and that theprogram effon is so remain constant.

4.3.1.4 Problem$ of olottina aviraae failure rate. One disadvantage of plots, such as the Duane plot

which us- cumulative measures, is the fact that the most recent data tends to get buried when it iscombined with all the previous data. Pkotting the averaga f?ilure rate of selected intervalf eliminates thisproblem. The lack of cumulative smoothing. however, does make the atierage failure-rate plot much moresensitive to sampling variation. The average failure-rate (AJ over anytime inlemal i$ the number Of faifufe$

in that interval (n) divided by the total operating time in the interval (TJ.

The choice of interval$ i! arbitrary, bul they should be small ●nough to reflect trends, yet large ●nough to

afford some $moothing. The average failure rate is plotted as a horizontal line for the appropriate interval.The test results used in the previous example are grouped into intervals and the average failure rate i!

computed for each imerval, that is:

Interval m i

f!s!m Number of failure% & \FaiIwes/hour~

0-100 3 100 0.0300100-200 3 100 0,0300

200-500 7 300 0.0233

500-800 s 300 0.0167

80& 1000 4 2’30 0.0200

A.erage failure rate over each interval is shown in FIGuRE 1; however. FIGuRE 2 provides a clearer picture ofthe trend.

4.3.2 The AM5~ Method. A wmmary of the variable$ used in the AMSAA model is given m

TABLE 2.

4.3.2.1 Determination of trend from test data. Prior to the use of the AMSAA method, any

significant trend ,n the test rewltl must be identified. Multiple sywem! should be analyzed on a cumulativetest duration ba~i! (time, mile$, and so forth) by combining the failure data on the multiple systems. as if Iheywere a Jingle $ystem, and then analymng the data as a single sywem. (f the period of observation ends

with a failure. use Ihe test statistic (/4 generated by equation 1 in TABLE 3. If the failure data is time-truncated, use lhe test statistic (P) generated by ●quation 2 in TABLE 3. At the 10 Percent (lw~~ided)

significance Ievel. g = 1.U5; therefore, if:

a. p S - t.645: Significant reliability g,owth is indicated at the 10 percem $ignif, cance Ie.e[

and the AMSAA model can be used for estimaung parameters of interestb p= + 1.645: Slgnif!canl relia~,l!ty decay t> indicated at the 10 percen! wgnif(cance level.

Corrective ac;ion IS necessary.c. - 1.64S <PC + 1.645: The trend i$ not significant! the 10 Pefcen1$19ni flcance level and

add, uonal data should be accumulated

11

.-p- “r c.”” --”,”= n-~-. ,~--,.-...a “ . ...” -- ”.-.

---,,!- -m -.”,.-.,.,.”” .A “m,l.. .m-. m , ~“. -.

Page 25: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

For value, near -1.645, some growth ii #nO,<ateii, for value near ●1.645, some decay is indicaled, for value~near zero. “o Trend i$ ,ndicaled Add!uc.nal tesung \hould be considered an these marg, nal cases

Other crit,cal values of the Ie$t statistic are:

Value Percent level of smnificance (two-sided)

-3.09 0.2

-2.S76 1.0

-2.326 2.0.1.960 5.0-1.W5 10.0

-1.282 20.0

In practice, higher critical values will result in more te$l time but will yield a higher confidence ef reliability

growth,

4.3.2.2 Reliabil!tva rowlh analv%, s. If significant growlh is tndica ted. compute the appropriateparameters using lhe reliability growth equations selected from TABLE 3. U$e TABLE 4 as a guide for

equation se~ection. Note that for small mmple s,zes. the recommended estimate of@ is the unbia$ed●s\imate, w). which is:

Fot failur~trun<ated {e$~, use equation 4

ii=[[N-2YNlt

and for tame-truncated tests, use equation 8

Tf=llN-lYNlj

The recommended ewimate of (1) is (1), which is:

and for lime-truncated tesIs:

i = N/f:

The goodne~wf-fil of the AMSAA model to [he particular lest data being generated must be lested by use

of the Cramer-von MIces goodness-o f-fli test. First, the level of significance (a) of the test must be chosen

and the critical value of the test Slat\$tic (C:) determined from TABLE 5. The (C:) calculated from lheobservations (equattons 6 and 10 In TABLE 3) mu$l then be compared to this crmcal value. If the $tauslic ISle~s than the tabulated critical value, the Ah4SAA model cannot be rejected and the calculaucm procedure on

steps a through g below can be used If the $talistic i$ greater than the tabulated critical value. then theAMSAA model ,s rejected If the model IS rejected, follow the procedures gtven in $tep h below,

a If the AMS% model !Sappropriate. the system inten$ity fwwlion may be estimated as a

funnionof time by:

44$.,;(l) = Apl (for large sampled

. .

p(ll = Xiii-‘ (for small sampled

12

Page 26: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

MIL-HDBK-781

The ,nten$, ty funcl, on ,sequa! m theder!vatave. at l,me (t). of lheexpec!ed number O( failwestn the tinterval

(0,1)b Then calculate (&t)) or (6(O) al the end of the te$t (or at the po,nt ,n the test al which the

Catcuiatwm is being made)c. From TABLE 6 for failure. terminated test and from TABLE 7 for tome. terminated lest,

oblain the two-sided lower confidence bounds (LwY) and tw-sided upper confidence bounds (UN.YI for Nfailures and (Y) percent confidence coefficient.

d. Compute the inlerval estimate of MTBF from:

LNY U*,.Y

~ $MTBFs~

e. If the number of failurec if 20 or more, the wme percentile may be used to construct

approximate confidence bounds on the future MTBF.f. The MTBF is:

h; =1 /j(() (for large samples)

k) -1 I;(f) (for small mmples)

g From the co” f,dence limits on M(t) previously calculated. the corresponding tim,l$ for (1)

may be found from:

J’.b= “~lb

h. A poor Cramer-von Mtses ftt maybe caused by jumps or dtscont$nuiue% in lhe growth

pattern. A plot of the data may suggest whether a different, continuous model should be con$, dered: orwhether program changes, which may cause breaks in the growth pallern. should be invesltgated. When

there we lump% or d,$cont, nuil, es on the growth pattern, the AMSAA model may be applted on a piece-wl%efashion. The procedures are a! described in 4.3.2.2a through 4.3.2.2g. eacepl Ihal the data prior 10 andfollowing the ume of dn%cont, nu, ty (D) 8streated separately, Thus, the earlter data 1sIrealed as a l,me-

wuncated test. with T = D and the Ia!er data is lreated $eparately aher wbtracltng (D) from each observedfailure Ore.? I{ a lwODiece AMSAA model M approp,iale. Ihe system failwe rate as a funcllon of time (t) may

be e$tlmated by:

AA ;-,~llj=A, (l,/ I 0s1s/2

A

;(o=f2;21/-f2)L?-’ 1 >/2

where the parameters subscripted 1 are determined from the data prior to (D). and lhe parameterssubscripted 2 are determined from ..he data atler (D).

4.3.2.3 Illuslratitie example Th!s example illustrates how:he AM5AA model can be applied :0 apraclkal s,tualion wch aj the test of a mngle sy$; em. Ihe reliability of which is descr, bed by a Conl, nuousfunct, on. ,“ a t,me. truncated test. The IeSI data {o, thi! example are g,ven in TABLE 8 The Iesl was

lerminz led z: 100 Ghou,s Atolal of 15 fa,lures occurred at the times tnd, caleti TA3LE Balso 1,%1$SOme of

13

----- .---— __ . . . . . . ..J. -.. .z . .

---- . . . . . . . . . ------ . . . . . . . . . . . . ~

Page 27: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

the intermediate compumt, onal result% which may serve Io clarify the procedure The procedure i$a>provided in a through,

a. Ccmpute the growth parameter esumate umng equat, on 7 of TABLE 3, tha~ ,s:

h’

~=~flh’lnlo- ~ /n(X,)l= 15 f115Un 1000)-70.3121=0.4504

,=1

I b. Calculale lhe $cale.parameter estimate using equation 9 of TABLE 3, that is:

AAA = NJt~= 15/1000°”- = 0.66S2

c. Check the goodne$s Of fit of the AMSAA model at the 10 percent level of significance. Inthis case, since M = N - 1 is very close to the tabulated value for M = 15, the critical value found in TABLE 5 i$

0.169. The Cramer-von Mi%es $tat!$tic i! calculated from the observed data using equation 10 of TABLE 3,that is.

where:

~=l(.Y - 1)/ Nlfi=l(15 - lY151(0.4504) =0,42Lf4

therefore:

C; = I /l12(f5)l + 0.01857 = 0.0241

Since 0.0241 it less than 0.169, the tabulated critical value, the AMSAA model cannot be rejected If thetabulated critical values and calculated values are very close, then more exact crittical value% can be obta, nedfrom TABLE 5 by interpolation

d. %nce lhe AMSF4 model ,$ appropriate Ihe system failure rate. p(t) can be e%ttmated forlarge samples. tram:

;(f)=ffifj-le. The fa,lureraleat 1000 hour$ t%:

;(1000)= (0.6682)(0 4504) (1000 )0’--’ = 0.0067

Failure rates for other values of lime can also be computed,f. Obta#nthe lower con f,3ence bound (L~,Y)and upper con fidence bound (UN. Y) for

15 failures a“d 0.8 confidence coeff, c,enl from TABLE 7. for a t,me-terminated test. that is.

(LN,Y)= (L,5,0.8) =0.614 and(U~, Y)= U15,0.B)= 1.69. The#nterval esl, maleof MTBFlscompuled from:

/.h!.\/;(/o)s ~~Jf~= u*!. Y@”l

0614 /000675 MTllFs 1.8/0.0067

91.6 s MTliF s 268.7

14

. . . . . —------ . .. . . .. . ___ . .. .. . .. .. ---.=_e=-A. .--. —__ A_. . . ..___ A___ .__.__ - —__....-. .

Page 28: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

h. The MTBF is computed using the following equat ton:

I&tl = I /6(1000)= I /0.0067 . 149.3 hours

i. Now that the sample of 15 failures is at the margin of useabili!y of large sample

equations. As an exercise the reader should recalculate the various parameters in a through h using thesmafl sample equattons.

i. The interval est, male for failure rate can be determined from:

P“b =l/hf,A = l / 91.6=0.01 092

- 1 /Mtib - I /268.7 = 0.00372P,b -

4.4 ESS monitoring methods Three methoch for monitoring ESSare provided in 4.4.1through 4.4.3.3

44.1 Comcmted ESSlime ,nler.al method. Th!$ method provides a techmque for e$t, mallng therequired ESSUme m enwre thai, w,ih a prespecif ied high probability, all defective pans have been removedfrom a repairable system ($ee Reference 3) The required screening lime [T) for each additional system whichensures with probability (p) that no de feels remain in the sy$tem is:

()-lnp-In —

‘=+

where:

P = pre$pecif, ed Probability that no defects remain after the screening period% = exPected number of defective parts m each systemj.d = failure rate of each defect,.e pan

Furfher, let:

N< = (MP) where (Ml esIhe total number of pans in a system and (p) ,s the probabihtyIhal any one of the$e parts i! defective

Po#nt eshrcate% of (p) and (l. d) will both be bia$ed toward% making the e$timale of (T) 100 low. Therefore, it

is recommended that an upper confidence hmiton (p) and a lower confidence limit on (Ld) be used. An

uPPer (1-a) ~Onf, dence I,m,l on (P). (6) can be obtained by finding the smalle$l (p) such that:

r![~Y!j-,,,!~-pr(l-pf”~-r-,dpi? l-o

where:

K = total number of systems on which data are availableI . totaf number of defects observed on all K systems and the Ieh-hand s,de Of the

equat, cm,% the curnulauve Beta dtslr, butoon, tabulated in Reference 4

15

Page 29: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

AI tiwer(i . ~) ~unfideme I,mit on [~). !),6), usobtained front.

x:, _,, ,,

~d.~r

21(,

i=!whew

x:, 6;:= the (1 - b)th percentile of a chi-$quare distribution with 2r degrees of freedom

,. = the operating time to the ith failure of the syslem which suffers that failure

The recommended estimate for (T), (?). becomes:

()-hp~ -h —

M~T=

‘d2

Before data becomes available to estimate (T) or (T), the screening time (T) should ~ bawd on sc,een, ng

periods for previous similar $ystems andlor engineering judgement. When and if (T) becomes smaller than:

this predetermined period, Ihe screening time should be decreased accordingly. If (T) is greater !han theQ

original period, thought should be g,ven 10 $ncreasing the screening period. A large (T) is parucularlymeamngful, of rot, r$e, II it ISbased on a relal!vely large data ba$e. that is, on a relatively large (r),

44.2 braDhi@l method In the graphical method, a plot of observed failure rate and smoothediafilure rate is made and co~l,n”ously updated from the data Typ,cally these curves will bottom out tif Ihede feclive p:,rl> are removed by E$.S The ESSdurat~on is obtained by observing when the curve becomes flat

For e~ample, In FIC,I ‘;{S 3 an ESSduration of apprommately 70 hours would be reasonable. For a new system,,

lh? lrl:[ ial ESSd... .X:,]n should be chosen from data on $#mllar syslems and then modif, ed as tesl experience,i ofcum”lal w!.

44.3 Standard ESS Standard ES5 verif, m that production workmanship, manufacturing proce%se~.

quality control procedures, and the accumulalton of de$lgn changes do not degrade the reliability wh!ch

was originally founO m be acceptable by the RQT. Th, s ESSprocedure $hould be applaed 10 all production

equipment of the system being evaluated. The equnpment should be operating when placed under the$peci lied environmental slre$~ Additional details are provided in Reference S and MI L. STD-2 164 All ,lemsshould be subject 10 a $equent!al serie$ of slres$ cycles consisting of thermal or vibration stress cycles or a

combination of both. The numbef of cycles and cycle characleri!lic~ should be selected by the procuringactivity, Typically, each equipment should be stressed until a minimum of one failure-free interval 1$

attained. The failure-free period (time or cycles) should be specified by the procuring activity. ESS can alsobe used as an effeclive screening method during development and during depot repair. After repaors havebaen completed. the screemng should be reslarled at the beginning of the next cycle.

4.4.3.1 Thermal stress A typ!cal Ihermal stress cycle ii \hown in FIGURE 4. The cycle should beselected fmm a range of temperatures between -54” C to + SSOC. The number of thermal cycles used

should range from 6 to 10. where 8 ii considered as a reasonable value for many equipments H,stoncal data

indicates that more complex equipments require more thermal cycles. Six cycles appear to be adequate for

black boxes of about 2000 pans while 10 cycles may be reqwred for equipment containing 4000 or more

parLs. A suggested range of ihermal cycles to be applted is:

C0m91exity Thermal cvclej

Simple (100 electronic parls) 1

Moderately complex (500 electronic parts) 3

16

I .

Page 30: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Complex (2000 electron,< pans) 6Very complex (4000 electronic pans) 10

I

Hislor, cal data ,ndocates that thermal soaks do not contribute s,gnificanlly 10 the Screening effectwene$$Therefore, the dwell limes at h,gh and low temperatures need 10 be only long enough for internal

temperawre$ to Habillze. 1! follows !hat each succe~tive thermal ramp thould be \lafied won after theinternal part temperatures have stabilized within 5°C of the specified temperature and all requiredfurrcional te$u have been completed. The temperature rate of change of internal part! should fall within5°C and 20”c per minute. The best screening re$ulti will be achieved by ming the maximum safe range ofchamber mmpwatures and the greatest practicable temperature rate of change of internal parts The

equipment undergoing ESSshould be ●nergized and oparated during thermal cycling (within the $pecif tedoperaiing temperature range). but it may be turned off during chambar cool-down to permit the

temperature of inlernal pans to decline more rapidly. Equipment performance should be monitoredcontinuously, but if cost or other constraints do notpermit this, periodic chack$ and continuous monitoringof the final cycle \hould be required.

44.3.2 Vibration \tre\s, The !tandard vibration $trets $pectrum is $hown in FIGuRE S. The stress i! a

random ~ibrauon which should be applied for at least 10 minutes if the direction of vibration i$ 10 be along a$Ingle ants When vabralton along more than one axis ii required. the random vi bralion stress should be

appl!ed for a! Ieasl 5 minute~ along each axi$. The equipment should be hard-moun:ed to the shake table sothat the drrectian of wibratmn,$ perpendicular to the plane of Ihe primed circuit bo~rds (PCBS) If the

equipment ha! PCS$ oriented tn more than one plane, the ●quipment should be vibrated $equenl, ally alongeach of three orthogonal axes The tolerance for the random vibration spectrum should be .3 decibels (dB)measured in accordance w!th MIL.STO-81O, Method S14.3, Secbon 11,Tolerances paragraph Notching atresonant frequencies is permvtted

4.S MT9F assurance test The MTBF assurance lest (see Reference 6) can be used to prowde assurance

that any minimum MTBF Ie.ei. such as the lower test MTBF. ISach, eved in addil ion to provid, ng assurancethal early defect failures ha.e been eliminated The lest is conducted in combtnat, on with an E5S wh,chremoves the early defects. The procedure commences with the ES which !$ terminated after some numberof hours dettvmined by the methods prewously described. Afler the ESSis Iermlnaled, Ihe system enler$ the

MTBF assurance 1P%!,which is to be conducted under mission profile environments. The procedure ,s

destgned 10 perm,l change~ in the failure-free interval (Ie$t window) (W) if warranted by the Ieit data Thistest can be used on production equipment which has passed quallf, calion Ies:$ and can provide the producerw,th a h,gh probable, ty of wccei$. In the MTB$ assurance test, the system must operate for a $pec$f tednumber of te$t hours w!thout failure (failure-free requirement) within an interval (test window) (W) of$pec, f&ed length. Generally, Ihe test window it chosen 10 g,ve the seller a very high probabil,ly of passing the

Iesl (for ekample, 98 percent]. if the equopmenl actually doe% Jalisfy the mintmum MTBF level, Theprobability of a unit pawing, [Ps),6:

(M- 1 )’(M+ W-dPC =

~r+l

where:

,M = Minimum MTBF level, hours

w = te}t window, hours (r s W s 2r)

r = failure-free inlewal, hours

Becau\e of the large numbers invo!ved. d,recl esponenliatlon and multiplication result in numbers whichesceed the range$ol handheld calculators, therefore. lh,scalculatson must be performed i.wng logarithms,Ihal ss:

log P\=rlog(M -l)+ log(M. W-r) -(r+ l)log M

17

Page 31: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MIL-IIDBK 781

An analysis of these equat, ons nna!cated Ihat the be%kwaiue of the te%t window iV~) wa~ lvwce tne ia,l. re

If the ratio of (W) to (r) is less than two. there exists an interval within the lest durtng which one equ, pmenlfailure would immediately terminale the test in failure Thii results in degraded i(ati$tical confidence ,n the

result. Increasing the ralto of (W) to (r) beyona two, increases Ihe test time wilhoul signiiocantly ,mpro., ”gthe $lati$li <ai confidence, Therefore”, ihe Gpiim,al ratio of I=,i ‘w’fidGw length IG faiiime-free requl remen; IS2. FIGURES 6 and 7 pre$ent a graph of (Ps) versus (M) with W = 2r for a range of failure-f,ee ,IIWWEJ, of

10 hour$ to 150 hours, IJting the above equation and letting W = 2r, the failurefree interval. and,

consequently, the test window, can be computed for any desired (Ps).

For ●xampie, if P5 = C.%. ii-w equai ion yieid::

0,98 (H- l)r(Af+r).

M..1

Solving numerically for (r) in terms of (M) yield$ the ●mpirical relation:

r-o.212M

.As another example’, for an a,bilrary M = 150 hcwrl and, = 10 hw.m. the probah,li!y of arrept. ante, $f% = 0.9976.

4.S.1 Derivation of eauation, The MTBF assu(ance tesl equation is derived a%provided In a

I through g:

1 a Break up the test #nm one. hour intervals lhetefore, the ptobabihly of a wcce~% ,n any onehour interval i! approximately:

~,=c-u~ =c-l/~ e l-1/~

and the probability of failure is:

p:= l/hf

b, The Cond,lton for pas$o”g the lest m (r) hour% (, su’ce$$e$) Oi iailure-iree operalion.C. Thi$ can occur ,f (,) $IJccesses (r consecutive hours) are achiewed without tncidence of failure,

that is:

!P. )r=(l-lwf!’

d. Furthermore, the lest can be passed if following a failure, (r) successes are obtained. We are

unconcerned wtlh the prewous fa!lure htslory prmr to the Iasl fa,lure, that m:

P,(P, ) - [1/M”)(l -)/hfl-

e. Th, s czm occur (r) times with!n the WS! window (W), b.?fcwe the Ie$( is failed and 5ufflclen1

failure-free time can no I.ange, be accumulatedf, There fore(pt )(p,)r can occur (F)limes

18

Page 32: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-761

g. Therefore the Ioial probebiliIy of acceptance is given by:

f’s = p; + (r) (p{) @,)r

=(1- lIMS + r(llUf(l-llbf)r

-.fl-lm)’(l+rm

- (%+%)(M-I)’ (Af+r)

.Mr. M

(hf-1)’(hf+r)

~r+l

4.5.2 Procedure Using the relationships given in 4,5. the procedure provided In a through m can be

used:

a. Based on historical data wi:h !imilar ●quipment, select an ESSduration us!ng the methodsin 4.3.

b. For the desired (Pd and MT8F (0), determine the failure-free interva! from FIGUR[\ 6 and 7.c. The tes! window. W = 2r

d. Run the MTBF assurance te$l on each equipment with the parameler$ ,n a, b, and c. untilthe failure-free interval of (r) hour% ,s obtained #n the tesl window. (W),

e. Accumulate the rimes of failure on each unit (~erial number) of equipmenl tested and use

the AMSU model 10 compule current MTBF on the accumulated data and on the aata for each ,na,.tdualsystem (or some group of late~t umt>)

f. Conl, nue tesl,ng unt,l a time of 10 MTBF is accumulated.

g If the test data ind!cates a computed MTBF in the vicinity of the desired M7fl F, conl#nuetesung using the same failure.free interval and test window.

h. If the most recent data !ndicate~ a significant decrease in MTBF (reliabil,ly detertoral, on).

consider increasing the failure-free Interval and test window.i. If the most recent data Indicates a significant increase in MTBF (rehabtllty lmprovemenl),

consider decreasing the failure-free interval and lest window.

1. There is no simple method of determining, a priori, the number of latest unils who$e data

should be combined when computing the MTBF which is to be compared against :he original MTBF TheMTBF attained by each unit Iested and the overall MTBF should be calculated and graphed and the rewltt

monllored continuouslyk. If the use of a larger failure. free interval and test window results in an improvement in

MTBF, these parameters (Interval and te~: window) can eventually be reduced to the original value!

1. If the we of a smaller failure. free interval and test window re$ult$ (n a deteriorated MTBF,

these parameters (interval and tesl window) can be increased to the original value$.m This ,Ierative procedure can be repeated as the test proceeds and is e$pecia fly u$eful for

equtpment with large producllon runs.

46 Seauenl, al lest plans The sequential Iest plans are based on the assumption that the underlytn5

dlslr, but,onof l,mes.belween.f a,lure$ ,sexponential. A$et of standard PRST have found wuoeapp:,cab,lsly

19

1= ‘ , !, -- . . . . -...,..44 . . .

Page 33: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

,,, lIW Os,,,!9 :electru. ],t equ, pm.?nt ,., . bait test plan’. (l- Dthrough VI-D) are provided. The true dec, \,o -

,,sks .md d,+c. ,,, ,,nat!on rat, o! (d) for thew are:

est Plan..—

I-D 117 12.5 1.5

II-D “22.7 23.2 1.5

III-D 12 ?. 12.8 2.0IV.D 22,3 22.5 2.0

v-D 11.1 10.9 3.0VI-D 18.2 19.2 3.0

In addltio two short-ruqhigh-risk te$t plan! (VII-D and VIII-D) are provided. These test plans can be used onprograms “,1 which test time must be curtailed as a result of overriding $chedule and cost factors. The true

decision,, $ and diwiminaiion ratio$ fur these ple.m are:

lest Plan True ri$k$ Discrimination ratio—.a A g—.

VII-D 31.2 32.8 !.5

VIII. D 29.3 299 2.0

The ac. ?pt-reJect c!!leria for Ihe standard sequential lest plans are $hown graphically and in tabular form

alony w, I’*the corresponding operat, ng Characteri\Iic (OC) curves and the e,pected test time curves wh, chare bakd on assumed values of true MTBF All of lhe$e data are grouped by test plan in FIGURE5 9

Ihrot, c.. 16. A wocedure for comDutina UODe- and lower confidence Iimils cm MTBF for test~ which areterm,’ Yted by acceptance or relectnon is also provided in Reference 7. F!nclly. the Program Manager”!asm%\ <en: described on 4.6.8 provides a means to assess the effective consumer’s risk at any po, nt In ttmeI+,,! i,q a sequential test.

L.6. 1 -, The tymbols u$ed in the equations of 4.6 are:

~.

p.

g.

g, =

EJo=

r=

,0 =

To=

t.A,

1=H,

producers risk

conwmer’$ rifk

MTBF

lower test MTB F

upper test MTBF

accumulated failure$ in time (t)

failures at Iruncat, on

truncation ume

standardized acceptance time

standardized rejection time

20

Page 34: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Ou(Y,i) =

e~w,ll =

8U(Y,i) =

eL(?’,ll =

MIL-HDBK-731

slandardrzed upper confidence Itmits

$Iandardized lower confidmce fimili

upper confidence limit

lower confidence limit

4.6,2 Anolication. Standard PRST plans should be ●pplied when a $equential test with normal(10 percent to 20 parcent) producer’t and consumer’s risk i$ desired. Short.run. high-ri$k PRST plans may be

used when a %equential ten plan is desired, but test time is limited and both the producer and lhe consumerare willing 10 accept relatively high decition riski. PRST plans will accept material with a high MTBF or reject

material with a very low MTBF more quickly than fixed-duration test plans haw”ng similar risk~ and

discrimination ratios. Total test time may vary significantly: therefore, program co$t and schedule must beplanned to truncation. The Program Manager”% assessment in 4.6.8 providesa means 10 aswus the effective

consumer’s nsk al any point in time during a sequential test.

4,6.3 Theoretical background. The concept of $equential te$tf was developed by 1,Wald (we

Reference 8) and B. Epste, n (see Reference 9). and ii al$o di$cu$$ed by 1. Bazov$ky($ee Reference 10). For anexponential ●quipment with an unknown MT9F of (c?), the probability of failing (r) times in an accumulated

operating time (1) is:

m(:)’(y)

The sequential test must prove lhat (fl) i$ al least ●qual to or graater than the lower test MTBF [L9t) If the

true MTBF i$ exactly equal to the lower test MTBF the probability of failing (r) time$ in the Operal, ng time (I)is:

‘=1(’’=(;)’(%9In order to structure the sequential test a“ uppe, test MTBF, (O.), must also be selected, If the equ!pmenls

MTBF were equal to (8.) the probability of (r) failures in the interval (t) would be:

Now form the probability ratio:

21

Page 35: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

11,, s :auc:, ,.”, ,puted cent, nuouslydu ,ng the te$l and compared 10 Iwoprede!e, moned constants (A! and

(8). c $nq the ,!c?cts+on rules ofa through c’

:. lf P(r) becomes < B, accept and stop Iesl, ng1. If P(r) becomes > A, reject and stop Iesllng

if B < P(r) < A, continue testing

The conslaf,l$ 1+1 and (B) are:

(1–~)(d+l)A=

2ad

PB=—

(1 -a)

where.

n ,. pr~ucer’s risk

P= consumer’s risk

d= discritni”alionralio

The graphical sequential test procedure i~ derived a$ follows:

Thelerm for [A)contatns thecorrection factor(l + d)/2dwhich, \foundin Reference9. This fac!or

wbslant, ally reduces the differences between actual and achieved consumer’s and producer’s ri<ks wh, charise because of Iesttruocat, on Theorog, nalsequenl, al Iestderi vations donotaccount fortheeffecloftruncation On the r,~k!

Starting with

+7” ‘l’ml’-’lfill<A<A1

Take the natural Iogartthms

h/J< rln(Oo/8 ,1+(1/0 - llO,lICh Au

Transform this inequality bydividing alllerm$ byln(g~el)a tieradding( l/@l-l/80)tt oeachlerm. Thl~

results in:

in B (1/0, – I/eo) lnA (1/0, - 1/9.)—+ (<, < —+ iin (O./O, ) In (O./O, ) 1. (0/31) ln(OdOl)

As long as the numerical value of (r) !s between the values of the left and right side of the inequality. the lestcontinues. If (r] becomes equal toorless than theleh5ide, thetest lerm, natesin anacceptdeci%lon When

(r) becomes equal loorgreater lhanthe right $ide.lhe testterm!nales inarejectdect$ion. Theexprewons

on both wde%of the, neaual,ly areeq.at, onsof twoparallel stralght:lnes: lhus, theinequallty can bewritlen as:

a. bt<r<c+bt

22

Page 36: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-tiDBK-781

II

When these two Iinesare plotted on graph paper with(l) (cumulative lest I,me) as the ab$c, ssa and (r)(number of fa!lurei) ai the oral, na:e,lhe constants (a and c) are the $ntercept$ of lhese I$nes w,th the ordlnale

and (b) i~the dope

The numerical computation o{ a, c. and b is given by:

1“ M~=—

;“ (oo,a , ;

h A~=—In (@#l)

(1/0, - 1/6.)b=—

/n(oJe, )

From this. the two parallel lines can be plotted on graph paper in an (r - 1) coordinate system. By draw~ng a

Mmzontal lane at (r = ro) and a .enical line at (1 = Toj, the lesl is Iruncaleo

4.6.4 lest truncation The sequential tests provided in th!s handbook are all truncated ie$ts becau$eof the pracucal requirements of real-world test programs. The method for truncating a sequential test was

developed in the paper written by B Epstein and M. Sobel ($ee Reference 9).

The ~PP,oPriate VaIUe of (,) ii the smallest integer that can be used $0 that:

x:,. ”,,,, 8,—Zc

x; ~, o

where X:, - .), ~,, and X~, ~, are the cht-square variables with (2r) degrees of freedom Table$ Of lhe chi.

square distributmn can be found tn Reference 11. The$e IWO values are found by stmultaneou$ly $earchmgIhe (1 a ) and @probabiltl, es of Ihe civ.square tabies unlil the Ialio oi the varlabies is equai 10, or greater

than, @,/L?o When this poinl, %found, the degrees of freedom are set equal 10 (2r) The value Of fr), %alwaYSrounded to the next highest integer

Th,~ .aI”e is (rO). From Ibis, the max,mum time (To) can be found

oox2#, _u,,=‘f” =

0

2

4.6.5 Seauemial te!t example. A PRST plan maybe generated analytically for any given (a). (~),

( (1)), and ( 6’o). The procedure M $lra*ght fo~ard and can be ea$ify implemented with a hand-heldcalculator. For example, given the following input data:

~= 0.10

p = 0.10

0. 100 hours1

Delermtne the dtscriminatoon rauo, accept. reject criteria, truncation po!nts, and the dope and oral, natennterceotso’ the lest plan curves PIOI the test plan. The solution proceeds af spec, f#ed (n a through e:

23

.-. . . .. .. _.,_

Page 37: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MI1.-HDBK-7B1

oa. Discrimination ratio = d=:=~=2

1

b.(d+l)( l-p) (2+1)(1-0.10)=675

A=2aIf ‘--2(2)(0.10) “ ‘

c. PB=~

0.10=—.-.0.111

-a l-o .10

cf. Compute the points of truncation as follows: Search the chi-square tables at the upperconfidence (1 - a ) and @) upper percentage pointf until a point if reached at which:

or,

X:,,,r— 20.5X20.1:2,

This point occurs at 29 degree$ of freedom where:

X:9,2, 19.763 “— - — -0.506

x:,, ,2, 39.087

therefore:

2r = 29

r = 14.5

10 = 15 foilurea

and since:

eox2, )_o,.2,To=

2

200 (20.61To=—

2

7’0 = 2060 hours

The test, therefore, should not last longer than 15 failures. or 2060 hours,

e. Determine the dope and oral, nate intercepts of the two parallel straight lines:

1. B In 0.111 -2.198~=— .— .

fll(oo/o,l—=-3.17

in 2 0.693

24

l___ . . . . . . . . . . . . . ..+z-e.-. =- e.-..==-=--- .--, ~-.. - .-—-—-- .-.x -_-—. .“ -----

Page 38: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

(1/0, - 1/0,,1 (0.01 - 0.005)h=

Ill Wolu,l == 0.00721

In 2

In A In 6.75 1.910— - 2.75

C= —= —-0.693/n(OJell t. 2

These values are plotted in FIGURE 8. .

4,6.6 Standard PRST acceol-reiect criteria and OC curves. FIGuRES 9 through 16 presenl the accept.reject crileria for the Standard PI?STplanf and the OC and Expected Te$t Time (EtT) curves for Test Plans I-Dthrough VIII-D. The OC curves plot values of probability of acceptance verws the true MTBF expressed inmultiples of (@l) and (80). The ET? curve plos values of expected test lime ver$us time MTBF ●xpre$$ed inmultiples of (e, ) and (80).

4.67 Confidence I,mm for wauential tests This me;hod for e$limating confidence limits can be used

w ●stimate the con{tdence I,mit% on MT8F at the completion of the sequential tests described on Tesx PlansI-D through VIII. D. Table$ of confidence I#mits on the true MTBF are given in TABLES 9A and 90 and 10A

and 10B Acceptance can occur only aI discrete limes. while relection can occur at any tome after therequ~red number of fa,lures has occurred Therefore, confidence limit% aher acceptance and rejecuon mustbe computed separately. TABLES 9A and 9B present confidence limits al acceptance and TABLES 10A and108 present confidence Itm, ts at reiect#on. Def!ne (tA,) as the Ha”dard,zed acceptance time. so that an

equipment 15accepted if not more than (i) failurei occur in (lA, ,) hours. Def, ne (lR,) as the Nafldardtzedre)erc, on tome, so that equtpment ISrejected if al least (i) failure, occur at or before (tR, ,) hour% Together.

(tat) and (tR,) are the standardized termlnat,on tnmes The actual termination times are obtained bymultiplying the standardized term! nat, on Itmes by ,. The standardized lower test MTBF is a$wmed to

equal 1,

46.7.1 Confidence Itmdts a: acceptance. TABLE 9A presents conservative [1 - Y) 100 percent

standardized lower con f,aence I,mm (19[(7.1)) and [ 1 -Y) 100 percent standardized uPPer confidence Ilmit$

(8~(Y.i)) on the MTBF for all tests lerm,nated by an accept decision wing Test Plans 1.0 through VIII.D forY = .5. .3, .2. .1, .05. A comervauve Ibvo-s,ded (1 - 2Y) 100 percent standardized confidence ,nter.al, %

@L( Y,i). c?~(Y,i) Aclual limits and !n:erval! are obla,ned by mult!plylng (e~(Y,i)) and (@~(Y,!)) by the lowerIeit M.TBF (t?,) That ,$:

O,~(Y,iJ =(fl Oj(Y,i)

O; (Y. I1=U1lf~ (_Y,i)

4.67.1.1 Examole black boa X The follo~g e,ampleisba%edona production reliability

acceptance teit of a black boh X for an a,rcraft. The example can be stated as follows:

The Government agrees to accepl a monthly production lot of 40 units wl!h probability 1 - a = 0.8, if the

\rue MTBF f70 . 100 hours and will reject the lot with probability 1 - /3 = 0.8, if ;he true MTBf 8, . SO

hours The designated ,I!ks are thu$ a = @ = 0.2, and the discrimination ratio (d) = 100I5O = 2.

Consequently. Test Plan IV-D must be used. The required minimum sample size is three unitj FromFIGuRE 12, the lot is accepted wilh O fadure! after 1*o g?, = 2.8x 50 hours = 140hours, or wilh I failure afler

IA18. . 4.18 x50hours = 209 hours. and so on, vnce L*O = 2.8, tAj = 4.18, and so forth, are the

Standardized acceptance t#mes Assume on the aclual test that relevanl fatlure$ occurred al 50 hours,90 hours, 120 hours, 250 hours. and 390 hours of accumulated test t#me The accePt and rejecl Itme% al eachof the fa:lure$determ!ned from FIGuq E 12area$follow$:

25

Page 39: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MI1.-HDBK-781

Number of failure> Reiecl lame Acceot ttme Actual tome

o 2.80X 50 = 1401 4.18x50 = 209 501 0.7 Xso = 35 5.58 X 50 = 279 903 2.08150 = 104 6.96 X 50 = 348 120

4 3.46x 50 = 173 a.34x50 = 4\7 25o

5 4.86 .5.0 = 243 9.74 I 50 = 4a7 390

This data indicates that the tolal accumulated lime$ al 1.2, 3, 4. and 5 failures do not lead 10 rejection, and

the lot is accepted with 5 Iailwej after 9.74 x 50 hours = 4B? hours total lest time (IA = 9.74, thereforeTA = 9.74 x @I) Suppose that an 80 percent lower confidence I!mit on the MTBF is denred. First I,nd the

conservative BO percent %Iandard!zed lower confidence Ilmit l?[(~. ,) = 8[ (0.2,5) = 1.0459 from the

aPPrOPrlale entry fOr Test plan IV-D on TABLE 9A for Y = 0.2 and 5 failure!. A conservative 80 percenl lowerconfidence I!miton the !MTBF ,s ;.01159 R $, or 1.0459 x 50 = 52.3 hours Similarly, aconservat, ve80perc e..!

upper confidence llmll On the MTBF from TABLE 9B is I%(Y. i) x& = 2.5225x 50 = 126.1 hour%.where 8~(0.2 .5) = 2.5225 comet from TABLE 9B for 7 = 0.2. i = 5.

4.6.7.2 Confidence limit~at re!ect, on TABLES 10Aand 10B present exact (1 -Y) 100 percent

standardized lower confidence l,mrti (8:(7.0) and (1 -Y) 100percen~ standardized upper confidence I, T.I<,%

(L%(Y,l)I on the M?BC for Te$: plans I-D through VIII-D te~ina:ed by .i r~!ect dec,$,on for selected values o!lhe standardized I,me (t) and 7= .5, .3. .2, ,1, .05. Atesl maybe terminated bya relectdec, socm atanyt, ms

(t), once a reqw, ed number of fa,lures has occurred. Therefore. it i!impo!sible Iolabulal econftdence ltm,:~for all possible outcomes Use I,near tnterpo:al,on for nontab”lated values of $landard,zed (t)whwe (t)

equals the actual total te~t t)me (T) dtwded by the lower le$l MTBF (f%), or in }pecial ca$e$, u$e [he X‘d,%trlbullon for exac! I:m,l% Consider the ca$e where re]ecuon of eqwpment occurs af!er(t(%) hours of total test I,me. If (t) exceeds [he smallest value in TABLE IOA, the(l - 7] 100percent lowerconfidence I,mil can be calculated as$pecif, ed #n athrcwgh c

a From TABLE 10Aobta, ” (L?3[(Y,t, )] and (0:(7,17)) wchthal (t, } < I < (t2) and {1. ) ,* (he

largest table time Ie,i than I and {t2) i} the!mallest Iablel, megreale, lhan I

b By%:mple ,merpolatto!? I!nd:

e;l Y./l - 0;. (Y,/,) + (!3; (7,(.) - 0;. (Y.l,l)(f - l, L//2_l

c. The actual (1 - Y) 100percent lower confidence limit onlhe MTBF based ona rejecl!on

aher (t e,) hours then

OL(Y,II =olo; (Y,f)

If (1) is smaller than the smallest value ,“ TABLE 10A use the relatiomhip between the X’ and the Pcmson

distnbultons 10 CalCulate Ihe [1 - Y ) 100 percent slandardtzed lower confidence I,mit on the MTBF asfollow~:

I-IL (y./l . 2f/x2 ).?.2,

where X (I ~,1, ,sthe (1 .7) 100th percenlileo! the X’d,stribul,On with (2i) degrees of freedom, and (!) o%the number of fa!lure$ wh, ch lead tore, ect, on a! t,me [: 8,)

26

Page 40: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Then:

e’ IY,f) = e, e; (Y,t)

Similady calculate a (1 - Y ) lDD percent mzmdardized upper confidence limit [ 8L(Y.W on MTBf by

interpolation if (t) exceeds the smallt$i value in TABLE 10B.

If t is smaller than the $mallest value in TABLE 10B, use:

e“ (Y,fl =21/x: *,

where Xj,2, is the Y 100th percentile of lhe X’distribution with (2i) degree$ of freedom. A (1 - 27) 100percent confidence interval on the MTBF for a test terminated by rejeclion aher (II%) hours is

<e, eL(Y, L),e,eu(Y,l)>

4.6,7.2.1 ExamDle: black boz X Suppo$e that in the previous example failures occurred afterSOhours, 90 hours, 120 hours, and 1S0 hours tolal teal lime

The accept and reject umes at each of the failures are determined from FIGURE 12 as follow$:

Number of failure% Reiect time Accept time Actual t,me

o 2.80 x 50 = 140

1 4.18150 = 209 50

2 0.7150 = 35 5.58x 50 = 279 90

3 2.08XS0 = 104 6.96 x 50 = 348 120

d 3.46x sO = 173 8.34x5O = 417 150

From these tabu:ated .a!ues it can be $een that Test Plan IV. Ddoes nol require rejection after 1, 2, or 3

failures. nor acceptance before 150 hours. However, the lot is ,ejected after the fourth failure (that 8s, 150hours) since it occur% before tRa .8, . 3.46x 50 = 173 hours. The value tRt, = 3.46 is taken from FIGURE 12.

An 80 percent lower confidence I,mit on the MTBF 15calculated as $pecifoed in a and b:

a, Fir\t find 8{(Y.tl= t): (0.2,3) wheret = T/81 = 1S0/50 = 3. lnTA8LE 10A. t, = 2.80with 8;( 0.2, 2.8) = 0.5646 and t2 . 3.46 with 8[ (0.2. 3.46) = 0.6644. Using Ihe equation in 4.6.7.2 b,calculate o: (0.2. 3) = 0.595 by interpolation. An 80 percent lower con fidence,limil on the MTBF g#ven arelecttonatmr 3 xe~ = 150hours,s I?[(o.2. 3) x et = 0.595 x 50 = 29.7 hours

b. Similarly, calculate an 80 percenl upper confidence Ilmll. From TABLE 10B obla, nLJL(O.2. 2.8) = 1.5517 and t9(J(0.2. 3.46) = 1.7379, giving @~(O.2, 3) = 1.608. An upper Confidence hmtl onthe MTBF gtven a rejecuon after 1SOhourss% @~(O.2, 3) x 8, = 1.608 a SO = 80.4 hOur$

4.6.8 ~t. The Program Manager’s assessment providesa means for toe Government to as$eis the ccmwmer’s risk at any po, nt in t,me during a sequential tesl Th!$IS especially tmporwml in case% where Drogram time and schedule pressures may force the Program Manager

Io consider an early Ierminalionof the test

1 .. ----....

27

Page 41: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

4.6.t. Pro\edure The Program Mmdgur’s asies%mea,, tan be implemented using the procedure%peclfied ic . :hrough d

a. Al ihe point where the lest is halted, compute the probability ratio:

.UIIO, I-l UUOIILp (r) - (kfJkj)’ c

tirre.

80. upper w$l MTBF

r = number of failurm

f = te$t hall time

b. Setp(r)=(l -f3)/a

13 = consumer”% rifk

Q = producer’s risk

c. Compute the new value of /3 = f3( Irom the equat,on ,n step b at the same ( a ) levelcf. B’ Isaneffec:!ve con%umer’s risk al anytime,(t)

Th!s procedure should be used exduswely by [he Program Manager. If the test appears to be heading

towards an early reject. the Program Manager should not allow me lest 10 be halted. If the test appears 10

be t,eading toward$ an early acceptance the Program Manager may permil an early acceptance if the valueof <onsumer’$ risk is not seriously increased. The final decis, on can only be made after the COSISof add{ t#onal

testing are we, ghed against the ,ncrea5ed nsk$ of ●arly acceptance.

4.7 Fixed-d ”ration test! Fixed-duration tesl$ offer a distinct advantage for program planning,

namely, prior knowledge of test duration wh,ch perm, ts program planners to perform wade-off !tudies

between test duration, consumer’s and producer’s rash, ( 190) and ( O,). See the discussion in Reference 10

4.7.1 m. The following $ymbol$ are used on the ●quation% defining lowed-duration test plan$

discussed in4.7:

T = test termination lime

k = number of failure!

a = accept number

r = reject number

c = confidence

TI = accept time if (j) failures have occurred to that tome

28

Page 42: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

!

I

Four cliff.?, en: ca:egor, e%ol I,seo.durat, on Iesl$ must be considered dependnng onwhelher the test ,s time

Ierm, nated or fa,lure lerm, nated. and whether the test ,s conducted with or withoul replacement of faileduml% In the case of I,xed. duration, twne-lermin alea tests conducted vwlh replacement, the Ie, minal!on

tome, (T), and the accepl (a) and reJect (r) numbers, can be determined from two equations:

rrio, te-”r%I–II.

<

,.. +1 k!

(TIOO) be- ‘rnO~-: f

h=.&!

The right.hand expression of each equation is ah upper tail cumulative Poiswn whkh can be evaluated with

appropriate table$ (see Reference 10) of with same programmable pocket calculators. Some Poisson tablesprovide only the lower lail cumulative termi. in which ca$a the equatiom may be rewritten as:

(TIO,)ke-rm I

0=s,.”

&!

CZ! (T/Ool&e-TfiO

l–o=}

A.(Ik!

Note that ihe accepl (a) number is relaied to the reject (r) number by a = r - I !0 ensure that the te~ireaches a dec, s,on on the allotted lest time. Th!f relation!hrp between (a) and (r) means thal the $Olut,on oflhe pair of de fin, ng equal, ons used must be oblained by an nteralive process. The mtmmum pom,ble test

ome can be found In lhe accept equauon by wbstituting a = Oand the appropriate values for 8 and 0;.However, lh, s value of (T) subsl, tu:ed ,n the ,eject equalian, together with d, and r = !. w,II normally y,efd

a value of ( a ) which 1$100 large, indicating that (T) i~ 100 small. The value of (a) i$ increased by 1, againsolwng for (TJ Tms value of (T) and the new r = a + 1 are Ihen substituted in the equal, on for ( a): lh, sprocess #srepealed until Ihe value of(o) i$ less Iha”, o, equal to, the required ( o). The values o+ (T, a. and r)

tin th!i ftnaf calcuiat, on conscitu[e the ciecis;on rule for the desired plan.

47.2 Eaamule moblem Amnnelhala plan with a = @ = 0.2 and d = 2 is required Iotesl for

k, = 50(1 hours. Using the cumulative Poisson table in Reference 11 to solve the equauon for 1 - /3 w,tha = 0.(1 - 6) = 0.80, and 81 = 500, a value of l,600r800houn isoblained. Subst, tul, ng T = 800. r = 1,and (76 = 1000 an the equauon for ( a ) yoelds a = 0.55. S,We m,s is tao Ia,ge, a M imreased to 1 (or which T os

3.0 t?, or lSOOhours Uwng T = 1500 hour$. r = I,and 8.= 1000, ntheequalmn for( a) resulls,n o= 0.4L,wh$cn is still 100 large, Continuing this process. it ,S I,nally determined thal a = 5, r = 6. and T = 7.88,, or

3900 hours Thi$ w,ll produce an a= 0.2$01 hat the tesl dec,mon rule isl = 3900. a = 5, r = 6, or leslfor3900 hours: accept if 5 or less failures a,e observed. and reject cl 6 or more failure$ are observed (seeFIGuRE 17)

4.7.3 Slandard fized.duraf, on cestolans and C2Ccurve$ Twelve oilhemosl frequently u%edor

standard TeslPlans lX-D1o XVll-Dand Xl X- D1o XXl-Dare summac&zed{n TABLES 11 and 12, fespecltvefyThese plans provide aconsiderabl era"geof alternatives forle$t co"slruclion. Theco,respondtng OCcurve$

areshown in FlGURES23t034. The Po, ssonformula lo, compiling theOCcurves is repeated below:

where

p(e) = PrODab#ltty O!accepl, ng,lems w,ll)an M?BFo! O

29

Page 43: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

r = cr, i,cal (re, ect) numner of Iallures

T = test term! natton Ijme

The quantity (r) i~ determined so that:

P(eo) = 1 –a and/P(O,) 2 p

LJ.4 Alwrnative fixed.duratio~ lest fian$. The alternative plans provide a comprehensive $el offixed-duration plans for 10 percent. 20percenL and 30 percent consumer’% risk (19), covering a wide range of

test limes. These plans are presemed in FIGURES 18 through 20

4.7.4. I Derivation of alternal#ve olans. In order to derive a fixed-duration lest plan from thesefigures, cho~e the COnWmer’S ,isk (J3) a“d turn to the appropriate figure (FIGURE 18 for 10 perCenl

conwmer’j risk, for example). Based on the tesl ume available, *elect the ten crilerla which besi apply 10 thesituation. For example, a test plan with a consumer’s risk of 10 percent and a !otal test time not to eaceed

9.3 multiples of the lower test MTBF ISdesired In FIGURE 18. under column head,ng the TOTAL TEST TIME(T) (multiple$ of f7, ), ftnd the lest time doses! 109.3 which does not exceed it In this case. the tesl lime

would be 9.27 muluplesof ( s9,), Read, ng across therowcorrespond, ng 109.27. the test plan number IS 10-6

This test plan will accepl equipmenl if 5 or Ie$$ failures occur during lhe 927 K 8, hours of Iesung 11W,! Irejec! lhe equipment if 6 or more failures occur during that period The row alio defines the worst case

(accept with 5 failures) acceptable observed MTBF (d), whtch for Test Plan 10-6 i> 1.55 multiples of [ .9.,)The d,scriminat, on ,atIos corresponding 10 producer’s rnsk%of 10 percent, 20 percent. and 30 percent are

prowded in the last three columns Aga, n, ,n Ihe case of Test Plan 10.6 for a producer’s risk of 30 percert.the d,scnmination rauo ,s 2.05:1. Stm!iarly, fora pmducer’sn%k of 10percenl, lhe d,scriminauon ratto IS1.94:1. The procuring acuvaly should select test Plan$ from these table> If It is felt that such a lest Plan 8smore appropriate than the standard plan$

4.7.5 MTBF e%umation from observed test data When the procurong activity musl have a Slal, sucalba$i! for delermoning contractual comp!nance, and a basi$ for esl, matmg the f,eld service MTBF values, aftxed-duratoon test plan must be wed. Whele requ, red. all agencies conducting reliability tests under theprovisions of this handbooL should provide the procuring activity with current values of demonstrated MT8f

(~) m each required te$t repofl

47.6 Exclus, on of hvpothe~, s test values Since they are assumptions rather than test results. ne, ther

the upper te%t MTBF ( 8.) nor the lower test MTBI ( cT!) 01 any test plan can be used m ●slbmale

demonstra~ed MTBF The demonstrated MTBF (8) must be calculated from demonstrated test resultsProducer’s ri!k (a) and con$umer’~ rmk (~) are excluded from the!e Calculations since they refer to the

probability of passing or failing the test rather than to the probable range of true MTBF demon$Irated

during the test. However. the tesl parameter value$ ( f?0,81, a. /3 ) should be provided

4.7.7 Soecif,ed confidence interval In order 10 obtain an ,nlerval estimate of the demonstratedMTBF, the procurang activity must $pec, fy the confidence interval. The confidence interval is ●qual to(100 - ~j percent. For example, given g equals 10 percent. the confidence interval ●quak 1OO[2)(10), which

●qual$ 80 percent.

4.7.8 MTBF estimation from ftxed.duralion test plans. When a fined-duration test plan i$ specif, ed.

an interval estimate of the demomcrated MTBF of the te~t sample can be estimated within the ~pecif ledconfidence tmerval, When a test report is due, the aclivily conducting the test should estimate the MTilF

and confidence interval using lhe procedures specified In 4.7.8. I thlough 4.7.8.2.1.

A.7. B 1 MTBF esltm ation al failure occurrence This estimation can be made when a lesl iS In PrOcess

or has terminated !n a reject decnsmn The procedure ISas spec$f, ed In a Ihrough e.

30

,. —.—

Page 44: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

,a. calculate the observed MTB~ (6’) by d~vidiw the ma! operating lime of the eWIPment

at the occurrence of the most recent chargeable failure bylhe number of chargeable faolures

b. Enter TABLE 13 or FIGURE 21 with tOtal failures and lhe $pecified cOnfhdence inlerval.Read the lower and upper conl,dence mulliplter for that number of failuce$.

c. Mull! ply observed MTBF (4) calculated by step a by both the upper and lower confidencelimit mu!hpliers to obtain Ihe lower and upper demonstrated MTBF ualu-.

d. Record demonstrated MTB~as the $pecified percentage of confidence, followed by thelower and upper MTBF value$ in parenthesis: @= XX percent (lower hmit MTBF, upper limit MTBF). MTBF

values should be rounded off to the nearest whole number.

e. If the Malue$ are nol available in TABLE 13 or FIGURE 21, then the correct value$ can beobtained by computation as follow%

MTBF multiplier = 2r lower limits

X;I..V2; Z

where:

. 2r upper limit}

X:, +=m, %

r= number of failures

X2= chi-square distribution

c= con fidence interval (percent pe,100)

4.7.8 .1.1 Examcde al failure occurrence. Thespecified con fidence inlerval is80percent; therefore(1 + c)12 = 0.9and(l-c)/2 = 0.1. Theseventh failure occurs at820hours tolalle%t time. Therefore,observed MTBF(~)is 117.14 hour$. Enter TABLE 13(or FlGURE21) with $evenfailures andthe90 percent

uPperand lower limit$and find thelower limit mu ftiplier of 0.665and anupper lum'tmultlpl'erof 1.797.The product of these multipliers with the observed MTBF yield% a lower limit MTBF of 77.9 hours and an

upper limit MTBFof 210.5 hours There isan80percent pfobabilily lhalthe true MTB$will be bounded bythis internal. There i$alsoa 90percenl probability !hallhe true MT8Fofthe $ampleequipment iiequal to orgreater than 77.9 hours, and a 90 percent probability that iti$ ●qu@ to or Ie!s than 210.5 hours

Demon! lrated MTBFalthis poinIin thete!: will berepofleda$: 8= BOpercenl (7 B/211 )h0ur$:

4.7. B.2 MTBFe$limation alacceotance. The calculation ofalhrough eshould bemadewhenthe

tes: is terminated in an accept decision.

a. Calculale theobserved MTBF(4) bydiuiding thetotal operating time oflhe equipmentby the number of chargeable failurei

b. Enter TAB LE140r FlGURE21 wilhtotal failure$ andthesPecifled confidence interval.Read outthelower andupper con ftdencemul ,pliers forlhat number of failvre$.

dc. Multiply ob$erved?JTBF( )(calculaWcfin a) by boththeup perandlo werconfidencemultipliers to obtain the lower and upper demonstrated MTBF value~.

d. Record demonstrated MTB~asthe s~cified ~rcentage ofconf,dence followed by thelower andupper MTBFvalues lnparenthesi$: c9= XXpercent (lower limil MTBf. upper limil MTBF) MTBF

values will be rounded off to the nearest whole number.

e. lftheval ueiarenol available in TABLE 140r FlGURE 21. then ~hecorrecl values can be

31

. .—

Page 45: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7f31

.. ... rwd by compulauon M Iollo’w

MTBF multiplier = 2r lower Iimat$

x:, -,,n.2r+2

. 2r upper limits

X;,,c)n. z...he, e.

r = number of failures

X2 = chi+quare distribul,on

c = confidence interva! (percent per100)

4.7.8.2.1 Example al acceptance The specif,ed confidence Interval IS80 percent. The test reached

an accept decuslon after 920 hour% of Iesl, ng w!th seven failures occurring during that period. Therefore, lheobserved MTBF (d) IS 131 hours Enter TABLE 14 w,lh seven failures and lhe 90 percent upper and lowerIimitsand ftind the a lower Itm,t mulllpl,er o 0,595 and an upper Iimlt mulllplterof 1.797. The produclof

dthese mullipl!ers wl[hlhe observed MTBF ( ) y,eldsa lower lrmil MTBF of 78.2 hours and an upper Itm, th.~T8F of 236 hours. There ,s an 80 percent probability !Iml the true MTBF is bounded by this inlerval There~l~o ,%a 90 percent probab,l, !y that true MTBF of the sample equipment ;$ equaf to or greater lhan 78 hours,

and a 90 percenl probab,l, ty thal at ,s equal 100, Ie!\ than 236 hours The demonstrated MTBF at the end of

the [est WIII be reported as 1?= 80 percent (78/236) hours

47.9 Proiecl, on of exgected fteld MTBF The contractor (or tesl agency, if other than the contractor)should be responsible Ior prowdong demonstrated MTBF under test Conditions. The procurtng activityshould be responsible for pvolectlng expected MTBF under I,eld service conditions. This re~ponsibil, [y can bedelegated to the contractor (or test acvwty. C{other than the contractor ) when so specified in the conlracl

47.10 $ixed.duration test!: Prooram Manaaer’$ assessment. The standard fixed-duration test plar.~are characterized by Ihelr dtiscrfim, nal, on ralio (d), Ioial test I$me (T). and maximum allowable number of

failures m accept (k), If a fixed-duralmn Ie%l plan ,s selected, the total test duration is set in advance The

only way these plans can terminate early i! by reject!on For e~ample, Tesl Plan XVII-D lerm#nates wtlh areject dec, uon al the th, rd {allur e,{ th!s failure occurs before 4.3 umt$of total lest lime An accept dec, s,oncan only be made when 4,3 un, t$ of total te$t tame ha.e been completed. Even if the second failure occdrsvery .?arly, anearly reject dec, s,on cannot be made; no, canan early accept deci, ion be made if no failureshave occurred, for example, by 4.0 units of total test tame In both 01 these wlualions, an early decisionwould lack !Iatl$ tical val, d,ly by falllng 10 guaranlee the OC of (he selected plan Also, an early reject

decision by the consumer would probably v,olale conwaclual agreements wllh the producer. However, an

early accept decismn by Ihe consumer would not be wblecl 10 such an objeclion Such a dec!sion might

aPPear to be very desirable 10 the conwm~ (Government if test costs were high or if schedule deadllne$were approaching. Modifications 10 the standard f!xed-dural!on le$l plans which allow early accept

deciwom 10 be made w,thout sacrificing staust,ca! validity ($ee Reference 12) are provided in 4.7.10.1through 4.7.10.3. The proposed plans differ from the probabtlily ratio sequential te$t$ in this handbook inthat rejection i! permitted only a her a fixed number of failures have been observed.

4.7.10 1 AcceP1 times The accepl ttmes [TJI of !he Program Managerti assessment are tabulated anTABLE 15 in mu ftiple$of(el) ACCepIZWe Occur, ,f “01 more than ~) failures have occurred 10 Itat lame

4.7.10.2 Comrlanson w,th standard fixed -dural, on tes!% TABLE 161nd, cate% how the consxmec<s

and producer’s ri$h$ are modtf ted by the Program Manager”s assessment foaed.durahon lest% TABLE 17

comoares the max, mum test ttmes and number O{ Ia#lurestorejec!

Page 46: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

4.7. 10.3 OC curves. flGURES 22 through 34prov@ecurve$of expected Iesl duration versus lrue

MTff F for the Program Manager’s asses$menl f#xed.duraliOn Iew$.

4.8 A1l-Eccui Dmenl Production Reliability Accemance Test Plan. The basic Ail. Equipment Prod uctmnReliability Acceptance Test Plan (Te!t Plan XVIII-D) should be used when all units of produclton equipment

(or preproduction equipment, if required by the procuring activity) must undergo a reliability 101acceptancetest The plan deplcled on FIGuRE 35 includes a rejecl line and a boundary line. Both line% may ●xtend as far

as necessary to cover the total t?it ttme required for the production run. The reject and boundary Ilneequations are the same respectively a$ !hme for the reject and accept lines of Sequential Test Plan III-D The

equation of the reject line is f~ = 0.721 + 2.50 where (T) i$ cumulative lest time in multiples of ( # I), and (f)is the cumulative number of failure$. The plotting ordinate is for failure~ and the abcciwa is for multiples of

( @I). the lower lest MTSF. The boundary line if 5.67 faiiure~ below and parallel to the reject line. Theequation is fB = 0.72T - 3.17. flGURE 36 present$lhe OC curves.

4.8.1 Test duration. The test duration for ●ach equipment should be specified in the lesl procedure

and approved by The procurong acliwly. Unless olherwme specifoed by the procuring acli.ily. the maximumdurdlton should be SOhours and the minimum duration should be >0 hour% where time i~ co. ntec! m the

next h,gher integral number of complete test cycles Ifa failure occurs in the Ia$t test cycle, the un, t Snou!dbe cepa, red and another cc,mplete test cycle run to verify the repair.

4.8,2 Evaluation., When Test Plan XVIII-D is used, all production units should be wbjecled 10 the

env::onmcmial teji :aw!; tiims in :Re ap~:o;e~ :e:i p:o:edure. Ctmwlative equipmen: oper3:ing h.me and

equ, pmenl faiiure~ should be recorded, plotted on the chart of the lesl plan, and evaluated in accordancewtth the cricer#a of flGURE 35 and 4.8.3 through 4.8.3.3.

6.83 AcceD1. rejecl criteria for the all.equiDmenl test Accepl. reject criteria for the all-e.q ,!pmenl

tesl is slated in 4.8.3.1 inrough C.g.5 .3.

483.1 Acceolance If the specified lest ume is completed without reaching the rejecl Ifne, all of the

eqmpment which the lot under test compri$esare considered 10 be acceptable, provided thal eachequipment conforms to the $pecif!ed normal performance acceptance test criteria.

4.8.3.2 Re[eclion If a plot of failwe5-verws. time reaches or crosses the reject lane. the eqwpmenl101under lest ,s no longer acceptable. The test should then be termi”aled and corrective action undertaken

4.83.3 Reach, nq the boundary line. If the DIOI of failwes-venus.time cro$ses below the boundary

line and lhe next fa,lure point i~ al Iea$t one failure interval below the boundary lone. the PIO1 should be

brought verctcal{y up w Ihe boundary hne. If the failure point is less than one failure interva! below theboundary Isne, the plot should be brought vertically up one failure interval, cro$sing the boundary Itne Thisis eqwvalent 10 censoring lest time as necessary at each failure in order m maintain a failure PIO1 w,lhoul

1.-.8~ill “CII r~pr~senltrueaccumulated test I,me AllCrosi!ng the boundary line. ?here!ore, !h? !?s1 !ime p-.lesl t,me should be recorded in the test tog to maintain the capability 10 determine lrve accumulated te$llime An accurate or true plot of accumulated test time and Iailwes$hould be maintained cm the same thanby cent, nuting the PIOC into the regoon beyond the boundary line. In order to mainta, n the proper rejectcrileria, the f#rsl failure occurring after the boundary line M crossed should be shihed vertically 10 thebounclary I,r,.s 10 star, a seccir,ci FJlti, [d~iid lir,e) wiik,ir, i$,~ ~cce~, and cc.r, tinue tes: region, i! fa!lwe$ occdr

oflen enough. If anolher fa#lure does not occur for an extended period of time. there would be no secondplol and the or#ginal true plot should be continued. The next failure should be plotted on the boundary lone

d,rectly above the Ciue plolled point (failure 7 of FIGuRE 36). When several failures occur in rapidwccewon. the second PIO1 (dolled I#ne w,th fa!lures vemcally spaced al exacl $ingle failure intervals] would

reach the re, ecc lane, and lesl, ng would be terminated and correcli.e acl, on undertaken Aller the

approved COrrec live act, On ,s completed. Che testing should be resumed and the true plot conl, nued Thecumulative number of failurei and lime shown by the true plot would bereadd; reclly from Ihe {allure andI,me icale} The fa,lure$ plotted on or above the bo’undary Ihne after the t$me plot crossed the boundary lone

33

-: . ..-. ___ .. L..._. . . . . . . . . .

Page 47: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

mu,: be Iabelcd s,nce the ,lumber could not be read from the oral, nate After a reject occurs and correcl, ve

acl, on is approvee, the true plot should be returned 10 the boundary Itne. Conttnue the true P(OI IV realtime, .md sequentially number the subsequent failures ai shown on failure 16 of FIGuRE 36

4.8.4 Additional ali-eauiprnent production reliabilltv acceDlance Ieslplans, A unique all-eau, pmenl

test plan can be developed from any PRS.Tplan. On any given program the all-equipment test selectedshould be based on the accual sequential test plan used during the qualification phase. If ● sequential testwas not used during qualification, the procuring activity can select the most suitable plan. FIGuRES 37

through 44 provide all-equipment test plans which correspond to the PRST ptam given in 4.6 (lest Plans I-Dt’ I tects do not fo!!@w !he origin?! Wa!d formulaetb.r~g~h v! II-D). The a::epl and reject !jf?~. S! & $eo.,uer?.!a

(tee Reference 8). They ha.e bee. modified to account for the ●ffects on the test risks of truncation. Incomputing the all-equipment test plain, this modification was not made, therefore the accept and boundarylines of the all-equipment !est wil I not lineup with the accept and reject lines of the corresponding

$equential tect. The difference is in the distance bmwean the lines. It is felt the original Wald formulae (seeRefcf@itc6 8) which were computed withui c~r,sicfwir,g incncaticm, are mGrs?appropriate for irhe a!!-eqccipment plan~.

4.9 Reljabill!v estimate~from unit-level rewlts Astep-by.step wmmaryof theproceduce which can

huwdtocomtine te%tdata from fixed. duralionlests ora PRSTisprovided in4.9.land4.9.2. Thelechmque IS called the approximately optimum (AOJ method and is de$mbea in greater detail In References13, 14, and 15.

4.9.1 Calculation method. Thecalculalion procedure u%edinthe AOmethod isasspec#ftied4nathrough e.

a. Stepl. Verify method requirements Theconformance tolherequirement%of 1through5 should be.erified Anyviolatiomw illaffeci \heopl#mal#lyof the method.

1 Thepfocedute wa$deri.ed fersernes sub$yslem%; forpractocal purposes ilissuff, c,ent

that all subsystems are essent,al to ;ystem operation.2. Subsystems should eachexh#btt exponential failure dislrsbu1ions.

3. Subsystems should bestato%lically tindependent: that, s,thefailure of anyone subsystemwill not inducea Iailureof another wbsyslem. Inadditi on, lhere should benoappreciable fa!lurerate% due;G ir,:erftice$ (Flydrauli c:, cabllrng, !iziure;, a,-,d ;c fc,a,h).

4 Each 5ubsys1em mu5thave benlested separately unttfalleast one fatlure was

observed. Alltests must have been terminated at a failure. If Ihetesnw erelruncaleda fterag, vent line.

di5card allthe$uwival !imeafier thelaslfailure ofeach\ub$ystem Ifoneor morewb$ystems have nofailures, see 4.9,6.

5. Thettme loiailure ioreachsubsystem must be knownb. S1ep2. Initoal calculations. Calculate andverify thelotal number ofsubsystems tested. the

to!al number of failures of each subsystem, and the total time on test for ●ach subsystem.c. Step3: Parameter calculation. Calculate (m)and(v) u$inglhe following formulae:

u = + I(r, -1)/ Z~l+Z,jf,=,

34

Page 48: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

(.) afe as follows:

I

3 1 1 2 2 1.— +——— —9.919 15.966 + 26.897 + 26.511 + 62.439 + ~

= 0.3024 + 0.0625 + 0.0372 + 0.0754 + 0.0320 + 0.1008

= 0.6103

:- ,,.L, . ~ ,,. —l!/z:!+:z,; ;J

,=,

3 I I 2 2 1.—+98.387

—+—— ——255.872 723.449 + 702.833 + 3898.63 + 98.387

= 0.305 -r 0.0039 + 0.0014 + 0.0028 + 0.0005 + 0.0102

= 0.0493

Therefore:

m = 0.6103

u. 0.0493

At Ih#s Clmelt fsneces$ary Iodecideupon the level ofconf,dence(l - 0 ), Ie.el Ofsignifocance( O), w,th

whith ih~ iower bcwrml will be otiLaint. d:

AMu.me flrsl lhal a level of confidence of 7S pe,cem (lhal is. our estimated lower system rel,abil(ly bound)w!II !n fact be below the real $y,tem reliabil,ly value at least 75 percem of Ihe time given Ihe tolal Umes onIesl (ZJ) =) Snobla ined here, n. For this case, we look up lhe 751h percentile, n~, . a,, ,na slal, sl#Cal Iablefor the $lznd,irti~zeti fim,m~; ij#slr,&titwfi sad Gbcc,ifi:

’075= 0.6S

&swm, n5 thai the specif, ed mmsionlirne for thewhole system is & = 1000 hours (or t~ = 1.0), we calculatelhe AO rel, ab,l,ly bound as follows:

for n,, -~ = 0.68, that IS. a= 0.25 and Im = l. O(mis$iontime)

. UP[-1.O X 0.6t03(l -0.0493/9(0.6103)2+ 0.68~/310.6103JJ31

= exp[-O.6103 (1 – 0.0147 + 0.68 (0.2220)/ 1.8309 12]

= apI-o.6103 X 1.0678JI

. CTP i-u.743ul

= 0.-?76

Page 49: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-fiDLIK-781

Another syslcm rel, abilily bound wh, ch will Le below the real ~yslem (el, abil, ty value only 50 pe,cent of theIimc can be @lcul ated as before, but now use, #n%lead, the 501h percentile In a standardized norm.il

distribution table. This value is. of course, zero This bound will be larger than the previous one vnce ,! WIIJ

bound the real system rellabtlily value a smaller percentage of the limes. It i$ obtaoned by repeaung theprocedure already described with the $ame parameler! (m) and (v), wnce it ii for Ihe same system. and the-me mission time (tm), since requirements for [ 8.) have not changed. and with the new percentile (n) :

for:

n ,,-=)-O. O, Lhafis, a -0.5. Im= 1.0

~,(~ ) = =P[ .-0.6103 (1 -0.0493 /9(0.6103fi + 0.0 -/3 (0.6103)131.

=crP[-. 0.61 O3(l - 0.0147 + 0)31

= up[-O.6103 X 0.985331

-apl-o.5ti38i

-0.558

4.9.3 The case of onlv one failure (n some wbwstem($) Considering the formulae for theparameters (m) and (v), we can easily conclude that for every subsystem (J) with only one observed fa,lure(that is, r)- 1 a O) the information pro.,ded by thi$ wbsys~?m 10 the rellabllily bound is zero (that ,s,

(~1- l)lZj = O). That w no matler what time a failure oLcu,scd ,n sub$ystem (I), the term {r] - IIIZ, vanishes anIhe equations for (m) and (v) and has no impact on the calculation of the AO rel, ab,lity bound (~s(t~)). Th, $

wa% particularly critical in the orlgtnal verwan of (m) and (.), (see Reference 13, Table 2. Formula 1), andcreated a need for the adaptive procedure Formula 1 refers to the special case where only one fanlure os

observed during lhe Iesttng of all subsystems mlegra!lng the syslem. The main problem w,th Formula 1 ,%that, when rl = 1 for 1 <j < n, the term:

~ (,, - l)/z: o

>(r, -1)/z2=iJ

whicl) is indeterminate (that IS, when each subsystem has experienced only one failure). W#lh the generalversion for (m) and (w) proposed tn References 14 and 15 and sugge%ted ,n those references as the most

appropriate Ont, thi$ Siluat, on does not ari$e, In fact. if r, = 1, 1 <j <n, lhen m = Z, and v = Z%~,e still wellde f,ned. We can appreciate also Ihe tmponance of renam, ng the subsystem with me smalle~l total ttme onlest among all wbsys! ems under cm-mderalion. as Z,, For this spec,al case, take the $ame numer,cal examplepresented in 4.9.2 and modified a%follows:

Subwstem 1 Subsystem 2 Sub5vslem 3

t, = 0.619 11 = 1.146 1, = 2.6897

11 = 0.7 12 = 1.6S

1~ = 0.9

[4 = 1.1

z, = 9.919 ZI = 15.996 Z, = 26.897

n, = 10 n2 = ]0 n~ = 10

r1=4 f>=2 r~=l

38

Page 50: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

where

~: = observed number of fa,lures for subsystem J

21 = total ume on test for subsystem I

Z(I) = least total time on test among k

k = total number of subsystems

Define the required confidence, (1 - a]. for the bound and the mission lime (tm) to which the bound will

apply.

d. Step 4: AO calculation. Calculate the AO $@tem reliability bound using the followingformula:

( “t,.e,fi ‘~’((m) . ap -Ire, xm l_A+—

9m2 3m )1

tm .

m,v =

(1-a] =Repeat d (step 4) for a$ many d, fferem confidence Ievel$ a$ are required, using the same (m, .) Th, s

compulaldon IS readily performed by Ihe FORTRAN program I)slting in 4.9.8. In this way sensitivity analyse$may be performed

e SIep 5: Calculale failure rate bound. An upper bound for the total system failure rale,may be found d,rectly from the AO reliability bound.

AO system reliability bound

mission time

parameters calculated in c (Step 3)

( 1- 0 )th per’emile point from the standardized normal distribuuon

required confidence

F,r$l. the system failure rate is e~limated by:

b b

0, =

8, =

MTBF =

-s ~,= i- e,-],=1 ,.1

syslem failure rate estimate

jth sub$ystem failure rate estimate

jth wbsfitern MTBF ●stimate ( = 1/ @j)

mean-time. between-failures

and where the ( ~,) may be computed from:

O,=r, !ZJ

Then, the upper bound on this failure rate is given by:

= -ln!lf II 11/1$., .,m

35

Page 51: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

where,

4.9.2

~, = IJPPe: bound on the \ystem failuce rate

In = natural logarithm function

Numerical emamoles. Numerical edamples have bden developed to illustrate the appl, cauon of

the AO acmroach and the ver, f,calaon of the model reauiremenls A comolete development from the data,—.collection %d reduction pha$e to the c?lculalion of lhe de$iwd AO bound will be presented

Assume that the system cannot be tested as a whole becauae of costs. Therefore, it$ n components o,integrated subsystems (for ●xample, S) will ba te$ted separately.

Assume that the conditions of the symem (cost. tize, and $o forth) limit t=ting to a reduced number (forexample, 10) of each subsystem (that is, nj = 10, 1 Sj s 5). Al$o, assume that these unit$ will be constantlymonitored and Ihat the failure times of each failed unit will be recorded accurately.

&sume that the sysIem as a whole has been designed 10 attain a spectif,ed upper test MTBF,( @o), of t 000hours and that all the times-lo. fa,lure of Ihe Item will be convened into units of this upper test MTBF byd,viding the life of all failed items by (go) Thi$ i$ a convenience, not a reqwrement. for the correctimplementation of thts methodology

Assume that for the example system we have actually observed the failure times (t,). ezp,essed <n un!t% of

( 80) listed in TABLE 18 For example. for Subsystem 1 there were (n, ] = 10unitssimultaneou$ly out on testand the f,rsl four failures occurred, respecl,.ely, atstand?mzed tfme~(t,)of 0.619.0.7, 09, and 1.1 (for , = 1,2, 3. 4) inuniu of( 8.) (Ihal ,s. at 619, 700,900, and 1100aclual Itfe hours) The lesl for Subsystem, 1 wa!

stopped at the time of the fourth faflure, 1100 actual life hour$, and the total lime on test for $.ubiy stem 1 ,jrecorded a%:

2,= ~f, +(lo_ 4),4

,=!

. 0.619. 0.7 + 0.9 +1,1 + (6x1.1)

. 9.919tn un!t~of [ f?o)

The total Iimeso” Ie$t (Z}), for subsystems, = 2.3, 4, and 5, were calculated inthe% ame manner and

Iabulated in TABLE !8.

Subsystem 1 yielded the smalle~t total I#me on lest. In general, at thiislage. an inspection should be madeand the sub$y stem w,th the $mallest total ome on lest (regardle$5 of total number of units, on test or Ia,led)

should be recorded and renamed as $.ubsy stem 1. Hence. it~ total time on lest WIII now become (Z(l)) Th, sstep is crucial 5ince the ordering of the smallest total time on test a$ anylhing other than (ZI!J) will changethe value of the lower bound An example of an error of this type is provided in 4.9.S. Om.e data collec~scmand reduct, on M performed, the ACI procedure can be used to obtain a lower bound, for [he rel,abii,ly of the

entire system. In order to calculate Ihe AO system reliability bound, u$e:

/{[1 ).ap( *fiJl

.In, xm 1–~+-> m

9m2

F#rsl calculale the parameters (m) anti (.) For the data appearing lnTABLE 18, lhe calcu!at, ons for (m) ana

36

Page 52: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

The syslem IS now composed only of $ub}ywems 1, 2 and 3. with lhe same number of failures and failure

tome% for Subsystems 1 and 2 as before. However, Subsystem 3 now ha$ only one failure at the truncauontime, 2.6897, tn un, ts of ( @o) (Ihal !$. ihe lesl was slopped at the llme Of the first failure).

Calculation of (m) and (v) are:

(4–1)+ (2-1) (1-l) 1—— .

“G 15.996 + 26.897 + 9.919

=0.3024+0.0625+0.0+0.1008

=0.4657

u= ~ (r,-l)/Z~+Zlj~,=!

(4–1) (2-I) (1–l) 1—— .

= % + 255.872 + 723.449 + 98.387

=0.0305 +0.0039 +0.0102

=0.0446

With the$e values of (m) and (v) we can calculate a SOpercent AO lower system reliability bound for the

%pecifwd mission time C?.= 1000 hours [tm = 1.0 in unic$ of @o). Thus:

(

%..,fi ‘~,(fm)= up “,-1 Xm l-&+—

9m2 .3m )1for tm= 1.0 andn, i-e, .o, lhafi$#n. o.5

R (f )=Upi -0.4657(1 -0.0446/8(0 .465712 +0.0)’1-.”,

=exPIO.46S7(l -0.022 .S)3J

-apt -0.4657x0.977231

=apl-o.4345]

=0.6476

Ta calculate the lower confidence bound for a level of significance of 7S percent. aPPly the procedure used

10 calculate a SO percent lower system reliability bound That is. for the 7Slh percentile,

n{, -a I = no,75 = 0.68. We have:

for tm, = l.Oand n:,. = = 0.68, that IS. a = 0.25

39

Page 53: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.-.e,pl-O.46!\7{l ..0.0228 +0.)436/1.3971)3]

=crP1-O.4657 x 1.06003)

=cqd –0.5861:1

40.5562

4.9.4 An ●stimator of the failure rate UPDer bound. Oflen. reliability engineem wein:ewstedin the

estimated $ysfem failure rale ($) as well as in the ewimated reliability (R,(t~)] of the system, given a mi>}iontime (A).

Assuming that d!, the conditions are met and following the notation of Reference 13:

n

0,=:$,=5 [1-’-),=1 )=:

where,

$, = ]thtub~y~~emfailurerate

@i = jlhwbsystem MTBF

AI here fore, .m esumator ( @$) of the upper bound for the total $ysiem failure rate ( ~~ will be.

4, –bdit,lfm)l/fm

where (R,it~)) ',[he AOes!imator of the$ystem reliabili tylower bound calculated !n4.9.1and 4.92: (tm) islhespecif, edtitlission timeand (ln)osthe natural logarithm. This(~%] failure rate upper bound lssublecttothe same constraints used in obtaining (R,(tm)), that is, mme level of confidence, dependence on \ame totallime% ontesl(Zo). an~allother constra, nt$d8scussed. hanilluslration ofthtsprocedure, assume we want toobtain an estimable of the upper bound of system failure rate ( ~,) for the two examples developed ,C.4.9.1and 492. Examples area! specifledinaandb:

a. Forlhecalculation method, whe,ethe letielof con fidence was7Spercen:.

$’= _ln+ .0.74296 failures perlOOOhn. rs

tsa75 percent upper confidence bound fortotal sfitemfail urerafe (that, s,lhisbound will be larger thanthe actual system failure rate at Iea\t 75 percent of the time).

b. Forlhesecond example. where ihelevcl ofconfidence wa\50~rcent, we have:

$,. .[” = .0.58375 faifumper 1000 hours

that is. the actual system failure rate ( ~,) will be enceeded by the above estimate ( ~,) al least SOpercen: of

the ttme.

4,9.5 Denarlures from AOmethod requirements Cauuons regarding lheuseofthe AO

method ologyandwggest, ons fordeal, ngw, thdev!a t,onsfr omthereq uirement$ area$prov, ded #na

through f:

40

Page 54: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

a. Theexponenttal! !yo{lhe stattst, caldj%tribut$on otthettmes-!o-f ailureandlheindependence of Ihewbsyslem$%hould be carefully checked 8othreq ubrements represent ,dealconditiom

However, lheycan bejusti f,edbnprac! ice. Forexample, lheexponenloal distribution requirement can be

justified byus,ng burn. tnandquallty control procedures forthe%ubsystem "scritlcal components Thesubsystem’s independence requirement can rejustified by the technical knowledge that actual subsysteminterfaces negi, giblyaffecl reliability. When either oflhe\e twocOndilion! isgravely suspecl, thepre$ent

AO procedure should nol be apphed. If ii is absolutely necessary KOu\e the present AO procedure, thenextreme caution if required and Ihe results $hould be interpreted with great care.

b. This caution relates tothelerminaliO ntime$Ofthe different ~ub~Y~temte$1~. Aflle$tsshould be failure truncated, lhatis, terminated attheoccurrence ofafailure [Type llcensoring). Mix:uresofTypes land llcenwring $chemes arenotrecommendad. lf, inagiven ~ub$y$tem le%thel esllruncallOntime

is other lhan a failure time, it is recommended that the last failure time before truncation be taken as theactual truncation time (5ee 4.9.1)

c. Theordering of thedata i$veryimpotianl forthecOrrect ~pplicalion of the AO procedure.Thesub$y\tem withthe least total tfmeontesl mu$talways rerecorded aiSub!ystem I,andits tota! timeontest, (Z(, )), included, nthelas: lermsof thecalculaliOn Of(m)and (v)parame1ers Aneaample of theconsequences fornoncompl, ancewi!h this requirement ispresented on TA9LES 19and20 Observe howlherewlts vary conwoerably due 10 (Z(I)) nol be, ng the lea~l 10tal time On le~l am0n9 the sub~yslem$.

d. The AOa?proach requires theob5ervat@on ofalleast one failure bneach$ub%ystem Thtst%averyslr!cl requirement andamust forlhecorrecl application ofthis AOprwedure. When deai, ng withh!gh-co%t, ultrarellable systems, the nece$sary lime to obtain a failure in some of the component subsystemsmay be too long Al$o, lhenumber ofitems onteslfor ag,ven%ub$ystem toobta, nah!ghprobabi l,tyof

gett#ng afailure be forelruncat,on timemaybetoosmall. Inpraclice, forsome pan,cular subsystem. leslingmay have 10 be germinated before obferving the first failure, but an engineering assessment is still reqwred.

e Under the real life constraints of d, the use of an adaptive procedure WIII be requtred inorder toprovide agrossapproxtmat, on forlhesyslem reliability bound A5wmethal af#rsl failure hasoccurred at the t,me of lest truncation (for the subsystem wilhout any prior observed Ia,lu red and calculatelhelowPr AOsyslem reliabil#ly bound. This will provide agrosslower bound forthe AOsystem reliability

bound. Careshould betaken nollouse lhisprocedure where lhetolal limeonles: forthesubsys!em !%lhesmallest (that is, 2(,1).

f. G,venthe formu;ae for(m) and(v), inthecase ofonereal orimaginary failure #nany Jthsubsystem, then r)- 1 = Oand (r,- 1)/2, = O. There fore, theinformalion conlribut ion of lhossubW$lem10the reliability bound ,$ nul!. de%% II is Ihe one with the smallest total lime on tesl.

4.9.6 Noobmrvedfattures Anexample of theadaptive procedure fordealing wi1h1hecase0fn0obser.ed la,lures fol%Ome subsystem #sprovnded below (see Reference 13). Aswmema: iorlheseconosubsystem, Ihe test was lermnnated before the I,rst failure occurred, that is:

Z, = 17.607 22= 20.045 23.33.644 Z4= 51.495

n,=2 nl=l n3=2 n4=3

2s= 82.214

n~=3

Exac1(90percent con fidence) bound = 0.726. AObound = 0.735 (a190percent con fidence level)

Assume that for Subsystem 2, the tesl was truncated before the first failure had occurred and the

corresponding lolallime ontes:!or Subsystem 2allhelruncat80n timewa%Z2 . 19.5

A$.umethal one failure hadoccurred alth#slruncal#on 1ime Thegross lower bound tsobta8neda$A0bound = 0.719 (a190percen1 con fddence level)

41

Page 55: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

4.97 rvDe I censor, nq ‘ocmwder ,! w}! wuncated. ]t ott,?, lhana Id,:ure l,me, a,wme !ha: :11;

Sub>yslem 3 lest was lruncated some tame .+!ler Ihef, fst fatlure but before the secood fa,lure. as aep, cled IVFIGLJRE 45. Had we wa, ted to observe Ihesecond Iailwe. the value$ obla, nec! according 10 Reference 13

would be

Z, = 14.61 z~ = 35.971 Z> = 62,542

n,=2 n~=Z n,=3

Exacf (90 percen!) bound = 0.731, AO bound = 0.738 (at 90 percent confidence level)

If we assume that the truncation time wa! (T”), the valuea obtained up to the first failure (that is, neglecong

test time from the first failure UP 10 lime (T”)) wOufd ~:

ZI = 14.61 z~ = 3s.971 Zj = 30.0

n,=2 n1=2 n3=l

The result is AO bound = 0.781 (al 90 percent confidence level)

An alternative adaptive procedure Ii to afwme that time (T”) i$ the lime of the second (la\t) observedfailure. This i$ not recommended because of the conditions specified in a through c:

a There are existing failures in the Ie$l other than at (1. )

b. Stnce the second following failure time will never be known. we maybe ,ntroduc, ngunnecessary b!as in the analy$i\ by as$uming (T”) IO be a failure l.lme

c. Stali$ucal properue$ of the bound are unnecessarily IOSI when Iruncauon M taken al anyother !imelhan al a failure

4.9.8 Computer program A comptiler program was wrbtten 10 #mplemenl the AO methodologyFORTRAN listings are Included #n FIGuRES 152 through 1S4. The program is se! f-contatned and may be

adapled for any computer with a FORTRAN compiler. The use of the program requ, res the data spectf,ed inathroughc:

a lnpuls:

k = number of subsystems

z, = total lime on lest for the subsyslem with least Iolal lime on le\l

n,(j) = number of failure~ of the $ame (previous) subsystem

28 = 2 s i s k total time on test for ith system

Wi$l = total number 01 failures for ith tymem

b = mmsion time desired In the reliability bound

P= percentile of the confidence level desired in the reliability bound

b OutPUIS:

M 1 = parameler~

VI = parameter$

42

-.. , -- . .. . ------ . . . . . . .. . - .---..--, ------ ._ .._- .-. . . . . . . .

Page 56: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-781

V42 = parameters

V2 = parameter

M3 = parameters

V3 = parameters

c. Reliability boundi: Of the$e rewlls, only the recommended values M2, V2, and thecorresponding bound are presently printed. The other rewlt$ are in fened as comments in the program. Theu$er may activate them easily by removing the commem command, An example run for the data provided inTABLE 21 is given in TABLE 22,

I

I

43

—. ,.. . .,, ,-

Page 57: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

5 COMBINE DE NVIRONMEt* rAL TEST CONDITIONS

5.1 - 5ect#on 5prov1des guidarlce loindivlduali responsible forestabl#shing tllecomb, nedenvironmental tesicond !t, o,lsused inrelia b,lnlyte%ls conduCled in accordance wllh MI L-STD.781 Tne data

i$pre$ented inamanner wt,lche ncourages laifort ngtospeci ficsystems, platforms, andoperat, o”alenvironment

5.1.1 ~. 5ection 5di$cusses thecom&nd environmenml teslcondal,ons lobeappl,ed dur(ng thereliaMl ltyte$t pr~rams specified tnTask$ 2OO.3OOand4OOof MIL-STD-781. Theanaly$esneededmestablish the appropriate test conditions are provided also.

5.2 Mission andlile-cvcle environmental orofile$ and1e$tconditions. Mission andlife.cycleenvironmental profiles and lest conditions are as provided in 5.2.1 and 5.2.2.

5.2.1 Msssion andlife-cvcle environmental DrOfileS Themission pro files should beused todeterminethe environmental $pecificauons and should be derived from the operational life profile de f!ned by the

equipment orsystem operatmnal requ, rement$ Ifth,$inlormation isnotpro.,ded inlheongtnalcontractual documentahon, prow%$on should be made for the procuring acliuity and the contractor IOcoopera tivelyd erivelhe miss#on pro f,le$and lheequl pmenlenvt ronmental specifocalaons Thlsder,. al, on

should make use of historical data on wm,lar equipmenl applications and mounting platform$ and ihe effectof equipmenllocation intheplatform should be accounted for. Each signif, canllife-cycle event must beconsidered, inciuO, ngtransponalton. handl, ng, ,nstallal#on andcheckoul. and1ac1lcal mtwon%,ncludhngplatform cfitegory and operauonal situal, on

5.2.2 Envuronmerltal le%lcond,ltons Thereltab!Ii tygrov+th. qualification, andaccep\ancetes!\ihouldbe performed under lhecomb, ned ,nfluenceof ●lectr ical ,wwer Input, Iemperal ure, vhbrat, on.hum,djty andolher appropriate lest cond,l, om Thelesl le.e!afor these lest cond, t&ons$hould beder,.ed

from theeq"ipment's miss&onanaen., ronmentalprof, fe$ When lheequipmenl, sdesigned for one

aPPfiCatiOn, with a single mission, or one type of repetitive mhssion. there is a one.: o.one relatlomh!~between thetest pro file andmisslon andl, fe-cycle environmental pro fife. Thelesl condil, onsshould$imulate lheactua !stresslevel sdur,nglhem, won Iftheeiau, pmenlis designed forseveral m,wonsandenwronmenta! cond,l, ens, \he lest prol,le should rep fesenl a composite of those missions, w,th the tesl

levels and durauom being prora~ed accord~ng 10 the percentage of each m85sion type expected dur~ng Ihe

equipment’% liie cycle fnorder toaer, uereal, %loctest condtt#ons andlevels. the actual environments

(especially temperature andvibrailon) should remeasured althelocat!on where theequtpmen:lstobemounted dunngana ctualmiwonoperauon Whelesuch data arenolavailabIe, Ihecond# ttons and levelspresented ,n S.3 lhrough 5.1 O.I.4 may be used asgu,deltnes

5.3 Combined env, ronments fo, f,xed.o~ound equipment. Equipments dewgned forl, xed.grounainstallation, are generally located bn a conuolleci enwronmem wi~hin a building and, therefore. do not

require cyclic env&ronmenlal test! ng [see Reference 16). However, $ince Ih8sequtpment mus1be1ransponeG10 the final installation si!e, a nom, nal .ibrauon tesl ;hould be applied, wllh power OFF, before eachreliability test. Contractual lyspeci f!coperal!ng crlter!a based ontheguidel, nesin5.3.l through 5.3.4 maybe

used inthetest olanandprocedure$ Atyp, calcomblned environmental teslproflle for fixed -gro"nd

●quipment isshownrn FlGURE46 Theduratlon of theprofile isnormally 24hours oranevenly divisiblefraclion thereof,

5.3.1 Electronic sIres!anddut~c~cle Theequipment should beoperated atnominal design inpulvollaae f0r50Dercen10f the time and 250ercentof thetime each atmunimum andmaximuminwtvolta~e$. The;nput vollagerange. if notipeci f,ed, should be 27percent of thenominal lnputv01tage The

duration of Ihe operating cycle should depend on the operational use of the equipment; typically. four

hours, eighlhours. or 16hours perday. oraround. the-cloc hcont8nuous operation with period#cshu! aowns

forrouune maintenance should becorwdered Theequipmenl dutYc Yclesl]ould be Of:aboul 9Opercen1ol

Ihe testcycle The OF Fper!ods should be randomly selected

44

Page 58: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

5.3.2 V, brat ion $tres$ Normally, vib:ation 51re%%teWn9 i} nOl required during the OPeral,Onal phaseof the enwronmenml moflle. I( the e.auiumenl il not packaged $peciflcallv for transponat!on to theInstallation stte, a nommal .ibrahon $Ire$i consisting of a single-frequency sine-wave vi bralion a!

2.2 gravitational acceleration unm peak (g’s pk) aI a nonre~onan! frequency between 20 hertz (Hz) and60 Hz, should be appl,ed for 20 minute$ before $tarting the reliability test. If the equ!pment has L specified!htpping configuration. it should be qualified for adequate $htpping protection by packtng it in that

configuration and testing it prior 10 the reliability te~l in accordance with the shipping vibration and $hochexpected. Establiih the vibration test requirements for ●quipment transposed as cargo in accordance withthe maximum values of MIL-STD-810, Method 514.3, as !pecified in a through c:

a. Basic tran$pofl; Test Procedure 1,Test Condition 1.3.2.1b. Lar9e a$sembly traniport: Ten Procedure Ill, Test Condition 1-3.2.2c. Loose cargo Iran$pon: Test Procedure 11,Te$t Condition I-3.2.3

5.3.3 Thermal stres%. The equipment should be operated at itf specified ambient temperature. If notspecified. use these thermal conditions provided in a through e:

a. Cold soak temperature: -5a”c

b Hot soak temperature: + 85°Cc. I{ the equ, pmenl is installed in an occupied building with automatically convol led atc -

conditioning and heating, use 25°C as the operating ambient temperature. Computer ecwpmenl should becontrolled at 20”C

d. If the equipment i$ installed in a nonair-conditioned building where summer heal may

reach a high lemperalure, use 40”C as the operating amb, em temperature.e. If the equ, pmenl IS ,n an unoccupied, nonair.conditioned enclosure and in semitropical or

trop,cal Iocat, ens. perform one-half of the lesttng al 60”C, one-quaner at 4LTC. and one-quaner al 20’C.

5.36 Humtdtlk. Humld,ly test,ng IS not required unless specifted in the conlracl. See AR70-38 foradditional guidance Ior humtdity lesung

5 a Comb,ne’S env, ronmen:s for mobile around eauipmenl. This calegory of equipmenl includes

wheeled veh, cles, Iraci. ed vehscl es. $heller con ftguratmn%, and manpacks ($ee Relerence 16) The specllnc

equipment application should be considered when specifying the comb, ned enwronmenrs for rellab,l, tytewng MIL. STD.210 and AR70.38 should be used 10 define the climalic extremes for the geographical area,n wh, ch the equipment and vehicle will be used. and MI L-STD.810 can provide guidance for the .ibrauonrequ, remem% Equipment operaung on moving platforms, includ!ng wheeled and tracked vehicles, andwh,le !tauo nary, should be considered In developing a cyclic test sim!lar to Ihe !est shown m FIGURE 4?. TheIe\! ptol,le durauon $hou!d be 24 hours or an evenly d,wsible fraction Ihefeof The chmauc ealreme andMI L.5TO.81O ., brat, on data should be considered 10 represenl max#mum Condll$on$ The aC1ual lesl

environmenlaj condn lions should onclude a distribution of values which reflect% e,pec ted Cond,ltons Only asmall fractmn of lest levels should reach the maximum condltion$.

5.4.1 Electrical stress and dutv cycle. The equipmenl should be operated al nominal ales, gn onpdtvollage for SO percent of the ON t,me. at minimum voltage for 25 percent of the ON time, and at max, mumvoltage for 25 percent of the ON ume. The input voltage range, if not specifoed el$ewhere, should be as

specifted an a through d:

a.

activity

b.acflviIy

c.acttw:y

d

Wheeled vehicle equipment: 210 percent of nominal or as specified by the Procuring

Tricked vehicle equipment: ? 10 percenl of nomtnal or a%$pecif,ed by the procuring

Sheller Conisguration equipment: z 10 percenl of nomtnal CMas spec,f,ed b] tne pro;ur, ng

ManDach eau, pment: For2A vol!$d, rect current (VDC). volt% (V) maa, mum = 32 v.m,n, mum = 20V

45

Page 59: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

Page 60: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

1.

5.5.1 .1,1 Electrical stress and dutv cvcle. During the operating cycle, input voltage should be variedbetween several levels as shown in FIGURES 48 and 49. Unless other.vise spacified by the procuring activity,the input voltage range should be 27 percent of nominal dtign voltage. After reference rneaWremWM5

are taken at nominal voltage and room temperature. minimum and mazimum voltage should be appliedduring the operating cycle as $hown in FIGURES 46and 49. The duty cycle is given also in FIGuRES 47 and 48.The ●quipment should be OFF about IO percent of the time. F’owar should be ON during the cold and hot

$oak periods.

5.5.1.1.2 Vibration $trecs. The vibration stretc should be applied .?ccording to the schedule inFIGURES 48 and 49 on a 25 percent randomly aalacted duty cycle. The vibration apactra should have the

shape definad in FIGuRE 54. The teat should be run ona single ●xis Cpecified by the procuring activity.

5.5.1 .1.3 Temoeralure and humidity stre$$. The suggested temperature and humidity profile for●eternally mounted equipment i$ provided in a Vwcwgh o bale.w. Ail relative humiathy (RH) values are

t 5 percent (RH):

a. Starting from 22*C and 25 percent to 75 percent RH. lower the temperature to -50”C asrapidly as poa$ible, hold at -5fYc (cold wak) for 1.75 houra (ON). Raiae the temperature to -3~C. Apply thecold soak only during the first three cycle%

b. Slowly lower the temperature to -34.5°C over a period of 3.5 hours.

c. Slowly raise the temperature to -2&C o.er a period of 13 hours.d. Rai$e the temperature to 22’C over a period of 5 hour$.

e. Hold the temperature at 27C, but bring the RH to 25 Wrcem to 75 percent over aperiod of 1 hour.

f. Raise the temperature to 25*C and the RH to 95 percent over a period of 2 hours.

g. Over the next 10 hour% slowly raise the temperature to 29°C with the RF! keptcontinuously at 95 percent and hold for 5 hours.

h. Slowly lower the temperature to 25*C over a period of the nefi 5 hours with the RHkept continuoudy at 9S percent,

i. After 2 hours, lower the temperature to 2~C ●nd the RH from 2S percent to75 percent.

j. After 2 hours, raise the temperature to 2YC with an RH of 6S percent.k. Over the next 12 hours, raise the temperature dowl y to 4WC with an Rli of 25 percent

and hold for 2 hours.1. Raiw the temperature to 65-C (ON) and raise the RH to 95 percent and hold for

2 hours. Drop the temperature to 48”C. Apply the hot coak only during the f!rst three cyclesm. Over the next 9 hours, slowly lower the temperature to 22°C and bring the RH to

25 percent to 7S percent.n. Repeat steps f through I six times.

o. Return to step a and repeat the cycle until the desired test duration i5 obtained.

Hot and cold soaks are added to cover wor~case storage and tran$f%mation ●nvironments.

S.5.1.2 Internally mounted eauipment. Tha full profile for internally MOWW?CI equipment is asshown on FIGURES 50 and S1.

5.5.1.2.1 Electrical str~$ and dutv cycle, Tha electrical stress and duty cycle 5hall conform toS.s. }.t.l.

5.5.1.2.2 Vibra!ion stress. The vibration stress should conform to 5.5.1.1.2.

5.5.1 .2.3 Temperature and humidity stress. The temperature and humidity stress profile forinfernally mounted equipment is as %pecif, ed in a through m:

47

Page 61: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

a Starting from z2°C and 25 percent1075 percem RH, lower the temperature to -50°C airapidly M powble and hold at-50”C ((old soak) for 1.75 hours (OFF). Raise (he temperature to O-C a! rapidly

a%oowib le. ADDIV the cold soak onlv for f!rsl three cvcles

for 5 hours.

for 6 hours

b.

c.d.●.

f.

9.h.i.

1.

Hold O-C (OI 195 hours, then raise the temperature m 19-C over a period O( 2 hours

Over a period of 1 hour, establish conditions of 2PC and 25 percent to 75 percent RHOver a period of 2 hours, establish conditions of 37°C and SO parcem RH.

Slowly during !he next 10 hours. emabli$h conditions of 41-C and 48 percent RH; hold

Slowly during a period of 5 hours, ●stabli$h conditions of 37°C and 50 percent RH.Hold 3TC for the-next 1 hours, but lower the FtH to43 percent.

After 2 hourt ●stablish conditionsof41 ●C ●nd 33 percent RH.Slowly during the next 9 hours. e$tablish condifion$ of 50”C and 21 percent RH; hold

Repidly rai$e the temperature to 65°C and the RH to 95 percent; hold for 2 hours (OFF).Lower temperature as rapidly as pos$ible to SO-C. Apply the hot -k only during the Iimt three cycles.

k. Over the next 5 hour%, dowly establish conditions of 22-C and 25 percent to

75 percent Rt+1. Repeal ftepf d through j six bmesm. Relurn to step a and repeal cycle unul the desired test duration is obtained.

5.5.1.3 Inlernallv mounted eauiDmenl. tern oerature controlled $Dace. 5ee FIGURES 52 and 53 for

the full profile of the Internally mounted ●quipment for temperature controlled $pace.

5,5.1.3.1 Electrical stress and dulv cvcle The electrical stress and duly cycle for internally mountedequipment In a temperature controlled space should conform to 5.5 1 1 1.

5.5.1 .3.2 Vibration stress The wbrahon stress should conform to 5.5.1.1.2.

5.5.1 .3.3 Temoeralure and humid,lv stress oroflle The temperature and humidity stress profile for

tntt, rnally mounted equipment in temperature controlled $paces is provided in a through i;

a Staning from 22’C and 25 percent to 75 percent RH. lower the temperature as rap,dly& pos$ible to -5WC (cold $oak) and 25 perceni RH; hold for 1.75 hours (OFF). Raise the temperature to 22°Cas rapidly as possible Return the RH to 75 percent Apply the cold soak only during the fnrst three cycles.

b. Slowly over a period of 1S hours, establl$h condition$ of 2YC and 30 percent RF!.

c. 510wly over a period of 7 hours. e$labliih conditions of 2YC and 30 percenl RHd. Repeat stegs a through c sir times

e. Lower the temperature to O“C in 1 hour; hold for 5 hour%.f. Afler 2 houm, e$labltih cond, tiom of 20-C a“d e6 percem RH: hold for 6 hours

g. After 2 hours, establmh condiuom of 5WC and 21 percent RH: hold for 4 hours Raise

the temperature as rapidly as po!sible to 65-C; hold for 2 hours [OFF). Decrease the temperature rap!dly to5~C. Apply the hot soak on only the fir$l three cycles

h. Afler 2 hours. ●stabl, sh condniom of 22-C and 25 percent1075 percent RH.i. Return to slepa and repeal the cycle until lhe desired test duration if obtained.

5.5.2 Naval submarine. The submarine profiles should be based on a 24-hour test cycle which shouldbe repeated for the duratron o! the test (See Reference 18).

5.5.2.1 Electrical and dutv cvcle !Ires$ During the operating cycle, the input vollage $hould bevaried between several levels as shown ,n FIGURE 55 Unless otherwi$e specified, the input voltage range

should be 27 percent of nominal Reference measurements should be made at nominal voltage and roomtemperature. Mtn!mum vollage should be appl)ed for the initial period of the operating cycle and maximum

voltage should be applied dur, ng the pertod of highest ambient temperature Nomjnal voltage should be

applled for the balance Of the cycle and the du!ycycle ihould be as shown in FIGURE 55,

48

Page 62: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MIL-HDBK-781

5.5.2.2 Vibralion sirm$ Submarine vibralion $tres Ievel$ are normally extremely low. However,since vibration Ievel$ after battle damage and during transportanon may be considerably higher, thevibration stress of FIGuRE S4 should be wed with the profile shown in FIGuRE 5S. The actual vi brauon time

should be 3 hours in a 24-hour test cycle. Thi! test should be run on a single asisselected by the procur, ngact! vily. The battle damage spectrum $hou!d be applied for 10 minutes during each 2d.hour test cycle al thestan of the vibration cycling. The Iran$portation spectrum thould be applied for the rema, ncler of Ihe3 hours, in 20-minufe interval$, with 10-minute breaks.

5.5.2.3 Temiwrature and humiditv$trei! Drofile. The temperature and humidity Krm$ profile forNaval siibrrlarine equipment; i; prcY&?ed in a :h:euQh k:

a. Starting from 22°C and 25 percent to 75 percent RH, lower the temperature a~ rapidly aspossible to -SO-C and hold for t.75 hourf (OFF). Apply the cufd $oak only on the fm~t three cycles

b. Raise the temperature to -35’C; hold for 2 hour\.c. Kaiw the temperature to IYC: hofd {or 2 hoursd. Raiae the temperature to 2rC; hold for 6 hours.e. Rai$e the temperature to 5WC and the RU 1095 percent; hold for 1 hour.f. Raise the temperature to 65’c; hold for 2 hours (OFF). Hold the RH at 95 percent Apply

the hot soak only during the firsl three cyde$.

9. Lower the temperature to 50”C and the Rti to 65 percent; hold for 2 hours.h. Lower the temperature 1022.C and raise the RH to 95 percent; hold for 4 hours.i. Lower the temperature to O.C and lower the RH to the 25 percent to 75 percent range.

1. Lower the temperature to -35°C over a period of 2 hours; hold the RH in the 25 percentto 75 percent range for I hour.

k. Repeat the tesf p,of,le as direclti by the Program Manager.

5.5.2.4 ~. Mo, slure levels are not a significant $tres! factor for equipment installed Inprotected areas on wbmar, nes For equipmenl which may not be properly protected during Iransponationand storage, constilt MI L-STO.21O s.nd .4 R?0-3B for da!? en envi?onme fital e~tremes.

5.5.3 Marine crab (Armk) Mar;ne craft includes a variety of smaller craft wch as Iandlng crati and\maller vessels used on interior waterways, The environmental slrus cycle for marine wah ISg,ven mFIGuRE 56 (see Reference 16) The te$! cycle duration should be 24 hews or an evenly divisible fraction

thweol. 7he erwircmmtertis fix ieiiii,Y $,t-oSiitmaii~~ uafi a.? @ven Ifi 5.5.3.1 ihlGugh 5 S 34

5.5.3.1 Thermal stre~! Unlew otherwise specified by the prwuring activity, the marine crafl thermalstress environment should be constructed from a combination of the environmenwm TABLE 23.

5.5.3.2 Vibration $tres!. Guidance for establishing vibration tem requtrement$ M provided inMIL. STD.8 10, Method 5.14.3. Test Procedwe 1,Test Condition I-3.2.1 1. If the vibrallon is unknown or not

specifted, the requirements provided in a through c should be used:

a. Amplitude, .020 inch (DA) t .004 inch (DA)

b. Frequency range: 4 Hz to 33 Hz to 4 Hzc. Sweep time: 10 minutes ? 2 m#nutes (up and down)

5.5.3.3 Electrical stress and dutv cvcle. A voltage variation of ? 10 percent ii normal for mar,ne craftP Iyp, cal profile would be: 25 percent of the time al nominal + 10 percent; 25 pefcenl of the time alnominal -10 percent; and 50 percent of the time at nominal. Unle$$ otherwise specified by the procurtngacliwly, the duty cycle of input power should be 10 pe,cent OFF and 90 percent ON, in a preselecle~irregular patter”,

49

Page 63: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

S.S. Q Underwater vehicles En.ironmenla! test data whicl~,% appropriate for the rel, ab,l, !y test, ng ofunderwater .eh,cle$ usDre5enled in Reference 19. Government program N4anagers and equipmentdevelopers are referred 10 Reference 19 lot appropriate test data It should be noted that the data an thisreport applies only to the MK.50 Iorpeao; other %y$tem%may require extrapolation of data.

5.6 Combined environments for iel aircrah eauigmenl. A combined+ nvironmenls test cycle shouldbe used whenever pos$ible for testing jet alrcrah equipment. During thi$cycle the thermal stress, vibration.humidity, and input voltage imposed on Ihe lest item should be varied simultaneously. The speciftc te$l

conditions will ba determined by the type of aircraft into which the equipment is to be instal lad, its Iocat, onwithin the aircraft, the aircraft mission profiles, the equipment class designation (in ●ccordance withM IL-E-5400), i ype of cooling f or the compartment in which the equipment i~ located (air-conditioned or ramair.cooled), and the type of equipment cooling (ambient or supplemental air) which i\ being used (see

Reference 20).

5.6. t M, fsion orofiles. Each aircraft type is de$igned Iooperate within a Jpacific flight ●nvelope and10 fly specific mission profiles. The environmental profiles used lot-t prototype and production aircrafishould be based on these flight envelopei and profile$. When de$lgn flight envelopes and flight m,$s, ocprofiles are not available, the generalized flight envelope~ in FIGuRES 57 through 62, and the tablesincorporated into those I,gures, \hould be used for developing mowon pro fnles (altnude and speed ve, w$

t,me) for spec, ftic aircrah types. From the~e m,ssion profiles, reasonable and practical environmental te$tprofiles may ba developed. The mission profiles are clastif!ed by $pecial aspects such a$ phaie alu:ude, pha~e

Mach number, phase duration. and lran$ition rates between steady-state conditmns. If mission proftleinformation is not available. the data in 5.6.2 through 5.6.2.8 should be used to establi~h the enwronmenlaltest condltiom

5.6.2 Environmental test orof,le$ The test profile should be developed from the aircraft miss, onprofile, The condtt!ons which must be deftned are temperature, vibrat!on, humidi!y, and inpul vollage

Each test cycle should consist of Iwo m,smons One mission should start in a cold environment and proceedto a hot environment; the second m,smon should start on a hot enwronment and return to a cold

environment. The mission profile should be analyzed to determine the ●nvironmental stress levels for each

of the mission Ilighl phase$ (Iakeoff, chmb, combat, landing, and so forth) as well as for ground cond, uomIn addition to the information derived from the m,won profile, the data specifoed in a through d should be

compiled.

a. Equipment clas$ (see MIL-E.5400)

b. Equipment Iocat!on within the aircraftc. Type of cool, ng for the compaflment in which the equipment is located (air-cond, tinned or

ram air-cooled)

d. Type of equipment cool, ng (ambient or supplemental air)

A table of environmental profile data should be prepared for the specific aircraft and equipment under

consideration. This tabulation $hould include the data specif ted in e through p:

● ✎

f.

9h.

i.

i.k.1.m

n

0

P.

Mission phajeDuratitm (mmutes)

Altitude (thou$ands of feel)Mach number

Companmem temperature (“C)Temperature rale of change ~C per minute)

Dynamic preswre q (pounds per $quare foot ( Ibs/ ftz))Power spectral density (P5D), WO(g2 /liz) = K(q)?, where q = dynamic P~e$wreP5D, W1(gZ/Hz) = WO-3 dBHumtdily

Equipment operauonInput voltage

50

Page 64: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MIL-HDBK-781

A typical environmental profile data set for ●quipment attached to structure adjacent to the externalsurface of a ,et. propelled Navy attack aircrati i$given in TABLE 24 Source$ from which environmental data

can be obtained and the methodology 10 be used in entering this data in the table areas provided in S.6.2. 1through 5.6.2.8. The methodology describes how each $tre$s level should be obiained and prewmm that nomea$ured data. either specific or for similar applications, i$available. (f meawred stress-ievel data ($peciftc or

$imilar) is available, it should be entered directly inlo TABLE 24. TABLE 2S should then be developed by

aPPlying the special vibration and !hermal wound rules as Provided in 5.6.2.1 through 5.6.5.5.

5.6.2.1 Mts$ion ohase (Iemoeralure mode). The specific mi$$ion phases should be der(ved from themi$\ion profile. The number, type, ●nd duration of the phase are functions of aircraft type. The ground

condition$ wed for all aircrafl and equipment typm should include a nonoperating pariod followed by aperiod of operation. Since the equipment often will beat ●ithar a low or a high temperature when in a non-

operating mode and turn-on will occur w~le it i$ still at that tkrmal condition, both hol and cold start>should be included in the teat profile.

5.6.2.2 Duration Theduration of each mission flight phase should be obtained from the m,ssionprofile. The test time for g,ound conditions should apply to all aircrah types and missions The test tdme fornonopera:lng and operat, ng Iemperawres it 30 minutes.

5.6.2.3 Altitude and Mach number. Altitude and Mach number should ba obtained from the missionprof!le analysis.

5.6.2.4 Commanmenl Iemoerawe The information specified in a through i should be obtainedpno? to eitabh$h, ng !he companmen! lemperalwe levels;

@&

a Ahtl”oe and Mach number

b. Equ, pment clas! in accordance

c

d

e

f.

9

h

w,th MI L-E-5400

Equtpmenf coobngmethod (amb!ent or

supplemental)

Companment coolingmethod (a!r-conditioned

or ram a,r-cooled)Power d,s,ipation

Equipment density incompanmem [crowded

or uncrowded)Aer flow into

companmencTemperature of

air flowlng intocompartment

i. Compartment

area exposed

~

Mandatory

Mandatory

Mandatory

Mandatory

De$irable

De$irabie

De$irable

Desirable

Obta, ned from

Mission profde analysi}

(see5 6 2.3)Equipment ales,gn

control spec,l, cation

Equipment designcontrol specification

Equioment designconfrol $peci I;cal,on

EquiDment dewgncontrol $pecif, cation

Aw-condit@nad

des!gnspeciftcation

Thermal design

specificationThermal design

specification

Aircrah design

spacif, cation

5.6.24. ! Ambient-cooled eauioment The data for amb,ent. cooled equapment are prowded in a

through b (3]:

51

.- .-., ... , ,_&., _A.-1..%. —_

Page 65: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDF3K.781

a. !iol. daylemperatur ?: Using the allmde. Mach number, the MI L. E.5400 Class, a~dcompartment cocdtng ,nformatlon, enter TABLE 26.27. or 28 as appropriate m determ, ne hot-day

compartment temperatures for each of the miwon fltght phases For the gro,und conditions (nonoperattnqand operating), a temperature of + 55.C sl,ould be used for Cla\s I equipment and + 71-C for Clas! IIequipment

b. Cold-day temperawre: Cold-day companmenl lemperature$ for equipment an ramaw-cooled compartment! !hould be wlected from TABLE 29 For equipmem located in air-conditionedCompaaments, cold-day temperatures should be selected from the methods provided in 1 through 3. Themethod select~d depends on the anlounl of information available. For the ground conditions (non-

Ovrating and Operating). a temPeraWre of -W.C should be used for bath Class I and Cla$s II equipment1. Method 1: If a limited amount of information is available, wch as only the

altitude and Mach number, the compaflment temperature for each of the mission flight phases $hould bewlected from the cool.compartment temperatures in TABLE 30.

2. Melhod 11: If the equipment power dii$ipation and compartment equipmentdensity are known in addilion to altitude and Mach number, the cool- or warm-companmenl temperaturesshould be selected for each of the minion flight pha$es from TABLE 30 as follows:

A. Warm-compartment selechon’ If the equipment power dissipates a highwattage and the companment conta!m many other ●quipment$ tending to impede cooling a!r flow,temperatures should be selected from the warm-companment values

8. Cool-companmem $eIecmon: If the equ, pment power dissipalbon i} m)n, maland the compartment is relatively uncrowded with free, unrestricted airflow, the compa.flment temperatureshould be $eIected from the cool-compartment values.

3. Melhod Ill: When additional thermal and design engineering data are ava,lab!e.the companment cold-day temperature can be calculated for the mflsmon flight pha>es u$ing the follow, ngexoreswon

3.4 I x CWkd + 14.4( 1.8)w X7hn) - u , 1.8. .4 x ‘rk)TfCOmp) =

1. S(UXA+14.4W)

Q(Elec) =

w.

T(in) =

u=

A=

T(rec) =

M=

TA =

AltiWde (1000 ft) Temperature ~C)

o -51

10 -26

20 -43

30 -62

40 -65

50 -73

Electrical load (watts)

Air-conditioned flow rate in:o companment (pounds per m,nule)

Temperature of a,r tlowtng Into companment (“C)

Overall heal transfer coefficient, arittsh thermal units per minute per square fool per

degree Celslu$ (BTU/m, n/h2PC)

Compartment area elpo$ed to ambiem (square feet (hZ))

(1 + 0.18M>)[TA + 273) - 273(”C)

Mach number

Ambtient temperature (“C) al altitude

52

Page 66: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

56.2.4.2 SUDK.\ementallV cooled equinmenl. Supplementally cooled eautpment fol hot daycompanmenl temperature and cold-oay companmem temperaluve should be e$tabh$hed in accordancewith 56.2.4.1, The flow rate. temperature, and dewpoint Iemperalure of the supplemental air should beselected in accordance with the equipment specification during ●ll pha$e$ of the mission profile whichrequire equipment operation, During the ground nonoperating pha$as, the wpplemenlal air flow $houldbe zero. During chamber air heatup. the mass flow of wPPlemenlal air shOuld be the minimum $pecifled tinthe equipment speci Iication and thts should be maintained WXil chamber air cool down. During chamber atr(001 down, the ma$s flow of supplemental air should be the maximum specified in the equipmentspecification and this should be maintained until chamber air heatup.

5.6.2.4.3 Temperature rate of ~hanae. A temperature rate of change should be calculated for eachmission phase which involves a change in altitude or Mach number. This $hOukJ be accomplished bycalculating the compartment temperalur~ of the steady-state condition$ bounding the pha%e in whichaltitude or Mach number varied. calculating the temperature difference of the bounding phase~, and thend,.iding this value by the duration of the varying aftitude or Mach number phaaa. (n the ●xampfe pre$emedin TABLE 25, takeoff and climb to altitude have &cncon\idered a$ a jingle phase from a thermal point ofview. In cefiain cases, two con$ecuiive mis$ion phaaes may involve $uch changw as a dive followed by acl, mb or a loiter condition followed by a dash. In such situations, a temperature rate of change should becalculated for each of the two phase$ The example provided below illustrate$ the procedure:

EaamDle of temoe rature rate of chanae calculation

An aircraft In a cruising mode suddenly climbc. then dives, and finally resumes cruimng FIGuRE 63shows this action. The Iollow-, ng tabulation lists the phases and accompanying data:

Duranon* (C!@!@ Mach Number Altitude (oa r 1000 ft) Compartment 1~~

Cruise 11.3 0.B5 1 1.5

Chmb 1.0 0.75 lt08 3.0

Dove 5.0 0.80 8101 13.0

Cruise 10.7 0.85 1 1.5

Thermal rate! of change are calculated as follows:

CLIMB (cold dav. cool comDanment)

Temperature . +3”Cat8000 fcand Mach Number = 0.75

Temperature . . 1.5”Cat 1000 fiancf Mach Number = 0.85

~atc= 3“C-I.5°C= 1.5”Cpcrminuce

1.0 minuti

f21VE (cold day, cool companmem}

Temperature = + 13”Cat8000 fland Mach Number = 0.80

Temperature = + l.YCat 1000 fKand Mach Number = 0.85

“C Der minute

1.S (use 5)

2.3 (IMe S)

If”l,, =13”C - 1.5°C

= 2.3 CCpermi4uk5.(J minutes

53

------ -.= K-- . . . . . . .

Page 67: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

S.6.2.5 Vibrat#on. The random vibration level should be determined for each Of the mtSSOOnpha\e$using the information in TABLE 24 and FIGuRES 64 and 65. Special. ca$e vibration dala isco”lal”ed ,n

TABLE 31. Select a value of dynam!c pres$ure (q) from FIGuRE 64 for each steady .state condition as a

function of Mach number and altitude. For lransienl conditions such as dive, the (q) value should be

determined u$ing the Mach numbw for that pha$e, if known, ●nd the average altitude for that phase. If theMach number is not known. the (q] value should be computed a! Ihe arithmetical average of the (q) at the

fta.rt of a dive plus that at the termination of the dive:

ti.tnrt + qtermirwtio.)

2= q aucmgt

If the altitude and Mach number combination is such that the value of (q) isle$~ than 76, uae q = 76, The PSD

(We) should then ba compuled in ●ccordance with the requirement! of TABLE 31. FIGu RE 64 should then beemployed to determine the spectrum shapa (test ●nvelope) and a (W, ) calculated if raquimcf.

5.6.2.6 Humidity Humidity should be injected into the lest chamber and a dewpoint temperature

of + 31°C or greater should be maoncained during the innial pc.nion of the ground, nonoperating phase f.ma hot day. This level of dewpoim should be maintained and controlled until the end of the ground,

0Fra:#n9 pha* fOr a hOt day. NO funher iniecli On of moisture is requt red for any of the other profilepha$as and the humidity during these phases should be uncontrolled. The dewpoinl temperature should bemaintained and controlled al 3 l°C or greater for each wb%equem cycle during the hoi-oay ground.nonoperating and operating conditions Chamber air should not be dried at any time during a Iest cycle RH

should be controlled to ? S percent RH

5.6.2.7 Eauiomenl operatmn. The eq”,pmen! should be in an opetaling mode during all phases of atest profile except for the ground. nonoperating pha!e;

5.62.8 Electrical stress Input voltage should be maintained at 110 percent of nominal for the first

tesl cycle, at the nominal value for the second te$l cycle, and at 90 percent of the nominal for the third te$t

cycle. This sequence should be repeated conunuoudy during subsequent cycles thrOughoul the test The

equipment should be turned ON and OFF at least twice before power is applied conttnuoudy to tieterminestafiup ability at the extremes of the thermal cycle

5.6.3 Construction of an environmental oroi,le See FIGuRE 66. which presents the enviromnenlalpro ftile rewlung from the data entered an the example (see TABLE 24), was detlved from the m,s%ion prof$le

pre!enIed in FIGuRE 67. It should be noted thal m the e.ample (see TABLE 25, combat cruiie phaw) a

change in temperature is obtained even though no change in altitude occurs. Thi\ is due to an accelerabonfollowed by a deceleration In this case, no tem~eralure rate of change has been defined since theacceleral,on and deceleral non are extremely cap, d

5.6.4 Test cwofile development. The environmental profile developed in 5.6.3 should now beconverc~ into a test profile which reproduces those phase$ of the envimmmental profile which reflect the

●quipment exposure and wh,ch can be s,mulated in a test facility. When co”vert, ng frown the enviromnentalto the test profile. the ground rules and procedure! In 5,6.4.1 through 5.64.4 should be uwc!.

5.6.4.1 Vibration. A maximum of four vibrat,on level> (WO values) \hould be used in any paniculm

left profile for each of the two mi$\ion$ (cold day and hot day). These leuels should be ●$labl ished using I he

$tep$ specified in a through d (wep$ 1 through 4):

a. Step 1. Review the (Wo) values listed for each phase and delete any levels which are Ies!

than O.001.b S1ep 2. Identify the (Wo) and duraucm assoc~ated with takeoff and apply lhese values 10

the test PrOflle as shown in TABLE 25c. step 3. ldenufy the (Wo) and durations associated with the highest and Iowe%l (q) levels

and apply these val. e%lO1he test pro f,ledurang Ihe pha$ei ,nwh, ch they occurred

I 54

Page 68: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK.781

d. Step 4. The fourth level of (Wo) is established by calculating a time. weighled average ofthe (WO) values remaining aher ndentiflcalion of the takeoff. minimum, and maztmum Ievel$. This isaccomplished by multiplying each (Wo) by its duraluon, add, ng these products. and then dividing thi$ sum bythe sum of the durat,on$. The resulting fourth level should be applied to those test phases a$soc)aled withthe ●nvironmental profiie phases which were used tocalcuiai~ the fourth le}l level. in each cage the

duration $hould be as \tipulated in TABLE 24 for that particular phase. For ceraain aircrah flying relatively

benign mission$, all or most (WO) values may ba Ias$ than 0.001 gVHz.

A value of W. = 0.001g2 /fiz thould be stipulated for mission flight phases not accounted for by any of thefour (wo) defined in a through d (sleps.1 through 4) abOve.

5.6.4.2 Temperature. (f the temperature rate of change calculated for any transient condition is lessthan 5“c per minute, a value of 50C per minute should be used. Any thermal condition which is less than 10”Cor less than 20 minutes in duration should be deleted from the lest profile.

5.6.4.3 Example of test orofile. FIGURE 66 is the test profile developed from the sample mission andenvironmental! pro f,lei. TABLE 24 Itists in tabular form the actual data used 10 conslrucl the te$t pro ftile.NoIe Ihat the transient thermal condition (-19°C to-10”C for a period of 5 minutes) was deleted from thetest profile. All values o! temperature rate of change which were less that 5°C per minute were changedalso The durallons of those phaw! were reduced and all other phase durations were maintained a!

originally specifted. Three levels of vibration remained after application of the ground rules: takeoff,mimmum, and maximum. The (Wo) associated with takeoff i$ selected from TABLE 24; a maximum of W. =

0.007 and a minimum of WO = 0.0019 were oblained from thii table atier all values of WO <0.001 wereexclwed Stnce these values and the, r associated durations d,d not acccwm for Ihe lotal mls%,on lime. a Ieuelo’ W. = O.@CI1g> !Hz was specif, ed for ur!accounle.d time peri@d$ {w? TABLE 25!

564.4 Test t)rofiles for variouiaircrafitv cm. unle$~ otherwise specif, ed by the procuring acuvlty.the test profiles shown on FIGuRES 69 through 102 should be used during rel$atml,ly Ies:, ng These pro f#leswere der, ved from the m,ss, on pro f,les in FIGURES 57 through 62 using the method% vn 564 1 Ihrough

56 <.3

5.6.5 Composite envlronmenlal test profile for multimission aDo lica!iom. A compos, te lest profoleshou)d be developed for those simal,omw here it is anticipated that the equipment wil! be u%eo during

more than one lypeo~ mhmon Inlhis case, a Ieslprofile musl redeveloped for each !denl; f,ed rmss, on for

which Temperature, wbralnon. humldtly, and input voilage Ieveis and Ourat tons ha.e been Oelerml neti. Thecorrpos, te lesl p.ofole framework should be structured to retain the concept of two miss, ons in each testcycle. One mis$mn $Iaru from a cold ●nvironment and proceeds to a hot environment: the second slan$from a hot environment and returns 10 a cold ●nwronment. Provisions hawe been Included #n the structurefor exposing the eauipmenl to three temperature levels during each mission and four vibral, oc Ievek during

each test cycle. Thi\ procedure requires thal an environmental test profile for each applicable mission andan estimate of the relat, ve frequency of occurrence of each mission be available m the user.

5.6.S. 1 Reauired in formal, on. A test prof,le for each mission must be developed. Each prof,leshould indicate tempwawre levels and rates of change and their duration for both the hot-day and cold-daymissions. In addiuon. all vibration levels and ‘corresponding durations should be identified. The estimatedrelative frequency of occurrence of each m,ssion should be determined from an an*lySis of the equipment”>

aPP1, caliOn and the hOsl Pla:form. A relative frequency of occurrence is defined M the proportion of thetotal missions contributed by a“ ind, wdual mtssion type. The sum of the miwon weighung factors over all

applicable miwons should equal 1,0.

5.6.5.2 Temperawre The procedures provided in a through d are identical for the hot-say and cold.day m!won% SeDarale analy$as should be performed for each mlmon.

a. A table mmilar to TABLE 32 should be prepared. Each steady +lale temperature level andit$ c.wre$pur, dir, g dtiratmn should be l+$ied for each applicable m,iisier,. The m,issiofi-.weiqh: inrj !ac:w !0:

55

Page 69: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

each JTIIss&on \!m. d be bdenttftecl rhe wetyh ted durat, om should be determined by multiplying earndura!!on by the ,,]rrespond#ng mjss!on.weightmg factor

:, The information prmented in TABLE 32 should be wmmanzed. and a table s,m,lar 10TABLE 33 should bu prepared. Eve,y umque temperature appearing in TABLE 32 should be Io%ted In

ascending order t:) TABLE 33. Only one entry per temperature value should be made an TABLE 33 no matterhow many time> (hat value appears in the $ame or in dufferent mis$iom. The total weighted duration for

each temperature: level ihould be determined by %umming lhe weighted durations for each entry of thattemperature app:. Iring in TABLE 32.

c Three levels of temperature and their duratiomshould ba \elected from those appearingin TABLE 32 (M AA, INT, Ml N). The MAX should be the highe$t temperature value indicated ●nd the MIN thelowest. The tejt duration for ●ach $hotild be the corresponding total-weighted duration. The INT level

should be determined as the timeweighted average of all the temperature values appearing in TABLE 33that have noI baen included in the determination of lhe MAX and MJN levels. The test duration for the INTlevel should be computed as the sum of the total weighled duratiomof thcna temperature values used in

the determinatiot~ nf INT value.

For example, if the ‘Ollowing are given:

Temperature level Total-weighled duration

“c L!?i!U@

20 15

5 10

3 20

INT =(20x15) + (5x IO) + (3x20)

. :.9.1*C15+10+20

Durauon = (corresfmndlng time$)

= 15+10+20

= 45minule5

d. When determimng MAX (or MIN) level, combine all temperature values in TABLE 33within 5°C of the highest (or lowest ) value by the method of time-weighted average. Duration for MAX (orMIN) should be the sum of the corresponding total-weighted durations. If ●ither the MAX or MIN levels donot have a duration of al least 20 m)nutei, determine a new value of MAX or MIN by time weighling withthe r,ext most severe level(5) until a 20-minute duration h achieved by summing the corresponding weighteddurations. If the INT level does not have a durauon of al Iea$l 20 minute%, specify if to be 20 manutes and

subtract one-half the difference between 20 minutes and Ihe INT duration from both the MAX and MIN

duration. If all the temperature levels of TABLE 33 have been e,hau$ted while computing the MAX and MINlevels and the INT level cannot be determined, identify the level with the longest time. Assume that thatlevel is to be the INT level also. Use half the duration for Ihe MAX or MIN level (a~ appropriate) and the

other half as the duralion for INT.

5.6.5.3 Vibration. A table similar to TABLE 34 should be prepared. Each vib,ation level (Wo) and ,ts

corresponding durauon should be Ilsted for each applicable misston The takeoff (TO) vi bralion level for1 minule should be listed separately from a (Wo) of Ihe same numerical value which ij derived by calculation

S!milarly. the (WO) of 0.001g2 IHz and its corresponding duration which has been added 10 requirecormnuous wbrauon (see 5.6.2.5) should be listed separately from a (Wo) of 0,001gl IHz lhat was der~ved by

calculation. These two entnes should precede any other miwon vibration entries. Each miswon’s wetgh~,n~

factor should be identified Weighted durauom should be determined by multiplying each durat,on by Its

56

Page 70: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7R1

I

Corresponding mts%ion weighting factor. The information presen!ed in TABLE 34 should be wmmarczed andatablesimilar lo TAEJLE 35$hould be prepared. The TOand 0.001g2 /Hz levels tdenIif, edin S.6.2.5 and theIota! weighted durat, on should be Itsled $eparately and span from the same values determined bycalculation. All other un, que wbration level~ (Wo) appearing in TABLE 34 should be listed in TABLf 35 tn

a$cending order. Only one entry per (Wo) $hould be made in TABLE 35 irrespective of how many llmes thatvalue appears in the mme or in dtfferem rn,ssiom. The total weighted duration for each (WO) value should

be determined by wmmnng the weighted durations for each entry of that (WCJ in TABLE 3A. A (W.) Of TOfor 1 minute (Iakeoff condttton) should be $elected.The minimum (Wo) of 0.001g> IHz corresponding 10continuous vi b,ation during the fbght phaws$hould be applied for a pariod equal to it! total-weighted

duration. In add,lion, three levels (MA.x, INT. MIN) should be determined for the remaining values providedin TABLE 35. The MAX level should be the highest (Wo) listed and the MIN level $hould be the Iowfit (Wo)lifted. The test duratmn for each should be the corresponding total-weighted duration. The INT levelshould be detemnined as the time weighted average of the remaining (Wo). The test duration for the INTlevel should be the sum of the total we,ghled duration$ of the (WO) u$ed in determining INT.

5.6.5.4 Conslruclion of the composite test orofile. Conslruflion of the composite test profile isprowded jr? 5.6.5.4.1 through 5.6.5.4,5.

5.6,5.4.1 Temperature. One test cycle should consist of Ihe sequence of Ie.el$ specifted in a

through k:

ab

:.

e.f

9h.

1.

J

k.

-54*C (nonoperating)-54’C (operating)INTc (cold day)

MAXC (cold day)

MINc (cold day). 71’C (nonoperating). 71’C (opera l,ng)INTH (hoi day)

MAX” (hot day)MINH (hot day]

Return w -WCC (nonoperating)

The durauon at the two -54’C conditions and the two + 71°C condition% should be 30 minutes each Theduralnon at each of the olhe, levels shoula be determined “sing the procedure in S.6.5.2. The temperature

rate of change between any two levels should be determined by reviewing comparable pha$ei of each!nda., dual lesl profile and selecung Ihe most typical value. The duration of exposure 10 a lemPelalule rdleof change should be determined ~rom:

I>ura inn .cndtempemfure - Nan fcmpemlum

m fe of cha nge

The entire cycle w;{h dwells at all levels and transitions between levels should be listed in a table similar 10TABLE 36.a, dep!cted graph! ca.llyal FIGu8: 103.

5.6.54.2 V! bration. The vibrat:on requiremenl$ should be integrated with the temperaturet,mellne. The MAX vi bratmn level should stafl at the same time as the MAX lerTIperJture levels and COnllnuefor the tame permd determined on 565.3. The MIN vibration level should !lart al the conclusion Of the

exposure to the MAX vibrations levels and continue for the time determined in 5.653. The exposure 10 theINT v,brat, cm level for the time determ, ”ed i“ 5.6.5.3 should start at a time calculated to assure Ihat 11scompletion cm”cide% twth the start of the MAX vibration level. The takeof{ level should be applied fOr 1

minute at theilan of each of Ihewans, tmns from -548C tol NT and from + 71-C 101 NT. A level of (1.001 g2/lizshall beapploed d.rnng all cuber pe, nods, e.cept for the-54’C and . 71°C soaks Thev, bratoon requ:remen,. s

for onecomple:ecyde should be I,sled ana table wmilar to TABLE 360rdepticled graphically a! an FIGuRE103

57

—------- ._. s....-> —. —___ .. ...—.— ------. . . .—------........ .

Page 71: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

56.54,3 Humid, [y Humid,ly should be injected inlo the test chamber and a dewpo, nttemperature of . 31°c or greater attained during the initial portmn of the ground. nonoper~ling pttiase fora hot day. The dewpoint temperature should be maintained and controlled until the ●nd of the ground,

operating phase for a hol day. No furfher in]ectmn of moisture I> required for any G! the other profnlephases. and the humidity during lhe$e pha$e$ should be uncomrolled. The dewpo,nt Iemperalure \hould bemaintained and controlled at + 31°C or greate, for ●ach subsequent cycle during the hot day ground,nonoperating and operating conditions Chamber air should not be dried at any time during a test cycle

5.6.5.4.4 EauiDment ooeration The ●quipment should be in an operating mode during all phases

of a test profile, except for the ground, ponoperaling phases

5.6.5.4.5 Electrical strefs. The input voltage should be maintained at 110percent of nommal for thefirst test cycle. at the nominal value for the second test cycle. and at 90 percent of the nominal for the thl rd

test cycle. This sequence should be repeated continuous y during wkequent cycles during the lesl. The

equipment should be turned ON and OFF at lea\t lwoce before power i$ applied continuously to determonestartup ability at the enremes of the thermal cycle.

5.6.5.5 Eaample of composite test orof,le This example provide% the procedure for deuelop, ng a

composite environmental tesl prof,le for a Class II equipment that is altached 10 struclurec adjacent 10 the●xternal surface of a jet fighter aircrak. The following data indtcales the mimons in which the equtpment ,>

wad and the relalive frequency of occurrences of each mtwon

Mnn+On tvc.e Relat, ve freauencv of occurrence

LOW-IOW40W 010High-low-low.high 040Low-low-h,gh 025Close wppon 0.20Ferry g

Total 1,00

Since these conditions correspond 10 those of the !ample test pro f,les shown in FIGuRES 69 through 102,

they may be used direc%ly FIGuRES 89 through 93 are corresponding lest profiles for the .miwom

●numerated above. Temperature and vibration levels and cturahom may be read d,recdy from the~e fvgures.-.. ,, .,.lFU?appl(catton or me proceOure ($ Illustrated m the table$ I(st.?d (n a through c:

a. TABLES 37 and 38: hot day temperature

b TABLES 39 and 40: cold daylemperaturec TAB LES41 and 42: v, bration

Rates of change of temperature between levels are determined by reviewini .=.corresponding phasej C.8the individual test profiles and $elect#ng the most appropriate one. The selected rales and calculated

durations are listed in TABLE 43 The completed composite profile is provided in a time!ine in TABLE 44 andshown in FIGURE 104.

S.7 Combined environments for VISTOL ●auiDment. The combined ●nvironments for Type$ A and 0VfiTOL aircraft (see Reference 21) are Spec,f,ed tn a and b:

a. Type A ISa tyin-engtne, subsonic aircrafl de$tgned for sea control and utility missions,including antisubmarine warfare, a,rcrah early warning, tanker ser.ice. ordnance del,.cry, and assault. Th, s

aircrafi can take off and land vemcally O, horizontally,-Venical operatmm are accomplished by a rolal, on of

~

the engtnes.

b Type B i! a twin-engtne. supersonic aircrah wh,ch is apprommately 10,000 pounds ltghler

than the Type A aircrafl The Type F,aircrah ii de$lgned for a f,ghler-a: tack role and can perform !ntefcep~,

58

Page 72: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

and surveillance rmss,ons Th, $ a)rcratl al$o can lake off and land in a verucal or conventional mode The

venical mode is accomplished by use of engine exhaust deflectors

5.7.1 MissIon description. The generalized miwlons for the V15TOL aircrafl provided in 5.7.1.1 and

S.7.1.2 represent the current view of the future role envisioned for V/STOL atrcraft. Each mission is describedby spatial aspecl$ required for the development of the environmental test, Aircratl speed and altitudeenroute to the combat area. during combat. and return to the \hip are identified. The missions and thecharacteristics for each type of v/STOL aircraft are provided. Although ●ach type of aircratt can take off andland in a conventional mode, it it aswmed that all Iakeoffs and iandings will be performed vertically. TheVfiTOL mi$sion profiles are prmented graphically in FIGuRES 10S through 114.

5.7.1.1 Tvoe A VfiTOL mi$$ions. Type A V6TOL mi$$iom are defined in a through g:

a. Airborne early warning: Take off vertically, climb to altitude. crui$e out. loiter, andcruise back at high a(!itude, descend, land vertically

b. Antisubmarine warfare: Take off vertically, climb to altitude, cruise out, loiter, deliverordnance, cruise back a! h,gh alt, tude, descend, land vertically

c. Conlacl tinwe$tigatmn: Take off vertically. climb to altitude, dash at low all,lude, loiterand delwet ordnance at iow alhl”de and low speed, cl?mb 10 high altitude, cruise back at high alutude.descend, land venically

d. -Marine assault: Take off vertically, cruise out at aaa level, hover at 3000 fI, crui\e back atsea level, land vertically

e. Surface attach: Take off vertically, climb to altitude, crui$e out at high altitude, Io!terand oel,ve, ordnance a! 20,000 h at low speed. cruise back at high altitude. descend. land vemcally

f. Tanker: Take off vemcally, dimbtoal:i;ude, cruise out at high altitude, Imter at low

speed and low alti!ude m Uan!f.?r fuel. cruiw back at htgh altitude. de$cend, land vemcallyg. Verocal onboard del(.cry: Take off uenically, cl,mb to altitude, cruise al high alt,tude.

de$cend, land vertically

5.7.1.2 Tvpe B vtS?OL mimons. Type B VISTOL m,ssions are defined in a through c:

a. Combat air pa!rol: Take off venically. <limb to attitude, crui$e out and lo(ter at t’trghal:!:ude, engage in combat at high speed and lower altitude. cruise back at high altitude, deicend. land

vertically

b. Deck launched interception: Take off vertically. climb at high speed to all! lude, dash outand ●ngage in combal at high altitude and high speed, cruise back at high altitvde, descend. land vertically

c Subson, c surface surveillance: Take off verc, cally, climb to altitude, cruise out and Imler

at h,gh altitude. engage in combat at intermediate altitude, cruise back at high allitude. descend. landvertically

S.7.2 Thermal stress The procedures of 5.6.2 should be applied. Whenever V/5TOL designs Includecooling systems and techniques ales,gned to maintain cool ambient conditions for eleclrontc hardware, aClass I thermal enwronmem may be uwd.

5.7.3 Vibration stress V#bralion ef(ect$ on equipment for viSTOL aircrah operating on a horizontalfl,ghl mode are sdent,cal 10 those experienced byconvent,onal ftxed-wing aircrafi. For venical fl,ghl modes(takeoff and Iandtng), the vibratmn Ievel$ are signif,ca”;ly different because of ground effecw TABLE (5. ar!

abridged version of TABLE 31, $hould be used for VISTOL: it includes vibration te!t levels (WO) for V/STOipeculiar takeoff and Iandlng cond, t,on$. The takeoff and landing W value$ were calculated in accordancew,th MI L. STD-81O, Method S14 3, Test Procedure 1,Tesl Condmon 1-3.2.5, us, ng VfiTOL engine parameler

information ior both Types A and B vfiTOL aircrafi.

5.7.4 E!eclr,cal %Iress The eleclf,cal *IWM for VISTOL aircraft should beapplled tn the mannerdescribed in 5.628

59

—.. ---. .— -.._ -_

Page 73: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

3.7.5 [email protected] i+umidity should be ma!nta!ned $n conformance vwth 5.62 b

5.7.6 Eauloment ooeralion The equipment should be tn an opera!tng mode during all phdses of atest profile, except for the ground, nonoperat$ny phases.

S.7.7 Test c.refiles. T.esi profiles for Typat A and B VfiTOI. a!rcrati are prouided in FIGuRES 1 1Sthfough 124.

S..8 Combined environments for Turbomopeller aircrafi wtd helicomer ●auipment. Combinedenvironments for turbopropeller aircre.h and helicopter ●quipment ●re ●s specified in 5.8.1 through S.8.2 .4.

S.8. ! Turbaoro@ler aircrafi environments. Tha ●nvironmental test levels provided herein are

~ppllcable tO ●quipments mounted wi~~n the fu$ela9e of turbopropeller aircrah. The indicated stres>values pre~nted should be u$ed only if actual str~$ levels ●re not specified in contractual document~. and

mission profiles are not provided. Gunfire induced vibration shwld be considered when the ●quipment ismounted in an attack helicopter in which caae, MI L-STD.8 IO, lest Method 514.3, lest Procedure 1,Tat

Condition I-3.2,4 should be consulted

5.8.1.1 Electrical Mreis Input voltage should be maintained at 110 percent of nominal (or the firsl

thermal cycle, al the nominal value for the second thermal cycle, and at 90 percent of nominal for the th, rdthermal cycle. This cycling procedure should be repeated continuously throughout the reliabilitydevelopment test The sequence may be interrupted for repetauon of input voltage conditions related 10 asuspected failure. The ●quipmenl should be turned ON and OFF at Iea$i twice before power i$ appl, edcontinuously to determine $tamup ability al the extreme of Ihe thermal cycle.

5.8.1.2 Vtibral, on The random vibration envelope on FIGURE 125 shodd be UWC. The vi brat,.a”

~hOuid be applied during the Thermal cycle of FIGURE 126 at me ondlcated level% for 12.5 minule$ at start otphase$ B and G and fm 12.5 m,nutes at the start of the m,won o~ective maneuvers during phases C and H

IIf the mtw,on prof,le has no maneuvers, the full vibration level should be applied for 12, S minutes midway

durir,g phases C and H. For the rema,mng portion of the test period. the vibration level should be reduced10 50percent of the Ievelsof FIGuRE 125-

5.8.1.3 Thermal 51ress. The general thermal test prof,le to be wed is shown in FIGuRE 126 Th, sproi,le s,mulates both ccld day and hot day missions, which together form one cycle The thermal cycle Mconlin”ou$ly repealed until the end 0( the test Prior 10 the stan of the first thermal CyCle, or dfh?r $Iorage

al room ambient, the equipment should be allowed m cold foak for 1.5 hours at the low temperature of thewart of the next Ihermal cycle.

5.8 1.4 l+umid, tvstress Humidity $hould be specif, ed to s,mulate the warm, moist almospher, cconditions e$pecl ally prevalent in Iroplcal chmates, Moisture can be ,nduced directly into equipment dur,”gflight fin a hum,d atmosphere. Installed equipment is also subject to condensaldon. freezing, and frosting asa Tewll of Cllmalic Iemperalure humtdlty condition%.

5.8.1.5 Sucwlementallv cooled eauioment. The chamber air humidity should be in accordance w,th5.6.2.6. The supplemental cooltng a!r may be dried so that the dewpoint temperature is from 3°C to 13°Cbelow the temperature of the supplemental a,r or the chamber air, whichever is lower,

5.8 1.6 Chamber air humidt{y Humidity should be introduced into the Ie$l chamber in phafe D andincreased as the chamber alr temperature increases, keeping Ihe dev.’poinl Ie$s than the chamber air

temperature. The dewpo, nt temperature $hoold be raised to 31aC or greater and maintained and c.amro:!eothrough phases E and F of FIGURE 127. At the end of phase F, “o fwlher injecuon of mo!%lure ISreq~$,ed forthe other profole phase!, and hcjrnidlcy !hall be uncontrolled Th, \ humidity procedure should be repealec!

for each test cycle and phases D. E, and F Orying of chambe, ai, should nol be accomplished al Any I,me

during a:est cycle

60

Page 74: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDSK-781

1

I

5.8.2 Helicopter environments. Unless otherwtse specified by the procuring actt.ity, hel#coplerenvironment should be der, ved from MIL.STD-810 and the data Provided in 5.82.1 through S.8 24 Thecombined en.lronments profile i! $hown tn FIGURE 128, and the combined mission profile in FIGuRE 129

5.8.2,1 Electr,ca! sue\! U$e the input voltage variation specified in the individual equipment

specifacat, on. 11Ihe equ, pment speoficat!on does not provide this information, use the following:

W MiJ@ @y

28 VDC 29 22115 vAC, 400 Hz alternating current (AC) 122 104

5,8.2.2 Vibration. Unless olhwwise specified by the procuring activity. vibration test requirementsshould be established in accordance with MIL-STD-81O, Method 514.3. Procedure 1.Test Condition 1-3.2.6. for

●quipment imtalled in rotary wing aircrafi. Vibration cycling from 5 Hz 102000 HZ to 5 Hz for a maximumtime of three hours, using a cycle of 36 minutes on each of three axes is required. Theequipmem should be

exposed to a maximum of 5 g. For equipment imxatled in Army helicopters, the following vibra! ion $houtdbeappl, ed: 0.05 inch (l.27 mm) DA from 5 Hz 1024.5 P.z and 1.5g’$pk from 24. SHzt0500 Hz. The wbralion$hould be applied conlinuoudy from 5 Hz to 500 Hz 105 Hz. The !weep rale $hall be logarithmic and take 15minutes 10 go from 5 Hz 10500 Hz to 5Hz ?hj% sweep $hould be applied once during every hour of

equipment operauon

5.&2.3 Therms! stress Unless othemise !pecified by the procuring activity. the thermal prof,le farhelicopters should be as sDeclf, ed in FIGuRE 128 The equnpmenl also should be subjected 10 e coid \oah at

-62’C and a hoi \oak al + 89C as shown in FIGURE 128

5.82.4 I+umidilf Refer 10 AR7O.3L3 for worldwfde humidtty stress condttiom

59 Comb, ned environment% for a,r.launched weapon! a~d assembled esternal no,e% A method formodehng a,r-Jaunchea weapons and assembled ezlernal slore comb#ned environmenla: stresses where nOfl, ght mehwred dala ,\available(\ee Reference 22) ,$pmwded in 591 through 5.9.3, The test pro f,!e%are to

be tailored from aclual mi%sion-def, ned captive and free. fl,ght environments. The Crater, a for eslablljh,ngthe miwon related env, ronmenlal test pro!iles tnclude time dependent thermal, vibration. and eleclr, ca~stresses w,lh optional humidity and pressure condt!,ons. A general definition of the methodology required

and a de$cr, p:, on of 50W to eslabhch teal)stic environmental lest profile parameters are pro., cleo an 59.2Also, many table$ and f,gures are pro., ded 10 ass!sl in the construction of representative Capl, ve an~ free.

fl,.qt.t envcronmenla! lest cycles A comb, ned environments lesl cycle should be used when Iesl, ng a,r.

launched weapons and a$sembled external stores carried by a,rcrati and helicopter% The equipmentmounted ,rwde these stores s?ouid be tested a%speclf, ed ,n 5.9.1 Ihrough 5.9.3 During the env!ronmenlal

lest cycle, the thermal $Ires%, .ibralion (acousucs), hum,d, ty, and Input voltage imposed on the IeSI ,temshould be varied simultaneously. 5peciftc lesl condl:jons !hould be determined by the type of a,rcrafi uponw!wch the s<.ore IS carried, and it~ mtwrm pro ftle, More% Iog,%tics and late-cycle profile. the equ$pmenl cla~~de$ignalion (see MI L-E-5400). and free-flight envelope (where applicable). 5everal other factors. prowded inde:ail In 59. t through 5.9.3. will ajsi~t in the development of a tesl profde. The overall obje~lve i$ 10evaluate store or mnwle reliability in the test laboratory by simulaung the service use environment%

5.91 Mt$sion grofiles Each aircrah type which carries external store% is de figned to operate wilhln

a specific fl,ghl en.e:ope and fly \pecific caplfve-carry mission pmfales which may include externa! sloleinstallations on ellher lne fuselage o, wing pylon$. wmg ttDs, or both. For store% tesl!ng, the IIighl envelopes

and mission pro fdle%of the hosl aircraft(s) should be determined and used in developing the store capl, ve.carry en., ronmenta! test pro f,les (see TAELE5 66 through 53 and FIGURES 130 through 137). When a slore IS10 be used on more Ihan one aircraft, a percemage dmribul, on by aircrah and m,won should be usec 10

eslabl!$h !he Iett O,oftle$ Whe~ nospec, f:c use ,nforma tion, sava,lable. lhe miss, on.lype d,$tribulnon znTA,5:E .C7maybe tise: Wnendes, g.? Il,gol emelopeja”a I:, ghl m,%~to” pro f(le% are not a.a,lable. Ihe

generalized fl, ghl envelope% in FIGuRES 57 lhrougn62 may be used asa bas,$ fordevelopmenl of lhe

externsl store capl, ve.carry lesl p<ofde$ Each slore. oes, gnaled 10 be launched from a host a,rcraft, IS

61

Page 75: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

dewgned to fly its own %peciftic free-flight mission profile($). The type($) mission profile(s) for a store tn ltee-flight is e$~entialiy unique 10 its mission durauon, performance, and objectives. Hence. no generalizedprofiles can be provided The composgte mts%ton profile $hould be consistent with the eapected eslremes o’free-flight duration. alutude. speed, and, temperatures An example of the type of tnformalion needed ,s

shown in TALf LES 50and 51 and in FIGURE 147

5.9.2 Environmental test Drofiles. As specified m 5.6.2, the te$l profde should be develooed from theaircraft mission profile. The condit, om which must be defined are Ihe selected climatic categorytemperature, the required operational vibration, humid, ty, and the inpul vollage limits. Each test cycleshould consist of two segments. One segment should stan in the cold ●nvironment category and proceed to

the hot ●nvironment. The sacond segment sfvmdd $tarl m the hot ●nvironment and return to the coldenvironment. Test cvcim exhibiting Ihe$e characteristics are shown in FIGURES 130 and 131 and di$olaved ,n.,. ..–TABLE 46. The mi!sion profile shot..d be analyzed to determine the environmental stress levels encOu&ied

for the mis$ion flight phaw\ (takeoff, climb, combat. landing, and w forth) and the ground conditions. In

addition to the information derived from the mission profile, the data should be compiled a$ specified in athrough d:

a. Equipment class (see MI L-E-5400)

b. Equipment location within the store and the store stationc. Type of cooling for the companmem In which the equipment is located (air-condiuoned

or ram ●ir-cooled)d. Type of ●quipment COO1,n9 (ambient or supplemental air)

A table of environmental profile data should be prepared for the specific aircraft, the stores. and the slores’equipment. Th6 tabulahon should include the information for e through p (in add,tion to the data in the●~ample of 5.9 3):

e.

f.

9h.i.

i.kImn.

0.

P.

Mls\ion phase

Duration (minutes)Altitude (lhousands of h)

Mach number

Companmem temperature ~C)Temperature rate of change ~C per minute)

Dynamic pwcwre (q)(lbtiftJ)PSD, Wo(g~lHz). spectrum maxrmum levelPSD. w, (gllnz), spectrum m,n#mum level

Humbd,ly

Equipment operat, onInput voltage

Sources from which enwronmental data can be obtaaned and the methodology to be used in enter, ng th,$data in the table are d,scusted in 5.9.2.1 through 5.9.2.6.2. The methodology describes how each stress level

should be obtained and prewme$ that no measured data is available. either $pecific or for similar

appllcat, ens. If measured stress level data (%pectftc or wmslar) i$ available, II !hould be used. lest condttiomshould be then developed by applying the vi bralion, thermal, and humidity ground rules discussed in S.9.2. 1

through 5.9.2.6.2. The test environments for the free-flight pha$e simulation are the same as those requiredfor the captive-flight pha$e specified above However, the simulation of free-flight ●nvironment in the test

cycle i$ Itmited to post-launch mis!mn profile testing only (includ, ng the initial captive-flight launchconditions]. Included In this sequence i$ the thermal transition period from one climatic condmon 10 ils

subsequent Cl,matic condiuon (see FIGuRE 131 and TABLE 46). The phasing of the free-f l!ghl test cyclewithin the o.erall reliability test sequence depends on the mis$iles (or store%) projected employment. If a

store is prcqected (by system specift calnon requ!remen:s) IO be launched aher a %peciftc number of Capt, ve.11,ght hours, then the free. fl, ght rel!ab,ltly lest cycle should be sequenced to wmulale the mtwon dural, on

and an equivalent percentage of free. fl, ght launches throughout the overall lest program. There should be

not Ieis than one complete serte~ of free- fl, ght launch te$l Cy<les per tesl item

62

Page 76: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

..,, ,,-” ,rnl L-nwvk-78i

I

1.

5.9.2 I Mi%@n chase The $pecific mission phawi shoukl be derived from the mis$ion prof,:e Thenumber. type, and duration of the phase are a funcllon of aircrah Iype. The ground cond{t, ons used for all

externally carried stores and equipment Iype$ should include a nonoperating period followed by a pertod ofoperaliom Slme the equipmenl will often be at eilher a low temperature or a high temperature when in 5

nonoperating mode anti the equipment turn ON wiil occur while the equipment is stili al thal thermal

ccnctitiofi, both hoi end cold t:am shwld be included m :52 :e:t prc!ile. Ea:h ponion of the tes: cycle wi!l

be Composed of appropriate combinations selected from che most applicable of [he therrrial c+te~ardesspecified in a and b:

a. Ground ●nvironmental ●xtreme$ (captive flight- phase$A. D, G, 1, L, O, and Q, and

FIGURE 13U)1. MIL-STO-glc2, Table 520,0.111 II.-, ●Im . . ..+-r- ~fil~ =,~h.phere, end warm m.oi:!,. , .“. ” ...v.p .. ., .”.””. ..”.

atmcr!phere models), or, AR70-38, Cl, asappro!triate2. MIL-STD-81O, Table S03.2.11 (high temperature geographical Climalic categories]

and Table 503.2-111 (low temperature geographical climatic categories), or, AR70-38, C 1, as appropriate3. Selected conditions from MIL.$7D-21O or standard atmOiPhetiC tabie$4. Cktermified by individually ‘eilored life-cycle raqiiiretmenti

,b. Fl!gh! enwronme!?tal c.rtrem?s (captive- and fwe-flighl - phase! B. E. H, !. M, end ?, e!?dFIGuRES 130 AND 131)

1. MIL-STD-81O. Table 520.0-111(hot atmosphere, cold atmosphere, and warm moistatmmphwe model $), or AR70.38, Cl, as appropriate

2. 51ancfara atmospheric tabies (*lancfara, hot. and coio)%!e:ieci .W..uj ... ..l. ,, .,,,, .. . . . ..--A:.;-.-. +.-.-. ... ! cTD.~1~ of $IaG~ard a:m, o@c:;: :.?5!?;3.

~ Determined by individually tailored miwon requirements

The I!r$t half segment of the total test cycle [see FIGURE 130) !Iarts dicer the ambient irans! lion to theground extremes of the specified cold climatic region environment and proceeds through 10 the completionof the seiected hot-c l,mat, c rn,$mo” profiie (phasei A thf6@8 H). The $e<ofid half %I?gmenl bey, f!$ al lhtground ex:re-e$ e! the :pec;f,ed %! :Ii!nsti. .--~fi- =.!’.v!rsm?wn! and returns lhre~gh the re.ma,mng. ..=.-... .cl, mattic phases of the lest cycle to the completion of the $pacif ied ground cold cltmaltc region enutronment(pha$e$ I through Q). A post-test return to ambient occur% after the completion of the last segment of the

scheduled tesi cycles The time of each phase (A through Q) is determined by the re$ult~ Of :he operationalf,eld use study and mission profile(s) requ, remenl.

5.9.2.2 C2uralicn The c!ti:a!icm of each missicm f!igh! sha$e s!ww, ld be ebtained fret!? 1!!? missionprofile, When more specific information is Iack, ng. the external store lest times speofied in a through d can

be u$ed:

a. For a typicaf air superiority fighler with an air-m-air caplive-carry weapon mission only. a

W%C51 T,iisiorl :ime ShGuld be a minirntim, of ; F,Gw, 40 rrimd;~,.b. For a typicaJ tactical or attack aircrafi {ir!le~d;c!ion air<rafl) with an emwnal {aplive.<a~ry

weapon $ys!em for an alr-lo-wrf ace mission or b an ai, crafl wilh a supponing electronic warfare mlsslon

(assembled external store), a typical miwon time should be a minimum of 2 hours.c for a typical air-to-air or ai,.to.surface strategic aircraft mission (endurance), the

minimum mi5si0n time snouia be 2Lt hours.~, $e: ~x;e:r,a! ~apti;e.; a;; ie~ ~,;em,>le~ $;c;e; Cr, ;;an\po P, :argo.:ype airc::$. (;peci~!

!n!ssmn). the a%$umed rn!nimu~ mis:ior! time should be 6.5 hour%

5.92.3 Electrical stress When no values are specified by Ihe individual equipment detail

specifhcauon. input voltage shall be maintained al 110 percent of nom, nal for the first test cycle. al Ihenominal value ~or tine second test cycie, anti at 9CIpercent oi nominal ior the thsrd test cycle. Ti-us cyci!ng

proc+aur~ should be rep$zlsd coniinufiusly thrfiugt,cui lhe leii. Howe@r, ihii 5ecjuEfice rniy b-

!nlerrupted for the repetil!on of inpw volteg? cc,nd!!! on: re!a!ed to.? tpecif,c Iallure. ?+ircrafi and store

electrical Interface compat! b,l, !yfhouldbe maonlalned throuqhoullhe les\ cycles Theeampm en! sh6uld be

Page 77: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MI L-HDBK-781

ltir:ted ON a-d OFF at leas~ lwice in each thermal pha~e before continuous power ,s app:led lodelerm, rw

!l=,-. upab,lity at lheealreme~of thethetmal cycle During the nominal input vol(age$equence$, %hoc.l err.interrupt% ( 10 m!cvosecond% @) to 300@ and Ic?ng-term interrupts (20 m$ 10 150 msl In the Power supply$hould be imposed during the odd-numbered test cycles. When the indiwdual equipment speclf, cat, onrequires a smndby operating mode during specifoed operal# onal mii}ions. the Input vollage stress vanat, ons

ipecified herein for Ihe normal equipment operations should be followed.

5.9.2.4 Vibration strew Random .ibralion should be applied Iolhe inlemal aquipmen; item

designated for store in a!rcrafe imtallatiun in accordance with 5.9.2.4.1. and for the air-launched mlsstle andas$embled ●xternal stores, in accordance with 5.9.2.4.2. The random vibration test level for each phase ofthe test cycle should produce the random vibration respon$.m on the te$t item, required by the maximumpredicted environment of FIGuRES 132 through 134 and TABLE 48 (for (g,m~ overall (OVL)) level

adjustments anU FIGURES 135 through 137 and the equations of TA8LE 49. The maximum predictedenvironment is derived from the 95th percentile with SO percent confidence (for a one-sided tolerance Iem, t]using standard statistical analfiis pmcedurei, for the period of maximum overall random wibration levelThe baseline data was derived from a detailed $tudy of 1839 separate flight data meawremem$ When air.

launched mi$siles or a$sembled external stores are to be installed in more than one location on more than

one aircraft, the highest effective random vibration response level of enpowre 10 be encountered by the tes:item during caplive-flight $houlcl be computed for each lest pha5e and should be used throughout the

captive-flight test. The free- fl, ght response from externally applied vibration should be as de f!ned by themission pmflle performance (see 5.9 2)

5.9.2.4.1 Eauipment performance test The Individual equipment test utem[s) should be sub,ec!ed tc,random vi b,atio” excitation on the most wns,live ax, s The PSD loleranc~ of applted vi brat, o~ can beseleaed according to the Random Vi bra\ion TeSI Methods and P,ocedu,e$ paragraph of Method 514 3 O!

MIL-STD.81O, and the weight reduct, on factor of F,gure 514.3.27. The test ,Iem $hould be attached 10 the

vibration ●xciter in accordance wiih the appropriate Tesl Setup paragraph of Melhod 514.3. MIL-STD-81O

Equipment hard-mounled in service use should be hard-mounted to the tesl I,xlure and [email protected] should use service isolators when mounted on the test fixture. If service isolator> cannot be madeavailable during the te~l, isolators wiIh comparable dynamic characteristic~ !hould be provided Theacceleration PSD of applied vi bra\ion (gllli z).as specilted on the te?t f,xture at the lest item mou”t, ngpoints, should produce the random vibrat, on responses calculated in accordance woth 5.9.24. The durauonof each phase of the tests should be dele,mo”t.d I,om the individual mission analy!ej.

5.9,2.4.2 Fully a$wmbled cap:ive-carrv s:o:es performance Ies:. The test item shall be mounted using

a lest $etup simulating the actual mounting impedance. The Individually installed and operationally capab!e

equipment (inside the fully assembled smre) should be mounted in an actual imtallatmn con ftiguratton Therandom vi brat, ot? input levels, tolerances. and Ourauom for lhe fully assembled store should be measuredrespon%e% as specif, ed in 59243. except that the vibration input level adjustment factor> should be rec!ticed

3 dB from the (g, ~$)(OVL) values shown in FIGuRES 132 through 134 and TABLE 48 This reduct, or. is

applicable only 10 Ihe fully a$~emb!ed a,r-launched miwles and assembled external stores.

5.9.2.4.3 General notes General notes which provide guidance for the development of test pro f,les

are provided ,n a through h:

a. Determination of mission profile vibration levels: The vibration response level for eachphase of the profile will be determined from FIGURES 132 through 137 and TABLES 4B and 49 Where no

ipecific mi%s!on profile is available, the procedure of 5.6.2.5 should be used, with the FIGuRES 132 through137 and TABLES 48 and 49 specif, ed above to determine the vibration respon$e Ievek

b. Cargo aircrafl: Unless unusual mission profiles are determined. takeoff and crutseprofiles (vibration respcn$e levels) can be the only required vi bralion Ievel\,

c. Minimum (Wo) lest level: The mtmmum (Wo) vibration response :es: level should be

0.0019 ~lHz. I{ the calculated response test level IS les~ than 0.001 g2Hz. lhe vibrahon response test m,mmum1.3g,mJ (OVL) $pectrum of FIGURES 132 through 137 and TABLES 48 and 49 should t?e u$ed during lhl$

64

Page 78: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HD’aK-781

I

ponlon of mission pro f,le. This spectrum should produce a minimum vibration response of 0.001 g21Hz. If it

aoes nol. a (Wo) level of 0.091 g?lH? should be usedd. OptIon: The maximum (WOl vibration level determined may be used for the vi brafion

resptinse level throughout the Ie%,. Uowever. this is not recommended since il osan ovenest condll, on

e. Gtmf;re erw; r.wm,ent: The giififi:e ev~i:cm,~sfit i; m; ccjc;itie:eti ifi :h,i :es:, but

should be considered in the ●nvironmental quahflcation te!t. If applicable, use MIL-STD.B1O Method S19.3f. Composite vibration profile: When equipments are to be installed in wrbopropellen

and helicopters (see s. B), and jet aircrah (see 5.6), a composite random spectrum should be generated See hbelow and 5.9.3 for an example of compo$ite spectrum.

g. wmg and fin up and fuselage ●xternal slores: When a store is to be instailed inmultiple locations on an aircrah, a composite vibration respon$.e profile should be used.

h. For umbopropellen and helicopters, the special lransmis$ion drive and low frequencyblade passage excitation forcing funclions calculated by the method in 5.8.2 of Reference 22 (helicopter)and MI L-STD.81O, Method 514.3 (lurbopropellers). $houMJ be super impowd on the acceleration P5Drejpon$e specwa obtained from the use of FIGURES 132 through 137 and TABLES 4Banti 49,

5.9.2.5 Thermal stresse$. The thermal stressec for supplememary cooled ●quipments should bedetermined for each test phase on accordance with 5.9.2.5.1. All other equipments should use 5.9.25.2. Theduration of the ground lest cycles of FIGuRE !30 (pha$a A, D. G. 1.L, O. and Q) should be long enough toreach initial stabil, zallon of temperature in accordance with the stabilization of test equipment (see

MIL-STD-81O, Stabilization of Ten Temperature paragraph).

5.9.2.5.1 SuDplememall V cooled equipments. The flow rate. temperature. and dewpoint

temperature of the supplemental air should be in accordance with the individual equipment %pecif, cationvalues duron? all phases. except the nonoperating poruon% of phases A, O, G, 1.L, O, and Q. During these

poniom of the test phases. the supplemental air flow should be zero. The thermal environment external 10the test item should be on accordance with 5.9.2.5.2. During surrounding external air heal UP. the mass flow

of supplemental air !hould be the msnimum specified, and th, s should be maintained until the mrround, ngexternal air cools down. During surrounding external air cool down. the ma$~ flow of supplemental air

‘f ,+ and !F& $hou!d & m~inlaiged ufllil the surrounding erler”al a,r he?l.$ up:!wx!d be @ -eximwm specl ,e..

5.9.2.5.2 O1hec ecwtpmenls The thermal $trewes in each test phase should be in accordance withFIGURES 130 and 131 and TABLE 46 and the ●nvironmental $tresse$ of the applicable mi~sion prof,le Use the

methods of S.9.2. 1 through 5.9.2.4.3, if a mission profile is not available. An example of the comtruclson of

an enwronmenial stre%s profiie i$ pr~filrd in S.5.3.

59.2.6 Humidi!v strew Humidity should be $pacif ied to $imulate (he warm, moi!t atmosphericconditions especially prevalent in tropical climates. Moisture can be induced direc!ly into equipment during

flight in a humid atmosphere. Installed equipment is subject to conden=tion freezing and f row ng as a

result of climatic conditions. Where applicable, humidily can be varied (from 100 al sea ievel) CL,rectiy withthe sir density ratio, within 25 percem RH.

s.9.2.6. 1 SuPDlementallv cooled eauioment. The chamber air humidity should be in accordancew;lh 5.9.2.6.2. The supplemental cooling air may be dried $cI thal its dewpoim temperature IS from 3-C 1013-C below the temperature of the wpplemenlal air or the surrounding air. whichever is lower.

59.2.6.2 Chamber air humidity, A dewpoint temperature of 31-C or greater should be allainedduring the initial potmon of phase! D. G. 1,and M of FIGURE 130 and maintained unlil the end of these

phases No further injeclion of moisture is required for the other profile pha!es for the fully assembledstores or for hermetically sealed equipment test$. and the humidily should be uncontrolled. For non.hermetically sealed equipment, the RH should vary from 100 percent al sea level directly with the air dens, tyratio (from 9S percent RH 25 percent RH). The dewpo, ”t !emperatu,e should be maintained and controlled

a“. 3 I’C or greater fOr each subsequent Iesl cycle #n Phases D, G, 1,and L. Chamber air should not tIe dr~ed alany umedur;ng a test cycle

65

Page 79: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

_ .

I MIL-HDBK-781

5.9.3 Example of conswuctlonof enwironmenlal D~of,le lhlse~ample ,Iluslrates the consuuct, on O( a~o,.>posite mission test cycle profile for An a,rcrafl with a capt$we-(hght aslem bled external sto(e and ,ts

i~ter!mlly inslal led equ, pmenl The example in formauon is as prowded in a through e.

a. Equipment Cla*s 2 in accordance w,th MIL.E.5400b. Equipment installed in air-conditioned mi$\ile or store avmnics compartmentc. Equipment is ambient cooled (no supplemental cooling)d. Equipment is anached to the structure forward of ●tiernal-flow body discontinu,ties The

body contour forward is smooth and free from discon[inuitiea, that i$, no forward control surfaces, antennablades. or blunt noses

e. The final ●nvironmental requirements for thi~example are derived from the data specif,edtn 1 through 20:

1. FIGURE 139, Environmental ●ngineering program whematic.

2. TABLE 50, Preli minary operational d~ign requirements (expected Iif e of S years)

3. FIGURE 140. Logiitic$ functional schemat;c diagram.4, FIGURE 141, European scenario assumed maintenance $chedule and possible operational

utilization rate for environmental analyses (example)5. FIGURE 142. Tacgel movement Vmelme for environmental de%lgn crtteria (European

scenario) - large quantities (e,ampl e).6. FIGURE 143. Estimated percentage of time distribution for transportation. holdldelay,

and handl, ng, for nominal-probable factory-to-theater movemem t,meline.J. TABLE S1, Life cycle enwronmenls

(A) Dislribulion of environmental exposure% and dural,ons.8. FIGuRE 144, Aisumed typical attack aircraft operating envelope (standard day) show, ng

the assumed high-medium-low misuon profile

9. FIGuRE 145. Assumed typical attack a)rcraft operat!ng envelope [standard day ) showtngthe assumed high-low-h,gh mission profile

10. TABLE 52, Assumed typical attack mismzn pro fdles11. TABLE S3, A method for calculahng test prof, !e I!mes for a specific number of test cycles12, FIGURE 146, Vibration factor [g,~$(OVL)]l flight mms, on profile (high-medium-low) use

with FIGuRES 130and 143excepl (“), versus mimmum g,~, (OVL)2(example).

13. FIGuRE 147, V! bratlon faccor [g, mj(0VL)]2 flight mi$tion profile high-low.high use with

FIGuRES 130 and 144 except (“), verws min,mum g,~,(OVL)J (example).

14. TABLE 54, Attach aircrah capuve-carnage mi!iion profile data example

15. FIGuRE 138, Low.low free-f l,ght mis\ion prof!le (example).16. FIGuRE 148, Store free fbghl vibrauon factor (g,m,(OVL)2) flight ml$iion PrOfde 10W.10W

use with FIGURES 131 through 134 and TABLE 48 (example)17. TABLE 55, Assumed free. flighl mission profile for example store (low-low). vibrat, on.18. TABLE 56, Assumed Iree-fl, ght mm%ion prof,le for eaample store (low-low) standard day19. FIGuRE 149, Unil g,m$ (OVL) acceleration P5D ver$u$ frequency spectra (frequenc,e$

should be determined by Method 5143 of MI L-STO-81O, as applicable).20. TABLES 57 through 60, Composite ie$t cycle profile ●xample timeline$.

The event time$ for determining the temperature for ●ach pha$e (prior to the adjustment by the test cycle

time faccor) are given In TABLE 52 The resulting profdes are given m FIGURES 142 and 143. The

temperature rate-of-change for each capl, ve-fllghI temperature step is greater than or equal to 25’C perminute. The rate of altitude change IS approximately sel at 10.000 h per minute. average for capt, ve-fl!ght

(time to climb. dive. idle descent). The alutude and temperature rate$-of-change for each phase of the

example mi~sion are shown in FIGURES 144 and 145 for captive flight. and FIGURE 147 for free-f ltght. Thevibration response condtliom (prior to the adjustment by the cycle time faclor) are calculated for each fllghl

phaw and listed in TABLES S4 and 5S FIGURE 149 show! {he final vibration response !est (ba$eline

conditions) PSO lo beappl, ed for use with the mlssionprofde ., brauonrespome Iaaorsof FIGu RE5 146,147, and 14B. The dewpoint temperature should be ra,$ed to 31”C or greater at the beginning of phase D

The 3 I“C or greater dewpoon: temperature \hould be macn:ained until the completion of phase L. Ground

66

,.

Page 80: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

1“

I

Operation, Am blenl Day. For the rema,ning pha$e$ of the tesl profile, the humidtty shoulC be controlledw,th the RH stan, ng at 95 percenl ( ? 5 percent RH) at sea level and following as closely a! powble the

derwly rat#o vartiat,on expected with altitude. For repeated profile cycles, the dewpoint should be checkeda~ specif ted herein for pha$e$ A through O. Electrical $Ire$$ should be in accordance with 5.9.3.3 The finallesl cycle times should be ad; usted by lhe test cycle Iome factor from TABLE 53. The final compcwle lest cycleprof,le Iime!ine for the example is given in TABLE 57. For this egample. the cycle M repeated 10 t,mes (6 h!gh-medium-low misions, 4 h,gh.low. hjgh missions. with one simulated launch on each test item. also consistingof 10 test cycles)

5.10 fdis$ile ;ranspofiaiion, ?lafi~!ifia, ar,d ;Io:aoe. The efifi:Gwner, ta! ccr, di:icw 0!

tramportation, handllng. and storage also affect equipment performance and reliability. In order to addressall of these conditions. TABLE 61 has been prepared. Thii table provides a single poinI of reference for allenwronmental conditions which might be ●ncountered a$ a result Of various methods of tran5P0flah on,handling amivit, es, and storage conditions.

5.10.1 Rail tranmon conditions. The test conditions which are to be used to simulate the effects ofvibration, shock, and temperature which rewll from transporting equipment by rail are provided ,n 5 10 1.1through S.10.1.4 (see Re6erence 24). These conditions will always assume that the equipment ,s no:opera,., ng and therefore no equipment operaung parameters or requirements are given

510.1 1 Vi brat, on leninq FIGuRE 150 encomoa%ses the real world vibration cond,:, ons recmnet bythe railroad !ndustry. The three curves shown on FIGuRE 150 (best, worst, and nomtnal) clef, ne me complete

worauon spectra a<$ocia ted wtth rat: transpona! ion. The worst case (curve 1)represents uncush, oned rat!transportation and was developed by de fimng a curve wh!ch envelopes all condnions Th, $ curve wa!

generated by visually drawing a $traigh! line which encomoaf$ed all applicable data points and wa$

tangential 10 lhe maxfmum values obtained. Thi! curve represents data taken from lhe powe. dens, tyve,ws freq”e~cy plots of apprognately selected sources The best case (Curve Ill) represent% data dep, cl, ng

cushn oned rail transpoflauoa. Thts curve is taken d,rectly from ‘An Assessment of Ihe Common CarrierSh, pp, ng Environment”, by Ostrem ant! God\half whtch 8%d,%cus$ed in Reference 2C It ISshown a! a be!t ca~ebecause !T represents the vibrztion ew’!rcmme~t c.f.a twck. trailer moumed en a ra,l {latca~ 9T.em!

transposed #n this manner are cushioned by both the trailer su$pens, on system and the ra,l car wmerwon

system. Thts cushioning effect prowdes the best protection of ecfuipment with respect 10 shock andvibration expected during rail transport. The nominal case (Curve 11)represents the mosl probable profile a!de ftned by general rail transporl conditions. Thts curve wa! defined wi!h the use of the Compuler generated

regre won *fialy\ ii. U$irIg Ihe iame daia poir, is mentioned for Curve :, a piece -.tii;e. leas: square !Ir,aarregression wa$ performed for each of lhe three segments of the curve. The results of the$e analyse~ werecombined to produce the single vibration envelope shown as Curve Il. These three curves may be $eleclwely$pecif,ed for rail conveyance simulauon tests depending on the damage avoidance requirements eilabl!$hedfor the equipment.

5.10.1.2 Shock testinq. The profile given for shock testing represents the worst-case compos, te ofthe $hock force data reported for U.S. Rail Transportation conditions. The profile ●ncompasses leal-worldcondihom and prowdes nominal $hock tesl parameter%.

~ Duration .-

70 g’sRepetition

10m5 Longitudinal Every 3 minute$

These conditions are the recommended shock test parameters

5.10.1.3 Temperature testinq The nominal temperature range to be u$ed in rail transponation

Ie\ting is specified as follows. As indicated, temperature Ievel$ assume a start and end point at roomtemperature (see FIGURE 151)

Starcln.a point

24:C,

Low Doint H,ah 00t1ll

- 32-C 5A5CEnd point

2A:C

67

.- .,.. . . . .

Page 81: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7131

5.10. ,.4 ~esltimel, ne lointegratti reliability testtng ofallof thecritica! characteris!, cs, ates:,..:l, ne i\necessarY FIGURE 151 provides that t,meline requirement. Indicating the schedule relatoonsh, p

b,!tween ,hoch, vibration, and ternperatu, e te~ting for both cold day and hot day. Temperature levels mu~:

berr!aintained butarecritical only from 15minutes prior toandduring shock te$ting. Eqwpmentistobe,-:.moperati”g and packaged forshipmenl during testing.

68

Page 82: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK.781

6 TEST IN$.TRUMENTATION AND FACILITIES

6. I - The purpo!e of thts $ection is to a!sure Ihat reliability Iem are adequately planned and

lhat properly Cer’uf,ed and calibrated equipment and facihlies are pro.lded and accepled by the procurtngactlvily. prior 10 the $[arl 0{ reliability iesiing.

6.1.1 ~. This section establishes basic requirements forte$t equipment and facilities used in the

performance of reliability tests

6.2 Test facilities and acwa rawk lest iaciiitim and apparatus wad in the performance of reliability

tests should be capable of prowding the test conditions dimmed in thi$ handbook.

6.2.1 Test chambers. Test chamber$ should be capable of maintaining the environmental conditionsof the specified tesl level. That is, a chamber should be capable of:

a. Maintaining the ambient and forced air Iemparaturas at the \pacified temperature level,+ 2-C, during the test. The rate of temperature change of the thermal medium, in both healing and cooling

cycles. should average not Ie$s than 5°C per minute. Chamber and ●quipment cooling air temperatures$ho”!d be monitored cormnuoudy, or periodically. ala monitoring frequency WffiCieOt 10 ensure proper

chamber operation. Means should be provided *.o inlerrupt the programming used in the aulomattc controlof temperature cyclong until the maximum and minimum air temperature requirements are $ausf!ed.Procecuve dewces should be installed m shut off :heequipmem being tesled and Ihe heating source, in the

case of temperature overruns. However, equipment cooling should be maimained to prevent overheating0! I!w equ Ipm.en: under te:;.

b. Ma!ma, ning specif, ed .ibraiion within + 10 percenl for sinusoidal sweep or singlefrequency. For random vi bral, on, the rules specif, ed ,n 1 through 3 apply: (See the Random Vibrai(on Testparagraph of Method 51C.2. MI L-STD-81O).

1. The ?50 of the [I?s[ C-OnIrOi iign~i ik.u:d iWii deti;ate !roI% $p=tifi~d ;?GLJ;:?,=Q;,z$ by

more than:A + 100. -3 Opercent (+ 3dB. -l.5dB)below SOOHz

B. .100, -50 percent(23 dB) between S00Hz102000 Hz

2. De.iaiiom as large as + 300 percent (. 6dB) and -75 percent ( -6 dB) should beallowed over a c“mulau. e bandwidth of 100 Hz maximum. between 500 Hz and 2000 Hz.

3. II ii recommended that the vibration equipment b.? chscked far preper oper~ticc

after each Z4 hours of operahon and that vi bralion be monitored wiCh automatic devices to prevent ovenestcondnuom

6.2.2 Eauipment coolinq Th@equipment should be cooled by meam of it% de$igned-in C001in9

system. When II is not practical to test the equipment and n%cool, ng syslem a! a unit, $imuiatea coolant

condmom and attribute% used should be included in the lest procedures Regardless of the method ofcooling, all equipment should be tested under contractually specified mission and environmental profiles.The coolant attributes should be as \pecified in 6.2.2.1 and 6.2.2.2.

6.2.2.1 Exlernal cooling When there is little or no mixing between the chamber medium and ;hecoolanc such a$, in the cfucted I!qwd, ducced gas, or direct blast gas methods, lhe COOlanl should be:

a. The type to be used operationallyb. P.t I!w maximum wmperatwe .?nd the minimum rate of flow (in accordance with I?PUI

requirements an the individual equ:pment specification), when the chamber temperature is at the highestc. AI the mimmum Iemperalure and the maximum rate of flow when the chamber

lemperawte is a[ its lowest. (When the chamber lemperatule is below the specifoed lower Inm!l {emveraturefor coolfng a,r, and the eQ”, pmenl i$ turned OFF, the cooling arr supply should correspond to cond,lmns

anttcipateci In the equIpiIIen[ ,r,slaiiat,tir, )

69

Page 83: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

!

IMIL-HDBK-7B1

6.2.2.2 Internal CooIan! method. When the gas within Ihe chambe: is used as lhe coolant, Itsnould be:

& At a Ie,nperawe which permits the rerju;rad ;ast IW6! in the appriwei ms: ;Facedure :C

b: Wwined

b, At the minimum rate of flow (per coolent input mauirements in tested equipment

6pe.cif ication) when the chamber temperature is ● tha h@hest

c. Al thn maximum rate of flow when the chamber temperature is m the lowest

6.2.4 Calibration and ●ccuracy. The environmental ●nd monitorirta lost facilitim should be in eropa,operati~ condiiicm, as specified i“ MIL. STD45662. All instwmenU ●nd tesl insnumem~lion used in

conducting fin teats sttoula have an accuracy of mr 19881 one.thhf of tit. tniemnce ior tiiw vafiabio to berna~umct.

6.2.5 TestinQ the test facility, The test f aci~nv nhould be tested to etwure that i! is opermino properlyundef the requirad test conditions, Unless otherwise approved by the prdcuring gctivily, equipment other

than the !0s1 samplns should be used 10 vmrify propw Opermion of the 18s1 f?cili.

6.2.6 ifisfdialkm 61 the iw.t kern in lha t.sst factih’f, Ufi;a.. “U ,.s .+I.a .P6., B,.. w .,,. P;G.CW+EZ.- . ---- .:- -- -: *-. . . . . . .

SC!!V!!Y, !!?* WS! i!em s!%w!d Lw in3tMed in the test fc.ci!ity in e menner whkh eimulnws c.wvice uc.ege.

Connections and anached inslrumemation should ba usad only as absolutely necessa~ for the $est. PIIWS,covers, and inspection plates not used in opetation. but used in servicing, should remni. in place, Whnnmechanical or electrical co”nmctiom are not used, the connections normally protected in mwice should be

●dequately covered. For tests in whtch temperature values are controlled, the test chamber ghould be at

standard ●mbient condkions when she t=st imrn is instalied. Tk t.mt item .houid Ihen be oparnted tu. . . ..-. -. . . . . “. -..=. =,,0,14,= ., ,.. , ,V ,.. a:!ur, cti=n 0: eamafic was cr~scd CJe to !Bu!ty ir.:te!!s tic?. C: !uwnd!i.-.~.

6,2.7 Subject term (kevwotd) listing.

Combined environmental tmt conditicmsEnvironmental Stress Screening (ESSI

Envwanmantal tem profiles

i.if6-CYCid environman;si prct;hsMissicn pdi!es

Production ReliabiliIv Accememce Tests (PRATI

Rdiability Development/Gr.awth Tests (RDIGT)

Reliability Oualif,cmion Tests IROTIReliability test methodsadi8biilty test picms

70

Page 84: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

7 REFERENCES

.,,

1, Duane. J.T. 1964. Learninc Curve AD Woa<h to Reliability Monilorinq, IEEE Transactions on

Aerospace, 2: 536.566

2 Crow. L.H. 1974, Reliab,litv Analwis for Comcdex Repairable Sw:em$, US Army Material SyCtem$Analym ActBv#ty, Techmcal Repon 13S, Abardeen Proving Ground, MD.

3. Ascher, H. E.. 1984, On the Estimation of Reauired Screenina Time to Ensure Zero RemaininqDef~~$ pre~enled at the !n~titute for Environmental Sciences A.mwa! Techrticcd Meeting

4. A. Haner, H, L., 19S4 New Table$ of the lncomDlete Gamma Function Ratio and of PercenlaqgPoint! of the Chi. sauare and Beta D,$tributions, U.S. Government Printing Office, Washington, OC.

5.. NAV:”lAT P-9492. ?W%i :979, N*w-i Mandfacw:iaa X:eenimi mar==.

6. Sexton, T. ,1972, MRI and RAT Evaluation Procedure, Grumman lnIer-Office Memorandum,A S1-340-1.72.264.

7. Schmee. J. and kryant, C M., February i971k, ‘Confidence Limit\ on MT6F for Sequential Test Plansof MIL.5TD.781., Technometric$, Vol. 21, No. 1.

8. Wald, A., 1947. Sequential Analysl$, John Wdey h Sons, New York, NY

9. Epstein, 8. and Sobel. M. 19S5. “Sequential Life Te$ti in the Exponential Case-, Annaf! ofMathemal,cal Sla!,slics, Volume 26, pp. 82.93.

10 Bazof$ky. l., 1963. Reliability Theory and Practice, Prentice Hall.

1 I. Handbook of Mathematical Function! Wjth Formulas. Graphs and Mathematical Tables, U.S.

Depanment of Commerce, National Bureau of Standards, Apphed Mathematics Ser,es. No SS.

12. Butler, D. A.,and Lieberman, G.J., June 1980. An Early. Accepl Modification 10 the Tes! Plan% of-m,c Techn; :a! Eepo~ NC, lg~, Dep~e.ment of Opera!iem Re~eafch mc!M!I/ta~,. S:anda:d .”,

Depanment of Stat, st,cs, Stanford Umversity.

!3. Mann, N R., Grubbs, F.E., 1972. .Approximalely Oplimum Confidence Bound% on Series systemsReliability for Exponent#al T,me to Failure Data-, B,omelrica. VOI.59. PP 191-204.

14. Mann, N. R., 1974. ‘Simplified Expre%$ions for Obtaining Approximately Oplimum SyslemRehabili!y Confidence Bounds from Eaponenttal Subsy$lem Dam.”, Journal of the American

S1atiSt, cal Association

15. Mann. N. R., Schaffer, R.E., Singpumvalla. 1974, Method$ for Statl$l, cal Analvsis of Reltab,lllv andLife Data, Wiley.

16 CORADCOM, February 1979, Product Aswrance and Test Directorate. procedure for Use of

Environmental %of)les in Rel,abihiy Requirements of MIL.STD-781

17. Report Serie%, Annual Repo& 5ep 3:78, Commanding Of f,cer. Naval Ship Weapon System$

Engineering Stat, on, Port Hueneme, C4 93063. Environmental pro f,les for Re!,abiln~ Tesl*nq OfNavv Electronic Equ, omer.I. Annual Repon. December 1978

18 Naval ocean Systems Center, San D8ego, a, t“v,,onm.?nta~ Pro f,les for Enwronmenlal TeSllnO @f

Electron c Eou:Pmenl, March 1979 (wbmar, nes)

71

f .---- c,,, , ,,,,,,

Page 85: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Mli.-t-ff3BK-78:

23

24

Wedpons Qual!ty Eng, veer!ng Center. Naval undef~ea Warfa, e Engtnee,, ng S:al!om Key?o’1. WA.Underwater Veh,cle Environments

RM5-79. R. 1. Development of Fnv, ronmental pro f,le% ior Te%hnQ Eaui Dmenl Installed $n NavalAircrafi [Fizeci ‘W!n~, Grumman Aero$pace Corporahcm, Februa~i 1S79 (A D-AC997 13).

RM5-79.R.3, Develoomenl of Environmental Pro fsles for Teslinq Equipment Installed in NavalV/510L Aircrah , Grumman Aerospace Corpormion, May 1979 (AD-A099744).

3-5631 W4R-238, 28 September 1984. Recommended Reiiabilitv Environmental Stress iesiinqConcfiiions for rielicooler tiounted EauiDm*ni snti &,-*7Meti Ezie:na! Y,cres. LTV Ac:o; pa: e.,4 n. f...c. c..- . . . .“. - -. ...,- -“, ,! F”..,.

Piersol, A. G., December 19B4, Vibration and Acou$tic Teit Criteria for Cdmive Fl,ahl of Externally

Carried Aircrah Stores AFFDL-TR-71-158.

gW ~Wf~L.S?D.7S! Vada:c S.J..,.~~. 0.a,l Trac\~P=~,~~r. f.~. ~.. f.:~;f,’, ~ . D=!?M!cn Envirmmental

- ,5PM Corp0ra18cm

Custodians:Army - CR

Navy - EC

Air FOi-Ct2 - 11

Review ~Ctivi~ieS:

Army - CR, MI, AR, Al’

Navy - AS, SH, OS

Air Force - 01, 10, 13, 16, 17, 18, 19

User activities:

?.rmy - P.T, WC, MENavy -

Air Force -

Preparing Activity

Navy - EC

{Project F.EL1-LX)32)

I 72

a, t,., , ,L, L,, L., L,, ,,- ..-

Page 86: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABLE 1. Application mg~

MI1-STD.781 Ta!k$ MI1. HDBK-781

Ta$k Number Title Teit Melhod or Te\l Plan Paragraph

202 Reliability DevelopmenIJGrowlh Test Duane Method 4.3,2

(RDIGT)AMSAA Method 4.3.3

301 Reliability Quaflficalion Te\I (ROT) Standard, PtTST 4.6

Slandard, Fixed. Duralion 4.7

302 Production Reliability Acceptance MTBF Amcrance lest 4.5

Te$I (PRAT) Standard, PRST 4.6

Standard, Fixed. Duralion 4.7

Standard. A1l-Equipmenl 4.8

401 [nvircmmentd Strew Xreening (ESS) Computed r5S lime

Intewai Method 4.6.2

Graphical Method 4.4.3

Standard ESS 4.4.4

Page 87: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE i. %rnmaryof variables {or lhe AM SAA model

i. x Cumulaove test bme to the ,th failure

2 N Total number of failure! observed

? M N-1

4 1 Total period of observation

5, P Statistic used to tes[ for trend in the data. The discrihudon of p IS in standardizednormal form,

6. ; As,=...,} Pa::me:er e~:imate~.... .WL...C, I-. . . .. .W. .. l-no, ., e ,U,, U,2 :a:ei.:i:h“.-. .-l. ,,-,4 ,,. <Q. ..hm ●ha .,=.i=~.m 6., 6.,,, ..

t.,me If The failure rate ,s ,ncreas, ng, the parameter is geater than ~ne For a

constant failure rale, It is equal to one If the fa,lure rate i$ decreasing (growlh),then tt M less Ihan one

7 E An unb, aseo esumale oi the true vaiue of the growii? parameter

g j. Afier the grow.h Peram,. . .oror estimate ha$ been !i?te!ned, i! is fi._.=.ih!_ IO ~.!tm?.!er---- - .- --1 by i.the$cale paramel. er, . .

9. c; Cramer.von Mises goodness. of-fil test slatl$tic, as calculated from the observat, om

10 ~(~) i,-,terval e;i Im,a;e cf :% $a; !ure rate ,Ii ;he :Ime of ;F,e !.w: !a; !ure

Il. o(t) Interval est, mate of the fatlure rate ala future time

74

..=-. . . . . -.-a. . —— —---—-— ------ .-. -—-. — --- _.___ —_— —

Page 88: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-781

I

I

TABLE 3 Summarv O( equatoons. AMSAA model

()

~ x, .;XHN.1 #

8)F-~

i-l

IV- “ ~ -

r

‘t .

XN m

()

g x, .+to

1-1

‘) IJ - N ~

N9)X= —

to ii

‘dikN -~+g[(y+]’10) < 12M

MlnXn . ~ lnXl

1-1

N7) $“

N 1. ta- & in (x,)l-l

Page 89: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

d.E

quat

ion

$ele

ctm

nqu

ide.

AM

SA

Am

odel

.

Equ

ahon

from

7A8L

E3

Par

amet

erT

est

Larg

eS

mal

lS

cale

Par

amet

erG

oodn

ess-

of.

fitch

arac

teris

ticte

rmin

atio

nsa

mpl

esa

mpl

epa

ram

eter

stat

istic

N~2

0N

<20

.

iB

ic;

MT

BF

,@

Con

tinuo

usF

ailu

rete

rmin

ated

3a

56

MT

BF

.(?

Con

tinuo

usT

ime

term

inat

ed7

8

I9

10

prob

ab~

lity

of$u

cce$

sD

i$cr

ete

Fai

lure

onfin

altr

ial

3a

156

%ob

abili

tyof

wcc

eif

Dis

cret

eS

ucce

f~on

final

tria

l?

89

10

Page 90: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

M~l—

2’

3

4

~

6

7

8

9

10

15

20

30

60

100—

MIL-HDBK-7B1

TABLE 5 Critical va(ues of C; parametric form of the Cramer-von M!ses statistic

0.20

0.138

0.121

0.121

0.121

0.123

0.124

0.124

O.I25

0.125

0.126

9.178

0.128

0.128

0.129

0.15

0.149

0.135

0.136

0.137

0.139

0.140

0.141

0.142

0.142

0.144

0.146

0.146

0.147

0.147

rel of significance t

0.10

0.162

0.154

0.155

0.160

0.162

0.16S

0.165

0.167

0.167

0.169

0.172

0.172

0.173

0.173

0.05

0.17s

0.184

0.191

0.199

0.204

0.208

0.210

0.212

0.212

0.215

0.217

0.218

0.221

0.221

0.01

0.186

0.231

0.279

0,29S

0.307

0.316

0.319

0.323

0.324

0.327

0.333

0.333

0.333

0.336

77

I

Page 91: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MI L-HDBK-781

TABLE 6 @fidsnce ,nter.;als for MTB~ fa,lure.tcrm,”aled :e$t

.90 .95 .98

N

2 0.8065 33.76 0.55S2 72.67 0.4099 151.5 0.2944 389.93 .6840 8.927 .5137 14.24 .4054 21.96 .3119 37.604 .6601 5.328 .5174 7.651 .4225 10.65 .3368 15.965 .6568 4.000 .5290 5.424 .4415 7.147 .3603 9.9956 .6600 3.321 .5421 4.339 .4595 5.521 .38!5 7.3887 .6656 2.910 .5548 3.702 .4760 4.595 .4003 5.9638 .6720 2.63d .5668 3.284 .4910 4.002 .4173 5.0749 .6787 2.436 .5780 2.989 .5046 3.589 .4327 4.469

10 .6852 2.287 .5883 2.770 .5171 3.286 .446711

4.032,6915 2.170 .5979 2.6oo .5285 3.05a .4595

123.702

.6975 2.076 .6067 2.464 .5391 2.870 .471213

3.443.7033 1.998 .6150 2.353 .5488 2.721 .4821

1A3.235

.7087 1.933 .6227 2,260 .5579 2,597 .4923

153.064

.7139 1.877 .6299 2.182 .5664 2.493 .501716

2.92 ;.7188 1.829 .6367 2.144 .5743 2.404 .5106

172.800

.7234 1.788 .6431 2.056 .5818 2.327 .5189 2.695la ,7278 1.751 .6491 2.004 .5888 2.259 .526?19 .7320 1.718 .65a7 1.959

?. boa.5954 2.200 .53al

202.524

.7360 1.688 .6601 1.918 .6016 2.147 .5411

212.453

.7398 1.662 .6652 1.881 .6076 2.099 .5478 2.39022 .7434 1.638 .6701 1.848 .6132 2.056 .55A123

2.333

.7469 1.616 .6747 1.818 .6186 2.017 .56012a

2.281.7502 1.596 .6791 1.790 .6237 1.982 .5659 2.235

25 .753d 1.578 .6833 1.765 .6286 1.949 .571426

2.\92,7565 1,561 .6873 J.742 .6333 1,919 .S766

272.153

.7594 l.sas .6912 1.720 .6378 1.892 .581728

2.116.7622 1.530 ,694.9 1.700 .6421 1.866 .5865 2.083

29 ,76a9 1,516 .6985 1,682 .6462 1.aa2 .5912 2.05230 .7676 1.504 .7019 1.664 .6502 1.820 .5957 ~,f)?3

35 .779a 1.450 .7173 1.592 .6681 1.729 .615840

I .905

.7894 1.410 .7303 1.538 .6832 1.660 .6328 1.81645 .7981 1.378 ,7415 1.495 .6962 1.606 .647650

1.747

.8057 1.352 .7513 1,460 .7076 1.562 .6605

60

1.692

.8184 1.312 .7678 1.407 .7267 1.496 .682370

1.607

.8288 1.282 .7811 1.367 .7423 1.447 .700080

1,546

.8375 1.259 .7922 1.337 .7553 1.409 .7148 1.499

I00 .8514 1.225 .8100 1.293 .7759 1.355 .738a 1.431

78

—... — . . . -,, . . ...-=

Page 92: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

TABLC 7. Confidence <ntervals for MTBF, time-terminated Iesl

\

Y

N

-)3a

567

89

1011

1213

la15

1617

18

?9

2021

22232d

2526

2728

29

303540

45

506070

80

00

.80 .90 .95

L u L u L u L

0.261 18.66 0.200 38.66 0.159 78.66 o.12a

.333 6.326 .263 9.736 .217 14.55 ,174

..385 a.2d3 .312 5.947 .262 8.093 .215;,386 ,;52.426

II.i.5i7 .Xx) St%: .2s0

.459 2.915 .385 3.76a .331 .%738 .280

.487 2.616 .412 3.298 .358 4.061 .305

.511 2.407 .436 2.981 .382 3.609 .328

.531 2.254 .457 2.750 ,403 3.285 .349

HE!.E.E!z.E!=.61A.62A

.633

.642

.650

.657

.66A

.670

.676

.682

687

692

697702

.706

.711

.729

.745

.?5s

.769

.787

.801

.813

.831

1.8001.759

1.7231.692

:,6631.630

1.615

1.s941.574

1.557

.545

.556

.565

.575

.~g~

.59 \

.599

.606

.613

.6191.540 .6251,525 .6311,511 .6361.498 .641

L

1.486 .6461.475 .6511.427 .6721.390 .6901.361 ,?~~

1.337 .7181.300 .7391.272 .7561.251 .7691.219 .791

.556

.563

.5701.722 .5761.701 .S821.682 .5881.664 .594

L

1.6A7 .5991.631 .6041.565 .6271.515 .6461.476 ,~~~

1.443 .6761.393 .7001.356 .7181.328 .734

1.286 .758

2.087 .L922.029 .5031.978 .5131.933 .5231.893 .5321.858 .5A01.825 .5401.796

1.7691.745 1

2.3792.3022.235

2.1762.12?

2.076

,438.449.460

,470,479

,488

2.03a‘“”“II‘“.496

1.996 .5041.961 .511

1.929 .5181.900 .5251.873 .531

1.848 .5371.825 .543

1.803 .549

1.783 .544

1.699 .5791.635 .599

1.5S5 .6171.544 .6321.481 .6571.435 .678

1.399 .6951.347 .722

u

1987

24.1011.81

a.0436.2545.2164.5394.064

3.7123.441

3.2263.050

2.9042.7812,675

2.50a2.503~.:~~

2.3692.313

2.261

2.215

2.1732.\342.0982.068

2.035

2.0061.98@

1.870

1.788

1.7231.6711.5911.533

1.488

t .4>3

79

Page 93: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

——

-

.—.

_——

——

__——

——

——

==

—.—

..—..—

——

——

—-.

-—.

..-—

.-..—

...—

——

--mu

.-lll%w

eL.,.’-!”*

---------

0m

Page 94: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 9A. [1. Y ) 100 Qercent standard confidence limits on MTBF after accegt decision(lower Ij: ( Y ., ))

LOWER CONFIDENCE LIMITS FOR MTBF 8 ON THE ACCEPTANCE BOUNDARY

TFCTDI AN 1.0 Ii = 1.5 n= R.oln.. ---- ------ —.. ..-— —. ..-

NIJMBER OF TOTAL

FAILURES TEST TIME y = .50 Y = .30 Y= .20 Y= .10

(i)Y= .05

0 6.60 9.521B 5.481B 4.1008 2.8864 2.2031

1 7.B2 4.5976 3.!618 2.5747 1.9807 1.6230

2 9.03 3.3006 2.4386 2.0589 1.6531 1.3957

3 10.2s 2.7074 2.0&13 1.7977 1.4B11 1.2737A 11.46 2.3664 1.8726 1.6387 1.3743 1.1971~ 12.68 2.la52 1.7326 1.5324 1.3022 1.1453

6 13.91 1.9328 1.6337 1.4S69 1,250B 1.1083

7 15.12 1.8785 1.5591 1.3996 1,2117 1.0802

B 16.34 1.7908 1.5014 1.3553 1,1B14 1.05B5

9 17.55 1.7210 1.4S52 1.3197 1.1571 1.0412

iil16,77

i .664S :,4i77 i .29$8 ?.;37: :.0273

11 19.9B 1.6175 1.3864 1.2667 1.1210 1.0158

12 21.20 1.5781 1.3602 1.2465 1.1074 1.0063

13 22.4J \ .5443 1.3376 1.2292 1.0957 .998214 23.63 1.5153 1.31B3 1.2143 1.085B .991315 24.84 1.4839 1.3014 1.2013 1,0772 .985416 26.06 1.467? 1.2866 1.1900 1.0697 .980417 27.29 1.4482 1.2736 1.1B02 1.0632 .9760lB 28. S0 1.4307 1.2620 1.1713 1.0574 .972219 29.72 1.4150 1.2516 1,1635 1.0523 .9688

20 30.93 1.4009 1.2423 1.1564 1,0477 .9658

21 32.15 1.3881 l.233B 1.1500 1.0437 .9532

22 33.36 1.3764 1.2262 1.1442 1,0400 .9608

23 34.58 1.3658 1.2192 1.1390 1.0367 .9588

24 35.79 i.355i ;.2126 1.13:2 7.633? .9%9

25 37.01 1.3472 1.207u 1.1299 1.0310 .9552

26 38.22 1.3390 1.2016 1.1259 1,0285 .953727 39.44 1.3314 1.1987 \.\223 1.0263 .9523

2B 40.67 1.3245 1.1922 1.1190 1.0243 ,9511

29 41.BB 1.3180 1.1881 1.1159 1.0224 .9500

30 43.10 1.3120 1.1842 1.1131 1.0207 .9490

31 44.3 T 1.3064 1.1806 1.1104 1.0192 .9481

32 45.53 1,3012 1.1773 1.1080 1.0177 .947233 46.74 1.2964 1.1741 1.1057 1.0164

II.9465

34 47.96 1.291B 1.1713 1.1036 1.0152 .9A58

35 49.17 1.2876 1.1685 1.1017 1.0141 .9d5236 49.50 1.2797 1.1632 1.0977

37 49.501.0116 .9A37

1,2662 1.1533 1.0899 1.0064 .9404. . ~g,50 ;.2493 ;,; 403

;;

i.0791 ,9987 .935:

49,50 1.2308 1.1254 1.0664 .9B93 .927940 49.50 1.2120 1.1097 1.0526 .9780 .9194

81

Page 95: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK.781

TAELE9A (1-y) 100 Dercent standard confidence I!mils on ,M~f!er accept Qec, s,on(lower - @[ ( Y , I )] (Cont,nued)

LOWER CONFIDENCE LIMITS FOR MTBF 8 ON THE ACCEPTANCE BOUNDARY

TEST PI AN 11.D d = 1.5. 0=6= 0.20

NuMBER OFFAILURES

(i)

o1

2

3d

5

67

8

9“1o1112

1314

15

16

17

18

TOTALTEST TIME

4,19

5,40

6.627.83

9.0510.26

11.49

12.7113.92

15,1A

16.3517.57

18.78

19.99

21.21

21.90

21.90

21.90

21.90

-f = .50

6.0449

3.12612.3601

2.00771.8069

1.67’68

1.58731.521.91.4718

1.43301.40191.3769

1.3563

1.33921.3249

1.3072

1.2764

1.2420

1.2109

=k-k-k3.4801

2.14771.7401

1.5412

1.4246

1.3478

1.29461,25551.2256

1.20241.1.s391.1691

1.15681.1467

1.13841.1273

1,1059

1,0799

1.0546

2.60341.7675

1.46691.326A1.2432

1.1882

1.15011,1222

1.1009

1.08441.07141,061P

1.05251.0455

1.0398

1.0320

1.0155

.9943

.9727

1.81971.342S1.1746

1.0887

1.0376

1.0039

.9808

.9641

.951s

.9419

.9344

.9286

.9239

.92o1

.9170

.9127

.9023

.8874

.8709

1.39871.0984

.9889

.9326

.8993

.8776

.863 I

.8517

.8A51

.8394

.835:

.8317

.8292

.8271

..925s

.8232

.8169

.8068

.7946

Page 96: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-781

TABLE9A ~1- ?’) 100 percent standard con ftdewe I,mit$ on MTBF after accep: dec, %,on(ICWer. e: ( y, I )) (Continued)

LOWE RCONFIDENCE LIMITS FOR MTBF 8 ON THE ACCEPTANCE BOUNDARY

7ESTPLANI II-O d = 2.0. a=B= 0.10r.

UUMBERCIF TOTAL‘AILu RES TEST TIME 7 = .50 -1= .30

(i)Y= .20 Y= .10 Y= .0s

o d.dO . ----0.s4 /9 3.6546 2.7?3$

;.9;09; ,468s

1 5.79 3.336A 2.2913 1.8638 1.4311

2 7.18

1.170A

2.5435 1.8741 1.5790 1.2633

3 8.56

1.0627

2.1789 1.6712 1.4372 1,1783 1.00804 9.96 / ,.9708 1.5521 1.3532 1.1278 .9760

5 11.34 1.8385 1.d754 1.2992 1.0956

6.9559

12.72 1.7466 1.4218 1.261d7

1.0734 .942414.10 1.6799 1.3827 1.2339 1.0575

8.9329

15.49 :,6300 1.353s 1.21359

1.0459 .926216,88 1.5916 1.3311 1.1980 1.0372 .9213

10 18.26 1.5613 1.3135 1.1s58 1.0305 .917711 19.65 1.s371 1.2995 1.1763 1,0254 ,9 I 50

12 20.60 1.5112 1.2839 1.1654 1.0194 .911713 20.60 1.4661 1.2530 1.1410 1.00d5 .902614 ;,417326.66 i.2i63 1.1120 .9835 .mz

15 20.60 1.3755 1.1825 1.0830 .9613 .8715

LOWER CONFIDENCE LIMITS FOR MTEIF 8 ON THE ACCEPTANCE BOUNDARY

TE3T Pi&ii iV. O G = 2.0, G=#?:o.zc

4uMBEROF TOTAL‘AI L(JRE\ TEST TIME r = .50 Y= .30 Y = .20 Y= .10 Y= .05

(i]

o 2.BO 4,0395 2.3256 1.7397 1.2160 .93471 4.!s 2.3277 1.5933 i.2S27

,9=0.6CX2

2 5.58 1.8907 1.3822 1.1581 .9181

3

.7650

6.96 1.6995 1.2865 1.0968 .8869 .74854 8.34 1.977 1.2351 1.0643 .a710 .7407

5 9.74 1.5385 1.2054 1.0459 .86266

,7368

9.74 1.4486 1.1502 1..0066 .64037

.72459.7d 1.3763 1.0986 .9662 .8133 .7069

83

I

Page 97: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLF 9A ~1. Y) 100 percent stand ar~mence Itmtlson M_T~f:er accepl dec, s!on

iuMBER L)F‘AILURES

(i)

(lower. c?’ ( 1’. t )) (Continued)_.—

LOWER CONFIOENCF LIMITS FOR MTBF 8 ON THE Acceptance BOUNDAR’T

o1

2

34

5

6

TEST I

TOTAL

“TESTTIME

3.755.AO

7.05

8.7010,35

10.3s

10.35

AN v-O d = 3.0. a=~= 0.10

-1 = .50

5.41013.0397

2.4208

2.14621.9966

1.1947

1.6326

Y = .30

3.11472.08311.7755

1.633311.5547

1.4266

!.3112

Y= .20

2.33001.69151.4909

1,39721.3457

1.2S04

1.1575

Y= .10

! .62861.29S01.186!

1.13s7

1.10871.04B;

.9B; I

-r= .05

1.~518

1,0557

.9918

.9633

.9387

.9293

.8600

LOWER CONFIDENCE LIMITS FOR MTBF @ ON THE ACCEPTANCE BOUNDARV

TEST PIANV 1-D d = 3.0, n.8. o.20

NUMEEROF TOTAL

FAILURES TEST TIME Y= .50 Y= .30 Y= .20 -f= .10 Y= .Cs

(1)

o 2.67 3.8520 2.2177 1.6590 1.1596 .8913

1 4.32 2,3418 1.5980 1.2932 .98.?2 .797t

2 4.50 1.63A4 1.2039 1.0142 .BII* ,ljB113

LOWER CONFIDENCE LIMITS FO17MT8F f? ON THE ACCEPTANCE 80u NDARY

TES7 PUN VII-D d = 1.5, a= /3= 0.30

~uMBER OF TOTAL

FAILURES TEST TIME 7 = .50 Y= .30 Y = .20 7= .10(1)

Y= .05

0 3.15 4.5445 2.6163 1.9572 1.3680

1 4.37 2.4854

1.0515

1.7049 1.3856 1.0622

2

.B673

5.5B 1.9410 1.4273 1.2007 .95B0

3

.8035

6.BO 1.6951 1.2959 1.1118 .9077 .7733

4 6.8o 1.4214 1.1207 .9784 .8175 .709?

5 6.80 1.2142 .9756 .B61 1 .7302 ,6L~?

84

Page 98: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 9A. [1. Y ) 100 percent standard confidence limits on MTBF afler acce!m decision

(Iowe: e; ( Y, i )) (Continued)—

LOWER CONFIDENCE LIMITS FOR MTEF @ ON THE ACCEPTANCE BOUNDARY

TEST PLAN VIII-O d = 2.0, a. 8=0.30

NUMBER OF tCJTAL

FAILURES TEsT TIME Y = .50 Y = .30 7= .20 y= .10

(i)Y = .05

0 1.72 2.4S14 1.4286 ! .0687 .7A7L7

1.5742

3.10 1.6120 1.0939 .8814 .6656

2

.S3S24.s0 1.3867 1.0011 .8298 .64s 1 .S268

I

85

Page 99: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

“TABLE 9B (1 - Y ) 100 percent standard confidence limit~ on MTBF after acce!x decision

(upper. l?: ( Y i)),

UpPER. CONFIDENCE LIM(rSFORMTBF t20NTHE ACCEpTANCEB0UNDARY

- ..-”,..,! . . . . -.a —-. .n,r. >or L.4N l-u u= 1.>. U=p=u. ,v

WIMBER OF TOTAL

‘AILURES TEST TIME y= .50 r= .30 r= .20 Y= .10 Y= .05(i)

rJ 6.60

\

~! ~1 ~, y ~!

1 7.82 9.5218 18.5043 29.5773 62.6420

2 9.03 4.5976128.67112

7.0344 9.;651 ld.5i98

321.7317

io.25 3.3CC6 4.5155 5.7555 0-””Q.”. ! . 10.8:4:

4 11.45 , ::y6: 3.6017 4.~36~ 5.7125 7.2981

s 12,6B 3.0469 3.5B&l 4.5S92

6 I 2.14625.6329

13.91 2.6995 3.1268 3.8772 A.6B06

7 15.12I

1.992B I ~.4623 2.8179 3.4297 4.0699

8 lb.34 1.878S 1.2886 2.5942 ltllm 3,6437

s ;7.55 i .7SG8 2.;567 2.4269 2.875210

3.33i6!E!, ?7 j,?~!o ~,g5~7 .3.2541 ~,~931

11

3.QQ~4

19.98 1.6645 1.9690 2.18B6 2.5482

12 I 1.61752.9043

21.20 1.B99B 2.1017

13

2.4297 2.7517

22.47 1.578’ 1,8420 2,029414

2.3317 2.626223.63 1.5443 1.7927 1.9679 2.24BB 2.520S

IS id. SJ 1.5153 i,7j04 ~, !782 Z,zjcai.9i53

16 25.05% I ::;::

1.2595 2.1159

17 27,29

~.~~:~

1.4482 I 1.6529 I %:

2,0635

18

2.2862

28.50 2.0169 2.2276

19 29.72 1.4307 I 1.6275 1.7630 1.9752 2.1754

20 30.93 1,4150 1.604B 1.7349 1.938! 2.129021 32.15 1.40U9 i.5u43 1.7(IY6 1.904b 2.@373

22 52.36; .3G81

i .S657 i .6668 i .8745 2.CKW~~ 34,53 I ,?7Ga 1.s6s8 1.5659 1.9d7?24

~,fil~g

35.79 1.3658 1.5335;Z; I ::%::

1.9852

25 37.01 1.3561 1.5194

26

1,9571

38.22 1.3472 1.5065 1,6138 I 1.77BB 1.9315

27 39.44 1.3390 1.4945 1.5991 1.7597 1.9079

28 4ij.67 1.3314 1.4636 1.5657 1.7421 I .8863

29 4:.88 1.32C5 1.4735 1.5733 1.7250 1.85.%

30 43.10 1,31813 ! .4641 1.5618 1.7110 1.8482

31 44.31 1.3120 1.45s4 1.5511 1.6971 1.B312

32 45.53 1.3064 I 1.4472 1.5A11 1.6841

33

1.815d46,74 1.3012 :.43:: I 1.5318 1.6721 1.800B

34 47.96 1.2964 1.5231 1.6608 1.7872

35 69. i7 i.2518 1.4259 ;,jijc 1.7745i .6503

36 :9.50 ~,~~~s I

;;:; I ;:r:1.5405 1.7627

37 49.50 1.2?971.3913 I 1.4744

1.62a13 1.7Ad2

38 49.50 1.2662 I.601O

39

1.7177

49.50 1.2493 1.3705 1.4512 1.5746 1.6889

40 49.50 1.230B 1.34B5 1.4272 1.5479 1.6606

1-.— ––. , —.. -— a .-, .— . . . ... . ---- _-. -.. .-a ‘. .,...-.

““0, .”, .m.. -,” ,

Page 100: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

M[L-HDBK-781

1

TABLE 9B (1- Y ) 100 percenl standard confidence limits on MTBF after accegt decision

(UOPe- - 6’~. ( Y, I )) (Cont!nued)

uPPER CONFIDENCE LIMITS FOR MTBf e ON THE ACCEPTANCE BOUNDARY

-... 7., A., ,, m 4 —,----- fi, n,,, , .Mn )!. ” “=, . .. U- p-v ..”

NUMBER OF TOTALFAILURES TEST TIME y = .50 Y = .30 -f = .20 Y= .10 y = .05

(,)

o 4.19 ~> ~1 ~t :1 j.

1 5.40 6.0449 I 1.7474 18.7771 39.7682 81.6886

2 6.62 3.1261 4.7865 6.3746 9.8867 14.8006

3 7.83 2.3601 3.3054 4.1254 5.7531 7.75974 9.05 2.0077 2.6766 3.2260 4.2544 5.4393

5 10.26 ! .8069 2.3329 2.7t197 3.5009 4.3300

6 11.49 1.6768 2.1162 2.4SS3 3.0s077 12.71

3.68841.s873 1.9693 2.2S8S 2.7563 3.27B0

8 13.92 1.s218 1.B630 2.117S 2.S491 2.9943

9 15.14 !.4718 1.7827 2.0117 2.3961 2.7881

To 16.35 1.4330 1,7207 1.9307 2.2001 2.6339

11 17.57 1.4019 1.6713 1.8666 2.1895 2.s15012 18.78 1.3769 1.6317 1.8153 2.1179 2,4221

13 19.99 1.3S63 1.5992 1.7735 2.0599 2.348014 21.21 1.3392 1.5722 1.7389 2.0127)5

2,288421.90 1.3249 1.5498 1.7103 1.9739 2.2403

16 21.90 1.3072 1.5233 1.6776 1.931617 21.90 1.276.4 1.4819

2.19011.6293 1.87A3 2.1273

18 21.90 1.2420 1.4391 1.5818 1.B219 2.0764

uPPER CONFIDENCE LIMITS FOR MTBF 8 ON THE ACCEPTANCE BOUNOARY

TEST PLAN II I-O d = 2.0. 0=6.0.10

NuMBER OF T07AL

FAILURES TEST TIME Y = .50 7 = .30(i)

Y = .20 y = .10 7 = .05

0 4.40 ~, ~! ~< ~.

S.79 6.3479 12.3362 19.7182 41.7613

; 7.1885.7~2L3

3.3364 S.1098 6.8060 10.SS7I 1S.8052

3 S.S6 2.S43S 3.563B 4,6489 6.2057 8.3716

4 9.94 2.1789 2.9069 3,5047 4.6238 5.913511.34 1.9708 2.S470 3.0036 3.8270 4.7365

: 12.72 1.838S 2.3236 2.6983 3.3s707 14.10 1.7466 2.1710

4.06412.4928 3.0484 3.6333

8 15.49 1.6799 2.0615 2.3469 2.8333 3.3390

9 16.88 1.6300 1.9802 2.239S 2.677S 3.129510 18.26 1.s916 1.9181 2.1S79 2.560S 2.97S2

11 19,65 1.S613 1.8692 2.0941 2.4709 2.8S8S

12 20.60 1.s371 1.8303 2.0438 2.4009 2.7693

13 20.60 1.s112 1.790s 1.9936 2,3339 2.6873

l’t

~~~~ I ~~~~~

1.7287 1.9206 2.24S3 2.S880

15 1.6671 1.0s1s 2.1682 2.S092

., ,.,he upper I,m(l on .5 IS ,nlnnote, wam zero ODservea rat[ures

87

-——.- . . . . .... .. . .. . .. ..... . .. . . . , ....... .. .. ... .. .... ..... .. . . .. .. . .S-=-.- ”--., ””.>,, ..” .-- .._.

Page 101: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TAB I E 9S (1. Y ) 100oercentstandatd confidence Iimits. on MTBF after accept decision

[upper e: [ Y t )) (Conltnued)—

UPPER CONFIDENCE LIMITS FOR MTBF @ ON THEACCEPTANCE BOUNOARY

NUMBER OFFAILURES

(i)

o12

34

5

6f

TEs1

TOTALTEST TIME

2.804.185.58

6.968.3A9,74

9.749.74

AN IV-D d = 2.0. ❑ .B

y = .50

~1

4.03952.32771.8907

1.6995

1.5977

1.53851,4486

-

7 = .30

~1

7.8S033.57322.6681

2.2978

2.1073

1.99831.8613

0.20

7 = .20

~,

12.54804.7640

3.34532.7963

2.5225

2.3693

2.1971

-r = .10

~,

26.575A7.39754.6985

3.7496

3.3033

3.06522.83B7

UPPER CONFIDENCE LIMITS FOR MTBF @ ON THE ACCEPTANCE BOUNDARY

TEST PIAN V.D d = 3.0, Il=@=o.lo

Y = .05

~54.589111.0s317

6.3B3B4.8B58

4.2253

3.S936

3.6262

i NUMEEROF I TOTAL I I I I I:AILURE5

(i)

o11

34

5

6

TEST TIME I 7=.50

i

-i = .30 I r=.20 I y=.10 Iy=.05

.

5.40 5.4101 10.5138 16,8053 35.59207.05

73.1104

3.0397 4.662S 6.2143 9.6459 14,4469

8.70 2.4208 3.4052 4.2604 5.962510.35 2.1462

8.0694

2.8849 3.4956 4,6508 6.003810.35 1.9966 2.6113 3.1057 4.0178

10.35 1,7947 2,3001

5.0622

2.7039 3.4489 4.3109

UpPER CONFIDENCE LIMITS FOR MTBF c? ON THE ACCEPTANCE BOUNDARY

TE5T PLAN VI-O d = 3.0, n= B=o.20

I NuMBEROF TOTALFAILURES TEST TIME Y = .50 Y = .30

(i)Y= .20 y= ,10 y = .05

0 2.67 ~: ~1 ~! 1 ~

4.32 3.B520 7.4858;

1 I .96544.50 2.3418

2~.3A153.6027

52,05464.BOBO 7.a730 11,2010

~lThe upper I!rn,l on 6 IS ,nfinlte, w,!h zero observed fall Ure$

88

.—..— . ...-—

Page 102: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABLE 98

MIL-HDBK-781

(1. Y ) 100 percen! $tandard confidence Iimil$ on MTBF afler acce!m decision

(upper. 8 b ( Y i H. (Con~,wed)

UPPER CC)NFIDENCE LIMITS FOR MTBF @ ON THE ACCEPTANCE BOUNDARY

TEST PLAN VII-D d= 1.5, a= B =0.30

NUMBEROF TOTALFAILURES TEST TIME y = .50 y = .30 7 = .20 y= .io

(i)

y = .05

n 3.1S ~1 ~, ~1 ~, ~1

1 4.37 4.5445 8.8316 14.1165 19.8973

261.4127

5.58 2.4854 3.8096 5.0760 7.8765 11.79453 6.80 1.9410 2.7236 3.4022 4.749! 6.40954 6,80 1.6951 2.2673 2.7375 3.6186 4.6358

5 . “n 1.22; e

I I i 1“E373

0.0” 2.16% ?.?706 3.eG23

UPPER CONFIDENCE LIMITS FOR MTBF 8 ON THE ACCEPTANCE BOUNDARY’

TEST PLAN VIII. D d= 2.0, a=~=O.30

P

NUMBER OF TOTAL

FAILuRES TEST TIME y = .50 -r = .30 y = .20 Y = ,10(i)

y = .05

0 1.72 ~ ~i ~( 1.

} 3,10 2.cg!4 .?.8223 7.7oe@ ~~,~~49 33.53?32 4.50 1.6120 2.4S94 3.3277 5.1 BI1 7.7733

1, The upper I,m, t on 8 ,5 infinite, ..wth zero observed faihre~

89

Page 103: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

I

MIL-HDBK-781

TABLE 10A il. ‘Y) 100 Dercenl%ta~d confidence Iimitson MTBF aflgr reiectdecmon

(lower- (7( ( Y ,t))

LOWER CONFIDENCE LIMITS FOR MTBF @ ON THE REJEcTION BOUNDAK?

T.. TD, .S., ,.II A - 1 < “.n-ntn!L.. lr-!. !-w “ - . . . . -- r--- ,-

UUMBER OF TOTAL

‘AI LURES TEST TIME Y = .50 Y = .30 r = .20 Y = .10

(1)

Y = .05

6 .68 .1199 .0971 .0860 .0733

7 1.B9 .2835 .2331.0647

.2083 .1795 .1596

8 3.11 .4072 .3389 .3049 .2849 .2371

9 4.32 .5031 .4228 .382a .3346 .301010 5,54 .5B15 .4926 .4476 .3939 .355911 6.75 .6454 .5505 .5021 .4441 ,402B

12 7.97 .6997 .6004 .5495 .Ua81 .4443

13 9.18 .7453 .6430 .S902 .5264 .4B0614 10,40 .7B52 .6806 .6265 .5606 .513215 11.61 .8194 .7134 .6582 .5909 .5422

16 12.B3 .8499 .7428 .6868 .6184 .56B717 14.06 .8773 .7695 .7129 .6436 .593218 15.27 .9012 .7929 7360 I .6B60 .6150

19 16.49 .9228 .8143 .7572 .6867 .6352

20 17.70 .9420 .8336 .7763 .7055 .6537

21 1B,92 .9596 .B513 .7940 .7230 .6709

22 20.13 .9754 .8674 .8101 .7390 .686723 21.35 .9901 .8824 .8251 .7540 .7016

24 22,56 1.0033 .8960 .B389 .7678 .7153

25 23,78 l.c. .9088 .8518 .7808 .7282

26 24,99 1. : .9205 .8637 .7928 .7402

27 26.21 1.C,,74 .9315 .8749 .8041 .7516

2B 27.44 1.oLt73 .9420 .8855 .8149 .7624

29 28.65 1.0562 .9515 .8952 ,824B .7723

30 29.B5 1.06A4 .9602 .9042 .8339 .7B15

31 31.08 1.0723 .9686 .9 IZ9 .8428 .7905

32 32.30 1.0797 .9765 .9210 .8511 .798B

33 33.51 1.0864 .9838 .9285 .B588 .806634 34.73 1.0928 .9908 .9357 .8662 .8141

35 35.94 1.0987 .9972 .9423 .8731 .8210

36 37.16 1.1044 1.0034 .94B7 .B796 .8276

37 38.37 1.1096 1.0091 .9546 .8858 .8338

38 39.59 1.1145 1.0145 .9603 .8916 .B3’97

39 40.82 1.1193 1.0198 .9658 .8973 .8c54

40 42.03 1.1236 1.0246 .9708 .9025 .850641 43,10 1.1269 1.02B3 .9746 .9064 .854641 44.31 1.1369 1.0388 .9853 .9170 .864941 45.53 1.1517 1.0536 .9998 .9308 .B779@,l 46.74 1.1691 1.0703 1.0159 ,9457 .B914

41 47.96 1.1880 1.08B0 1.0325 .9607 .9047

41 49.17 1.2069 1.1051 1.04B4 ,9745 .9165

41 49.50 1.2120 1.1097 1.0526 .97B0 .9194

90

Page 104: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

. . . . . . .

MIL-HD81(-781

TABLE 10A. (1. 7 ) 100 oercent standard confidence limits cm MTBF aher reiect decision(lower e! ( Y I )) (Continued)

LOWE RCONFIDENCE LIMITS FOR MTBF @ ON THE REJECTION BOUNDARY

TF$T PLAN II-D d = 1.5. m=a=o.lo.- . . .. —- ..-, . -.

NUMBER OF TOTAL

FAILURES TEST TIME Y = .s0 Y = .30 r = .20 y= .!0 y =.05

(1)

3 .24 .0B98 .0664 .0561 .0451 .03B 14 1.46 .39B 1 .3069 .2649 .21 B7

5

.18&l

2.67 .5B31 .4605 .4028 .3380 .2947

6 3.90 .7133 .s733 .5063 .4299

7.37B2

5.12 .B07S .6577 .5851 .501s .444d

8 6.33 .8783 .7231 .6472 .5590 .49B3

9 7.55 .9347 .776S .6985 .607310

.s440

B.76 .9794 .8198 .7406 .6474 .582A11 9.9B 1.0165 .B564 .7765 .6B21 .615812 11.19 1.0468 .8B69 .B067 .7)14 .6442

13 12.41 1.0725 .9131 .B328 .7370 .669 !

14 13.62 1.093B .93s2 .8s49 .7s.S8 .6903

15 14.84 1.1122 .9544 .B743 .7780 .7090

16 16,05 1.1277 .9708 .89o9 .79a4 .7269

17 17.2B 1.1413 .9BS4 .9056 .8090 .7390

lB 18,S0 1.1s30 .9980 .9184 .8216 .7s1 1

19 lB.78 1.1536 .9986 .9191 .8223 .7s19

19 19,99 1.167S 1.013s .9340 .B36B .7654

19 21.21 1.1937 1.03B9 .9s82 .B586 .7844

19 21.90 1.2109 1.0546 .972? .8709 .7946

91

,-

Page 105: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

I

MIL-HDBK-7B1

TABLE fi2A. f 1. Y) 100 oercent standard confidence limits on MTBF after reiect dec;s; on(lower (): ( Y .~ (Conunued)

LOWE RCUNFIDENCL LIMITS FOR MTBF 8 ON THE REJECTION BOUNDARY

TEST PLAN III-D d = 2.0. 0=6=0.10-. -.

NUMBER CIF TOTAL

FAILuRES TEST TIME Y = .50 ,Y= .30 Y = .20 Y = .10 7 = .05(t)

3 .70 .2618 .1936 .1636 .1315 .11124 2.08 .572.4 .4403 .3798 .3131 .26965 3.48 .7696 .6062 .S296 .4437 .3B6S6 4.40 .8403 .6700 .589A .4983 .4371

6 4.86 .9027 .7232 .6377 .5405 .4751

7 5.79 .9535 .7708 .6832 .5830 .51517 6.24 .9998 .8117 .7210 .6169 .5460

8 7.1 B I .0383 .8488 .7570 .6512 .57888 7.63 1.0746 .8818 .7a80 .6795 .60509 8.56 1.1037 .9107 .8164 .7069 .63159 9.02 1.1332 .9382 .8425 .7312 .6541

I@ 9.94 1.1556 .9610 .8652 .753.4 .675810 10.40 1.1793 .9B36 .W70 .7738 .695111 11.34 1.1980 i 0029 .9063 .7930 .7138

11 I 1.79 1.2170 1.0214 .9244 .B1OO ,730012 12.72 1.2319 1.0371 .9402 .B258 .745412 13.1 B 1.2479 1.0530 .9s57 .8406 .7595

13 14.10 1.2599 1.0657 .9687 .B536 .772213 14.56 1.273\ 1.0790 .9818 .8661 .784 I

14 15.49 1.2B3 1 1.0899 .9929 .8772 .795014 15,94 1.2939 1.1009 1.0038 .8877 .804915 16.8B 1,3025 1.1102 1.0133 .8973 .8142

15 17.34 1.3118 1.1199 1.0229 .9064 .822716 18.26 1.3187 1.1275 1.0307 ,9142 .830316 19.65 1.3484 1.1S72 1.0595 .9409 .8543

16 20.60 1.3755 1.1825 1.0830 .9613 .8715

92

.

Page 106: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK.781

(1. Y ) 100 percent standard confidence limits on MTBF af’ler reiecl decision

(lower. c7~( Y , t )). (Com!nued)

TABLE 10A.

LOWE RCONFIDENCE LIMITS FOR MTEF t? ONTHEREJECT1ONB OUNOAR%

LAN IV-D d = 2.0, a= B = 0.20I I I

TEST

TOTAL

TEST TIME

(t)

NuMBER OFFAILURES Y = .50 I Y=.30 I v=.20 I y=.10 Y = .05

.4171

.8127

.8914;.62841.07341.16341,1910

.2870 I .2338 I .1800

.5944 .4997 .3996.1476.3367.3898..4646.5004.5567.5809.6192,~~~j

.6612

.6717,7069

2344s566778B

.702.082.80. . .>.JIo4.184.865.586.246.967.62

.6843 .5646 .4578

.7767 .66.44 .5e28

.B193 .7052 .5809

.8977 .7768 .6438

.9251 .8036 .66931.247B I .976:1.2s54 .~~~ :;;: I :;;;:!.3031 1.0301 .9026 .75861,3147 1.0423 .9146 .77001.3763 1.0986 .9662 .8133

8.349.7A

= 0,10

r = .20

TEST PLAN v.D d = 3.0, a=

Y = .05

.1202

.3564

.5008

.5151

.6200

.6313,7089,7175.7746,8600

NuMBER OFFAILURE5

TOTAL

TE5T TIME

(1)Y =.107 =.50 Y = .30

234A

.57 .3396.8514

1.09931,12751.28161.30071.40301.41641.48661.6326

.2337

.6256

.8334

.85S9

.99321,0094

1.10491.11661.18451.3112

.1904

.5271

.7141

.733B

.8613

.8758

.9664

.97721.04271.1575

.1465

.4225

.5845

.6010

.7156

.7282

.8118

.8213

.8825

.9811

2.223.753.875.405.527.057.17B.70

10.3s

556877

LOWER CONFIDENCE LIMITS FOR MT8F 8 ON THE REJECTION BOUNDARY

TE5T PLAN VI-D d = 3.0, a= /3 = 0.20

NuMBER OF TOTAL

FAILURES TE5T TIME Y = .s0 y = .30 Y = .20 y=.lo Y = .05(t)

2 .36 .2145 .1476 .1202 .0926 .0759

3 2.67 1.0053 ,7422 .6266 .5034 .4253

3 4,32 l,SBO1 1,16AB .9819 .7862 .6618

3 4.50 1.6344 1.2039 1.0142 .8111 .6818

93

~,-,..-.-””. . . . . . . . . . . . . . .. . . . . . . . . . . .

Page 107: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MIL-HDBK-781

TABLE1OA [l-y) 100 percent standard confidence limits on MT8F atier reiect decision

(lower 8: ( Y, t )). (Continued)

LOWER CON FIDENCE LIMIT5FORMTBF @ON THE REJECTION BOUNDAR”f

!.. ! r-!. . . ..w “-. . . ,“- ~ - “.. ”

NUMBER OF TOTAL

FAILURES TEsT TIME Y = .50 Y = .30 Y = .20 y =.10 r = .05(t)

3 1.22 .4562 .3374 28s1 .22924

.1938

1.43 .6856 .s245 .4513

5

.3710 .3168

3.1s .7501 .5624 .s0s2 .4199

5

.3638

3.65 .8322 ,6511 .5671 .4735

6

.4115

4.37 .8743 .6908 .60s0

6

.5089 ,4448

SW 1.0323 .8263 .7283 .6172

6

.5421

6.80 1.2142 .9756 .Mll .7302 .6412

LOWER CONFIDENCE LIMITS FOR MTSF 8 ON THE REJECTION BOUNDARY

TEST PLAN VIII.D d = 2.0, a= f3= 0.30

NUMBER OF TOTAL

FAILURES TEST TIME Y = .50 Y = .30 y ..20

(1)Y =.10 Y = .05

3 1,72 .6432 .47s7 .4020

3

.3232 .2732

3.10 1.1121 .8183 .6E8S3

.549a .46054.50 1.3867 1.0011 .8298 .6451 .$.268

94

Page 108: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

TABLE 106. [1- Y ) 100 percent standard confidence limit! on MTBF after reiect decision

(upper- 6’: ( Y,t)).

UPPER CONFIDENCE LIMITS FOR MT6F e ON THE REJECTION BOUNDARY

TCc’i’m A., , m A-, .--a-a ,,1,., ! .-1” l-w “-!.>,”- p- ”.,”

4LJMEFR OF TCJT.ALAILLSRES TEST TIME Y = .s0 7 = .30

(t]Y = .20 7= .10 7 = .05

6 .68 .1199 .150s .1742 .2t57

7.2602

1.89 .2835 .3494 .399s .4855 .s7s7

8 3.11 .4072 .4951 .5609 ,672A .7873

9 4.32 .5031 .6052 .6807 .8074 .936510 5.5A .5815 .6933 .7751 .9114 1.0488

11 6.75 .6454 .7636 .8496 .9917 1.133912 7.97 .6997 .8224 .9111 1.0567 1.2015

13 9.18 .7453 .8711 .9614 1.1090 1.255014 10.40 .?852 .9129 1.0042 1.1528 1.299115 11.61 ,8194 .9484 1.0402 1.1s90 1.335016 12.83 .8499 .9796 1.0716 1.2201 1.365417 14.06 .8773 1.0073 1.0992 1.2472 1.391si~ i5.27 .90 i 2 ;.G311 1.1228 : .2?C$ :.2!3219 16,49 .9228 1.0525 1.1438 1.2900 1,4320

20 17.70 ,9420 1.0713 1.1621 I .3073 I .4480

21 18.92 .9596 1.0884 1.1786 1.3227 1.4621

22 20.13 .9754 1.1036 1.1932 1.3361 1.4742

23 21.35 ,9901 1.1176 1.2065 1.3d82 1.4850

24 22.56 1.0033 1.1301 1.2184 1.3589 1.4944

2s 23.78 1.0157 1.1416 1.2293 1.3686 1.5029

26 24.99 1.0269 1.1521 1.2391 1.3772 1.5103

27 26.2 ! 1.0374 1.1617 1.2481 1.3851

28

1.5170

27.44 1.0473 1.1708 1.2565 1,3923

29

1.5231

28.65 1,0562 1.1790 1.2640 1.3988 1.528S

30 29.85 1,0644 1.1863 1.2708 1.4045 1.5332

31 31.08 1,0723 1.1934 1.2772 1.4099

52

1.5376

32,30 ;,G797 i .2006 i .2831 ;,41$3 1.54!5

33 33.51 1.0864 1.2060 1.2886

34

1,4193 1.5451

34.73 1.0928 1.2116 1.2936 1,4234 1.5a4

35 35.94 1.0987 1.2168

361.2982 1.4271

37.16 1.1044

1.5513

1.2217 1.3026 1.4306

37 38.37

1.5540

1.1096 1.2262 1.3066 1.4338 1.5s64

38 39.59 1.114s i .23135 1.3103 1,4367 1.5566

39 40.82 1,! 193 1.234S 1.3139 1,4395 1.5607

40 42.03 1.1236 I .2382 1.3172 1.4420 1.562541 43.10 1.1269 1.2410 1.3195 1.4438 1.563841 44.31 1.1369 1.2500 1.3277 1.4505 1.569041 45.53 1.1517 1.2642 1.3410 1.4621 1.578641 46,74 1.1691 1.2816 1,3580 1.4777 1.592241 47.96 1,1880 1.3011 1.3776 1.4965 1,6o9541 49.17 1,2069 1.3213 1.3982 1.5170<i 49.50 i,2:20

1.6291

i .3268 1.4038 1.522~ ! 3.347

95

Page 109: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK781

lABLE 10B (1- 7 ) 100 percent Qandard confidence Itim,ls O“ MTBF afTW ,eiec[ decis, on

(upper . e:, ( Y, t )) (Continued)

UPPER CONFIDENCE LIMIT$ FOR MTBF 8 ON THE REJECTION 80uNOARY

TEST PLAN II-D d= 1.5, m=~= 0.20

1NUMBER OF

rAILURES

34

15

67

8

910

1112

13)4

15i6)7

i ;:

L191919

TOTAL

TEST TIME

(t)

.241,46

2,67

3.905.12

6.337.55

8.76

9.9011.19

12.41

13.62

14,04

16.0517,28

18.50

18.78

19.99

21.21

21,90

.0898

.3981

.5831

.7133

.8075

.8783

.9347

.97941.01651.0468

1.0725

1.0938

1.11221.12771.1413

1.1530

1.1536

1.1675

1.1937

1.2109

7 = .30

.1254

.5291

.7s37

.9040

1.00811.0837

1.1420

1.1669

1.22321.25221.27621.2958

1.3123

1.32601.3379

1.3479

1.3483

1.3604

1.38541.4029

I

Y = .20

.1563

.6369

.89021.05381.16381.2415

1.30001.34421.37921.40661,4289

1.4468

1.4617

1.47381.4842

1.492B

1.4932

1.5035

1.5266

1.5436

v = .10

.2178

.83891.13941.32241.4395

1.5186

1.57581.6174

1.64921.6732

1.6922

1.7070

1.71881.72821.7360

1.7422

1.7425

1.7499

1.7686

1.7833

.29351.0720

1.41851.61791.73921.8173

1.8715

1.9093

1.93701,9572

1.9726

1.9840

1.9929

1.99962,0050

2.0092

2.0093

2.0142

2.0277

2.0392

96

Page 110: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

,

TABLE 10B. jl. Y) 100x rcent standard confidence Iimit$ on h4TBF after reiecl decision

(upper 19[ ( Y, I )). (Continued)

uPPER CONFIDENCE LIMITS FOR MTBF # ON THE REJEmlON BOUNDARY

TEST PIAN III-D d= 2.0. a= 13= 0.10

NuMBER OF TOTAL

FAILURES TEST TIME Y = .50 Y = .30 Y = .20 7=.10 Y = .05

(t)

3 .70 .2618 .3658 .4560 .6352 .8S61

4 2.08 .5724 .7631 .9208 1.21W 1.5650

s 3.48 .7696 .9986 1.1831 1.5226 1.907s

6 4.40 .8403 1.0760 1.2643 1.6079

6 4.86

1.9949

.9027 1.1491 1.3444 1.6982 2.0930

7 5.79 .9535 1.2023 1.3984 1.7519 2.1450

7 6.24 .9998 1.2542 1,4535 1.8106 2.2052

8 ?.18 ~.03a3 1.293 \ 1.49}8 \ .6469 2.2385

8 7.63 1.0746 1.3322 1.5321 1.8878 2.2783

8.56 1.1037 1.3606

:

1.5594 1.9125 2.2999

9.02 1.1332 1.3913 1.5902 1.9423 2.327S

10 9,94 1.1556 1.4125 1.6102 1.9597 2.3419

10 I 0.40 1.1793 1.4364 1.6336 1.9814 2.3610

11 11.34 1.1980 1.4536 1.6495 1.9946 2.3715

11 11.79 1.2170 \.4724 1.6674 2.0106 2.3849

12 12.72 1.2319 1.4a57 1.6795 2.0203 2.3923

12 13.18 1.2479 1.5011 1.6939 2.0326

13 14.10

2.402 !

1.2599 1.5116 1.7032 2.0398 2.4073

13 14.56 1.2731 1.5239 1.7146

14

2.0491 2.4144

15.49 1.2831 1.5326 1.7221 2.0547 2.4183

34 15.W 1.2939 1.5425 1.7310 2.0617

15

2.4234

16.88 1.302S 1.5497 1.7371 2.0661 2.4263

15 17.34 1.3118 1.5581 1.7445 2.0718 2.4302

16 18.26 1.31s7 1.5638 1.7493 2.0751 2.4323

16 19.65 1.3484 1.5911 1.7739 2.0940 2,4453

16 20.60 1.3755 1.6184 1.7999 2.1161 2.4620

97

1------- -—. . .. —. —___ ____

Page 111: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE tO&. (I-Y ) 100peccent standard confidence Iim!l! on MTBF af!er reiect decmon

(upper - @j ( Y. 1 )) (Continued)—..

UPPER CONFIDENCE LIMITS FOR MTBF 6 ON THE REJECTION BOUNDARY

IuMEIER OFAlLURES

a3445

:677

88

TEST PLAN IV-O

=--k’.70

2.082.803.464.1 B4.865.506.246.967.628.3A9.74

.4171

.8127

.89141.02841.07341.16341.19101.247B1.26541.30311.31471.3763

I = 2.0,-

Y = .30

.63791.15491.24181.40841.45411.55511.58161.64131.26541.69481.70491.7664

7= 0.20

Y = .20 Y =.10

&1911.46061.5517I .73791.7B301.88911.91391.97331.9B762.02322.03182.0895

1.31632.09162.18632.39982.441B2.55062.57\62.62672.63772.66772.67372.7203

Y = .05

1.96982.91333.00783.24023.27743.3B193,39863.44553.45333.47s93.47973.5124

LIPPERCONFIOENCL LIMIT5FORMTBF80N (HFREJEmlON BOUNOAR”f

TEST PLAN V-D d = 3.0, a=~=o.lo

NUM8ER OF TOTALFAILURE5 TEST TIME Y = .50 Y = .30 Y = .20

(t)Y=.lo Y = .05

234455

.572.223.753.875.405.527.057.178.70

10.35

.axgb

.85141.09931.1275!.28161.30071.40301.41641.48661.6326

.51941.20131.49661.53221.70201.72451.B3041.84511.91422.0766

.69141.51041.83731.B7832.05572.08022.18552.20092.26662.4352

1.071B2.13872.51102.56092.74342.77032.86952.88502.94213.1097

1.60402.94053.34783.40573.5W83.61293.70103.71553.76143.9145

98

.

Page 112: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-tiDllK-781

TABLE 10B. J1-7) 100 oercent standard confidence limits on MTBF after reiec( decision

(upper- c?~,(y,t)) (Continued)

UPPER CONFIDENCE LIMITS FOR MTBF#ON THE REJEC710N BOU8JOARY

TEST PLAN VI-D d = 3.0. a=@. o.20

NUMRER OFFAILURES

(t)

U?%!? CQNF!QENCE L!MITS FOF! MTBf 4 ON THE REJE~lQN BOUNDARY

TEST PLAN VII-D d = 1.S, a = ~ = 0.30

I I 1 I&~~&°F I T~~E 1 Y = .S0 I Y= .30

I 1Y = .20 Y -.10 Y=.05 I

3 I

I

1.2? I .4562 I .6375 I .79* 1.1070r 1.49204 2.43

!

.6856

I

.9211 1.1183 l.496I ).9450 15 3.15 .7s0! .9921 1.1927s I 3.65 I .8322 I .1.0898 1.3009

;91 ;~l

1-A.3-)

:~

Im: I i.i335 \ .3446

S.58I ,.>142 I ;:;;:

! .54305 6.80 1,7939

;:;::; ~ ::;;;; ~

I J

iJPPCR CONFIDENCE LI,vo, ,‘“’7$ FOR MTBF 8 ON THE REJECTION SWF!DAF!Y

TEST PLAN VIII-O d = 2.0. a= @ . 0.30

%utvmcn wr. .. ...” -. I I

FA.ILLIRES

I

?E%%E ~ Y= .50 Y = .30 -7 = .20(1)

Y =.10 Y = .05

I3 1.72 .6432 .5%7 1.1205~ 3.19

i .5607 2. IG351,1!2! 1.5594 1.9473 2.717) ~,~~s~

3 A,so 1 3867 1.9710 2.4763 34779 I 4.7114

Page 113: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 11. Summarv of fiwd-duration lest olam

“-1 Plan

IX-DX-D

xl-D

XII-DXIII-DXIV-D

xv-cXVI-D

XVII-D i

True

deci$ionrisks

(percentage)

=-+12.010.919.7

9.69.B

19.9

9.410.917.5

9.921.419.610.6

20.921.0

9.921.319.7

+1.5 45.01.5 29.91.5 21.5

2.0 lB.8

2.0 12.4

2.0 7.8

3.0 9.3

3.0 5.4

3.0 4.3

TA8LE 12, Summa wofh, ahnsk fixed-duration test olam.

Number offailur~

=

.137 3626 25lB 1714 1310 9

6 56 54 33 2

True

decisionTest Plan risks Discrim, nation

(percentage) ratio (d)#O /@l

a B

IXIX-DXX-D

XXI-D

29.B28.330.7

30.1 1.528.5 2.033.3 3.0

Testduration

(multiplei

of e,)

8.13.71.1

Number of

failures

Reject Accept

(equal (equalor more) or Iew)

7

I

63 21 0

100

Page 114: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 13. ~n.

I I CONFIDENCE INTERVALS 1

80 PERCENT II t 40 PERCENT I 60 PERCENT

II I

4490 90PERCENT PERCENT

LOWER UPPER

LIMIT LIMIT

0.434 9.491

ITOTAL NUMEER

OF FAILURES

I70:PERCENT:LOWER

LIMIT

70

I

80PERCENT PERCENTuPPER LOWER

80PERCENT

uPPER

LIMIT

%i%-! 1 ,0.801 4.481

I0.820

0.030

1.823 i 0.668 2.426

0.564 2.722

0.599 2.293

0.626 2.055

0.647 1.904

0.665 1.797

0.680 1.718

0.693 1.657

0.704 1.607

0.714 1.567

0.723 1.533

0.731 I .504

0.738 1,478

1.745 1.456

).75 1 ).437

).757 1.419

1.763 1.404

3.767 1.390

).772 1.371

2.806 1.291

E3

4

5

6

1.s68 10.70! 1.954

1.742O.mo 1.447 i 0.725

1.376 ,0.744 1.618

1.537

0.849

0.856 1.328 10.759

I 7 10.863 1.294 10.771 1.479

l-+--k= 1.4351.267 0.782

1.400

1.372

1.247 0.796

I 10 10.878 =-l=-1 11 0.882 1.215 0.B06 1.349

=

12

13

14

0.886 1.203 ,0.812 1.329

!.3120.889 1.193 ,0.818

0.892 0.823 1.2971.184

I I 15 10.895 1.176 i 0.828 1.284

E=E1.272

1.262

1.157 10.840 1.253

.!52 10.843 I .244

I 20 10.906 .147 0.846 1.237

I 30 0.920 .115 0.870 1.185

101

Page 115: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 14. Demomtrated MTBF confidence limit multiplier%. for Ibme calculation.

I CONFIDENCE INTERVALS

! 40 PERCENT 80 PERCENT .

I tI I

II

I

I II&E~ ‘;iE~ I ~;: ‘:RCENT

l~RcEN~ ‘~RcEN~ ITOTAL NUMBER uPPER I[ LOWER uPPER

10F FAILURES 1 LIMIT LIMIT I LIMIT LIMIT I LIMIT I LIMIT II 1 10.41O 2.804 I 0.334 4.481 I 0.257 9.491

, , I

i 2 i 0.s33 i 1.823 i 0.467 i 2.416

I I

1; 6.6;0 1.568 ~C.s.$.$ ~ : .s54

I 4 10.679 ! 1.447 I 0.59s I ,.742

s 10.7,4 ‘ 1.376 10.632 i 1.6,8

6 0 7C9 !. 328 0.55! ~ 1.537

! 7 ! 0.760 1.294 10.6EM I 1.479

0.376 13761 i

. ..- I

-0.539 1205s I

i8 ‘0.777 ~1.267 ]0.703 11.43S ~0.6,6 ,7,B ~

I

~,??o9 , 1.2C? !2?!9 ! .4L?!2 ~.~~a

I

I

1.55?

10 10 B02 I 1.230 0.733 I 1.372 [0.649 1.607 I

11 0123 1.215 0.744 1.349 0.663 1 567.1

!2 0.s2 ! ! .Icf: 0.?55 1.329 0.675 :.533

13 10.828 1.193 0.764 1.312 0.686 1.S04

114 0.B3s 1.184 0772 1,297 ~ 0.696 1.478

f~ @.84! ?.!?5 o,?:~ 1.2%i

I 16 10.M7 I 1.169 10.787 I 1.272 10.713 1.437

17 0.8S2 1.163 0.793 1,262 0.720 1.419

18 ~.&~ !,!~? 0.7?9 ! ,253 0.727

I

! .404

19 10.861 1.1s2 10.804 1.244 0.734 1.390

20 0.864 1.147 0.809 1.237 1.377

~g 0.891 :.?15 0.844 ?.:85 ~0.7L33 1.291

102

Page 116: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

1.

I

Tesl Plan Accept times 11

IX-D 10 = 4.2 T, = 6.1 T2 = 7.9 T3 = 9.4 T4 = 11.0

I75=12.6 16 = 13.9 1, = !5.3 TB = f~,~~9 = :=. C

TIC = 19.3 TII = 20.7 T,z = 22.0 Tf3 = 23.3 T,. = 24. S

IT,5 = 25.8 T16 = 27.1 T,, = 28.3 TIB = 29.6 T19 = 30.8

1,20 = ,2,;

I

r~, = 3;.3 72* = 34. !i ’23 = SS.8 ~24 = 3~.o

T25 = 38.2 T25 = 39.4 127 = ao.6 T2e = 41.8 T?! = 43,0

Tao = 44.2 TX, = 45.4 T>2 = 46.6 T33 = 47.8 Tla = 49.0

T15 = 50.1 ?~~= 51,3 737 = 52.5. . . .

1~~ = >. J./ , 39 = 54.6

T:. = 56.0 7:! . 57,2 T42 = 5$,3 1:3 = 59.5 TC4 = 60.7

Ta5 = 61.8 T46 = 63.0 T4, = 64.1 TaB = 65.3 Tag = 66.5

150 s 67.6 T5, = 68.8 T52 = 69.9 T53=71. i T5a = 72.2

x-D 10 s 3.2 11 = 5.0 T2 = 6.6 T? = 8,1 T. = 9.5

T5 = 10.9 T6 = 12.2 T, = 13.6 Ta = 14.9 T9 = 16.1

ijo = 17.’s T,, = 1S.7 T,~ = 13.5 .!,j = 2;.2 7,4 = 22..i

T15 = 23.6 T16 = 14.8 1:7 = 26.1 TIE = 27.3 T,g = 28.4

I ,.. -. ,-,, . ..=..“e, -”,,,-” “. ,,,= “,”. ”,,,,”~..-..

Page 117: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

“TABLE 15 ~eat time> 01 f,aed-duration test plans. Proaram Maria Qer’s assessment (Continued)

‘km flan

x-DCnnt’d)

Xl-D

XII-D

XIII-D

Accept tim~ 1;

T>. = 29.6 121 = 30.8 T22 = 32.0 T23 = 33.2 TIO = 34.4

T25 = 35.6 T26 = 36.7 127 = 37.9 T28 = 39.1 T29 = 40.2

130 = 41.4 T31 = 42.5 T,z = 43.7 113 = 44.8 T34 = 46.0

T3j = 47.1 T36 = 48.3 T,, = 49.4 T38 = 50.6 139 = 51.7

10 = 3,0 T1 = 4.8 12 = 6.3 13 = 7.8 To = 9.2

15 = 10.S T6= 11.9 T, = 13.2 18 = 14.4 T9 = 15.7

TIO = 17.0 Tll = 18.2 T}2 = 19.5 113 = 20.7 T1a =21.9

T15 = 23. ! T,b = 24.7 117 . 25.5 T18 = 26.7 T19 = 27.9

T2U - 29.1 T21 = 30.3 T22 = 31.4 T2, = 32.6

To = 3.7 T, = 5.6 T, = 7.2 T3 = 8.8 Ta = 10.3

T5 =11,7 T6= 13.1 17= 14.4 Ta = 15.8 T9 = 17.1

110 = 18.4 Tll = 19.7 T12 = 21.0 T13 = 22.3 T,a = 23.S

T,, = 24.8 T16 = 26.0

To = 2.8 T1 = 4.6 T2 = 6.1 T3 = 7.5 la = 8.9

1$ = 10.3 T6 = 11.6 T, = 12.9 T8 = 14.1 T9 = 15.4

T,. = 16.6 T,, = 17.9 1,~ = 19.1

I/Accept at time (Tj) if (j) failures have occurred up to that time

104

Page 118: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-liDBK-781

TABLE 15. ACCeDt limes of f iaed-duration test olans. %aram Manaaer’s assessment. [Continued)

Test Plan I Accept times 1/

XlV-D To = 2.7 1, = 4.4 T2 = s.9 T, a 7.3 T. = 8.7

T5 = 10.0 1~ = 11.3 T, = 12.6

XV-D TO = 3.5 T, = s.4 T2 = 7.0 T, z 8.6 T. = 10.0

T5 = 11.4 T6 = 12.8

XVI-D TO = 2.5 T, = 4.1 T> = s.6 la = 7.0 T. = 8.3

XVII-D TO = 2.2 T, = 3.8 T2 = 5.2

X( X-D T* = 2.1 T: = 3.7 T2 = S.1 Tg = 6.4 76 = 7.7

T5 = 8.9 T6 = 10.2 77 = 11.4 TB = 12.6

XX-D TO = 1.8 T, = 3.2 T2 = 4.5

XX I-D To= 1.1

l(ACCepi at time (T;) if (j) failures have occurred up to that time

I

1’I

105

Page 119: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MIL-HDBK-781

TABLE 16. Compa<iwn of risks, sfandarci fixed-duration tests versus Proqram.Manaaer’s asses~me?!

Standard test plans Program Manager’i assessment

Ten Discrimination Producer’s COnwmer’s Producer’s Corwumer”sPlan ratio rmk a(%) risk ~(%) risk a(%) risk ~(%)

IX-D 1.5 !2.0 9.9 10.2 10.0

x-D 1.s 10.9 21.6 10.1 29.8

Xl-D 1.5 17.8 22.1 20. I 20.4

XII-D 2.0 9.6 10.6 10.4 10,3

XIII-D 2.0 9.0 20.9 9.9 19. >

XlV-D 2.0 19.9 21.0 20.0 18.3

XV. D 3.0 9.a 9.9 10.0 8.d

XVI-D 3.0 10.9 21.3 10.2 18.7

XVII-D 3.0 17.5 19.7 19.7 19.2

----- - ----- -- ----- ----- ---- ----- ----- ---

(High ri$k pia ns)

XIX-D 1.s 28.8 31.3 29.6 30.8

XX.D 2.0 28.8 28.5 29.9 29.1

XX I-D 3.0 30.7 33.3 30.7 33.3

106

Page 120: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

S:ahalu e,. J-.t..J. a .,......, Program Manager’s zssessmenl

#I 1

Te\tI

I “’c’: y;,y”o” I ,::, ~“m$;;;;;i”’e’ I ,~:,, ‘“o’&:;::’”’”?Ian

I;X-D i

I

;.5

I

l?5,cl ~37 i

I

72.2 ~ 55

x-D 1.5 29.9 ~ 26 51.7 ~ 40

I I ,,,6XI.D 1.5 2!.1 ~ 18 ~ 2ii

X!!-D I2.0I

!9.9 > 1A Zfi.(l ~17—

XIII. D I 2.0 I 12., ~ 10 19.1 ~13

XIV-D I 2.0 7.U 26 i2.6 ?~

XIV D

I3.!2OJ26 12.8 27

XV1.D 3.0

1

5.4 24

I

8.3 ~s

XVII-DI

3.0 4.3 ~ 3

t

5.2 23

.. ----&- ------- -------- ---- —-- --------(High r,$k P!am!

XIX-D I 1,5 8.0 >7

1

12.6 29

XX.D 2.0 3.7 ~? 4.5 23

~~,.~ ~.fi !.1 >1 1.1 ~1—I

!/Multiples of 6’:

107

Page 121: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MII.-HDBK-781

..— .—. _.. — .—. —

. .

m

108

)

.-

18 ,, 0, ,, u

-- r.- c- .- c

=, 2, .% a, >,

Page 122: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

.

.

.

.

.

.

TABLE 19 Example of correct order, na in the AO bound calculation

fort o relibd2

runGtve number of $ubsystem$.3Enler data starting by subsystem wi!h smallest total time on test.~=~er ~~~~ f~r j“b$ystem 1

Enter Ih,$ wbsystern”s total time on test14.61

Enter this wbsystem”s number of failures2

Enter ciaia for $ub$y%leirl 2Enter th, s subsystem’s iotal time on te~t35.971Enter th, s subsystem’% number of failure$.2Enter data for subsys:em 3Ente, th,swbsystem’s total time on test

62.542Enter th,s subsystem’s number of fa,lures

2

Enter confidence level percenule1.282

Enter miwontome1.0

Mission Time: 1.00000Percentile: 1.2B200

M2 = 0.1806820 V2 = 0.0103983R.41abi:iiy B&tinci is: C.72L?5C19

If another confidence level or miwon ume, gtve 1.1

Enter confidence level percentile0.0Enter mission time1.0

Mission Time: 1.00000Percentile: O.

M2 = 0.1806820 V2 = 0.0103983Reliab,l,!y Uound ,$ 0. ft50297

If another confidence level or m!won time, gove 1

0.

109

Page 123: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

M:L-14E213K.781

!

.

.

.

.

.

.

.

.

.

run

G!ve number of subsystems3

Enmr ciala slan, ng by sub}ystem with \flldlle$t iOial hme on test

Enter data %: ;u!xjj$:efl IEnter th;$ wbsys?em’$ total time on test

35.971Enter this wbsystem”$ number of failures

14.61

Enter this subsyslem’5 number of Ia,lures2Enter data for subsystem 3

Enier Lhis subsystem’s total tome c.r, te$t

Enter confidence ievei percenuie; .~:~

Enter rn!ss!on urn?1,0

Miwon T,me. 1.00000Percenuie: i.ia200

V.2 - 0.14003s9 V2 . 0.0064862Reliability Bound ,s: 0.780768

If anolher confidence level or m,sslon ttme. g,ve 1

1

Enter mwsmn time.1.0

M!s!oc ?!me; 1.90000Percentile: O.

M2 = 0.1400359 V2 = 0.0064662

Rellab, i!ty Sound i5: u.Ex+.23M

If mother confidence level 0: ,m155im tf,me, give 1.

0.

110

Page 124: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MI L-HDBK-781

Eza~, ple ru,n: I Reference 13, page 200. !ine !

I,th Subsystem Totai i,me on teslI

Number Fa, !ures

1 9.919 4

I2I

15.995 ~

3 I 26.897 I 2

IA

I26.511

I3

~~,~:g I5 3

Page 125: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

.

.-.

.

.

.

MIL-HDBK-781

TABLE 22 Examglecomputer run for data #n TAEILE 21

7117,

Give numh?r of s,.,bsystems5

Enter data starting by subsystem w!th smallest total tame on lest,Enter data for subsystem 1

Enter this subsystem’x iotal :Ime on iesl9.9!CEnler this subsy~tem,s number of fai!ures

4

Enter data for subsystem 2Enter thi! subsystem “s total time on test; 5.2%%ler l!.Is .ss~.-=*-F,’5 .rw-bw C! fa:luws.’. . . . . . . . .2

Enter data for subjystem 3Enter th, s subsystem’s total tfime on lest26.G97Enter th!~ wbsysteP,,s n,~mbpr of f*,l,ures

2Enter data for subsystem 4Enter this wbsystem’5 total ttme on test25.511

En:?r :tvs sutxy;:ern’s ntimber c! !ai!u:e;3

Enter confidence level perce”t,le1.282

Enter miwon !time1.0

Mission Time: 1.00000

Percentile. 1.28200

Ml = 0.5946215v1 = 0,0475423

.%!%lli:y BGund is: 0.412537

M2 = 0.5058325 V2 = 0.0491630Reliability Bound is: O.4O61O1

M3 = 0.5899235 V3 = 0.04ti57b4

Reiiab, i,iy Sound 1$: 0.415676

If another confidence level or m!ss, onl, me, ?,ve 1.

0

112

Page 126: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

MIL-HDBK-7B1

TABLE 23 Thermal stress environments for marine craft

Envmonmental Opera(ing Nonoperalmg

condltjon “c “c

Exposed-unsheltered -S410 +65 -6210 +71

Exposed-unsheltered -2810 +65 -6210 ●71

(thtp)

Sheltered noncontrolled 40 to ● 50 -6210 .71

environment (!hore)

Sheltered noncontrolled 010 +s0 -6Zio ●71

113

Page 127: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

14.

Env

ironm

enta

lor

ofile

data

(exa

mD

lej

D

CO

MP

AR

T.

oY-

ME

NT

TE

MP

ER

A-

NA

MIC

DE

WP

OIN

T7E

MP

ER

-lU

RE

FM

7EP

RE

S-

TE

MP

ER

A-

DU

RA

TIO

NA

LTIT

UD

EA

TU

RE

OF

CH

AN

GE

SU

RE

w.

w,

TU

RE

MIS

SIO

NP

HA

SE

(MIN

UT

ES

)(1

000

FT

)M

AC

H(~

c)[o

CP

ER

MIN

)(q

)(a

1/H

z)(a

2/H

2)(O

c)

GR

OU

ND

NO

NO

PE

RA

TIN

G,

300

-54

CO

LDO

AY

NIA

GR

OU

ND

OP

EIU

TIN

G,

30C

OLD

OA

Yo

-54

N/A

TA

KE

OF

F1

00,

601.

830,

002

0.00

1N

IA

CLI

MB

TO

ALT

ITU

DE

111-

340.

6028

00.

0005

0.00

025

N/A

CR

UIS

E18

340.

55-3

211

00.

0000

80.

0000

4N

IA

DIv

E4,

2534

-o0.

853.

0554

10.

0019

0.00

09N

IA

CR

UIS

E45

00.

60-1

954

10.

0019

0.00

09N

/A

CR

UIS

E(C

OM

BA

T)

50

0.83

-10

1024

0.00

70.

0035

NtA

CR

UIS

E45

00.

60-!

954

10.

0019

0.00

09N

IA

CLI

MB

70-

350.

701.

8537

50.

0009

0.00

045

NIA

CR

UIS

E18

350.

45-3

276

0,00

004

0.00

002

NIA

OE

SC

EN

OT

OH

OT

DA

Y14

35-o

0.40

7.35

!24

0.00

0I

0.00

005

NIA

GR

OU

ND

NO

NO

PE

RA

TIN

G,

300

.71

31

HO

TD

AY

GR

OU

ND

OP

ER

AT

ING

,30

0+7

13!

HO

TD

AY

TA

KE

OF

F1

00,

605.

000,

002

0.00

1N

/A

CLI

ME

TO

ALT

ITU

DE

111-

340.

6028

00.

0005

0.00

025

N/A

CR

UIS

E18

3d0.

s5+1

111

00.

0000

80.

0000

4N

/A

DIV

E4,

1534

-00.

8514

.154

10.

0019

0.00

09N

/A

CR

UIS

EA

So

0.60

+71

541

0.00

190,

0009

NIA

CR

UIS

E(C

OM

BA

TI

so

0.83

+71

1024

0.00

70.

0035

N/A

ER

UIS

E4s

o0.

60+7

154

10.

0019

0.00

09N

!A

CLI

MB

70-

350.

708.

7137

50.

0009

0.00

045

NIA

CR

UIS

E18

350.

45+

1076

0.00

004

0.00

002

N/A

2E5c

EN

DT

OC

OLO

OA

Y14

35-o

0.40

4.57

124

0.00

010.

0000

5N

IA

Page 128: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

IIGROUNO NONOPERATING,

COLD DAY

IGROUND OPERATING,

CGLi3 i)AiTAKEOFF

I CLIMB To ALTITUDE

I

CRUISEDIVE

i

CRUISE

CRUISE (Cc3Liii Ai)

I :~~0:

I DESCEND TO HOT OAY

IGROUND NONOPERATING,

HUT DAYGROUND C? ERATi:dG,

I TA%~~vI CLIMB TO ALTITuOE

I CRUISEDIVECRUij E

CRU15E (COMBAT)CRUISECLIME?

I CRUISEDESCEND TO COLD DAY

TABLE 25

3URATION

;MINUTES)

30

30

?..4

182.6

45

5q~

26181A

30

30

1

11

184.2S

45

5As

7

18

13

MIL-HD8K-781

Test profile data (examrie~.

~~$wq~A~~.

WENTTEMPER-

ATURE

rc)

- Sd

-54

-32

-19

- ii)

-19

-32

+71

.T1

+11

.71*7!

+71

+ 10

5.0

5.0

S,(I

7.35

5.0

14.1

8.71

S.o

1-1-

(),~~~

0.001

10.00110.0019

I :::;9

I

,-,l-,n, a. .. . . .

,:::;

1-

0.001

1-

10.002

1

0.001

0.001

0.0019

, p0;9

10:0019

I0.0010,001

0.001

op.AJ.

POINT

tEMPER-

ATURE

rc)

N/A

N/A

NIAN/AN ,4N;A

N1AI.I:A

PL’AN/ANIA

N[A31

31

N:A

N;A

N/A

NIA;4,,~

F!!AN/A

N/AN/A

N/A

QIJIP.

nEt’JT)PERA.

‘ION

oFF

ON

OF!

ON(2NON

ON

GN

0!!ON

ON

ONOFF

0?:

ON

ON

ON

ONON

ONONC)N

ONC)N

I

i15

Page 129: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

; ti,i, ! .?6 , ,,,&t-ernPeratur eflQor Class. &~>ment in a,~-condl~ooned compartments.— -

ALTITUDE TEMPERATURE

( 1000 FT) (“c)

o 5510 5320 40

30 4040 3050 20

TABLE ?1 ;Hot dav arnb, ent temperature (“C) for Cla$s II equipment #n a,r.conditioned comoarrmems

\ HIGH

LTITUDE PERFORMANCE

000 FT) ~ 0.6 0.8 1.0 ~(1.o)~’

o 71 71 71 95

10 S6 68 68 93

20 40 55 63 88

30 15 36 56 80

40 5 10 46 70

50 5 10 35 60

60 5 10 24 49

70 5 10 11 35

l’Ambaent cooled equtpment must be turned off for 15 m!nules after 30min U1eS0f OPerall On

at these Iemperalures to comply with the Interm)tten! operat, on of MIL. E.5400

116

Page 130: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

i

MIL-HDBK-781

TABLE28 Holdavambient tem?eralures ~C)!oreauiPment inramair-coGled c0mPar1ment$

o

10

20

30

40

50

60

~o.d

40

27

6

-15

-36

-30

-31

-30

0.6

60

38

16

-6

-30

-19

-23

0.8

75

52

29

7

-16

-7

-11

70 -22 -10

~,Amb, ent cOOled CIa~S Itequ,pmentmust be turned off for 15m, nule$ after 3

~(1.o)

95:’

71

A6

23

-1

0

A

5

!nute~ of.,operation at Ihi! temperature to comply w,rh tne ,nterml ttentoperal, on requt~ement of

MIL-E-5400.

TABLE 29 COlddav amb, enltemperatures ("C) foreQuipment inrama, r-cOoled comparlmenIs

o

10

20

30

40

50

60

~oxt 0.6 0.8 ~(1.o]

-44 -37 -15 -11

-18 -10 2 t9

-36 -28 -16 -2

-58 -50 -40 -27

-59 -51 -41 - 1s

- B2 -76 -67 -55

- B2 -75 -66 - 5L

-65 -58 -48 -35

117

Page 131: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TAtI1 F 30. ~Inpy,.?mres (“C) for Clas~ I and cla~! Il?auic. men: in air-conditioned cOmc@flmen:S

‘wARM COMPARTMENT

r’

‘1 0 : ;MACH HIGHAI. I’ITu DE NUMBER to PERFORMANCE

yE:::.59 .79 ~ 1.0

8 12 19 27

1 ‘o ,,) i 24 2Y 36 4A

i u 16 20 27 35

30 7 11 17 24

40 8 12 17 24

W 6 9 14 21

COOL COMPARTMENT

ALTITuDE(1000

PERFORMANCE

FEET)

o -26 -19 -10 2

21010 -4 3 13 27

20 -17 -10 -1 11

30 -32 -26 -17 -6

40 -33 -27 -18 -8

50 -38 -32 -24 -14

118

Page 132: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 31 Jet aircrafl random vibration :es:

Aerodynem, c induced vibratmnWO . K(q)~, where q .WI = WO-3dB

Dynam)c pressure (when q> 1200 Ibs/ft 2, use 1200)

(SEE FIGuRE 65 for spectrum $hape)

K Localmn Factor Equ,pment Iotalion

0.67 X 10.$ Equipment attached to structure adjacent to external surfaces that aresmooth, free from dosconttinuiloes.

0.34 x 10-8 Cockpll equipment and equipment in com artmentf and O? shelves adjacentrto external surfaces that are smooth, free rom da$contlnumes.

03.5 x 108 Equipment attached to structure adjacent to or immediately ah of $urface\having dtscont,nu)tles (that is, cawtie!, chins. blade antennas. and so fOnh)

01.75X lo.e Equ,pment ,n compartments adjacem to or immediately aft of surfaces hawngdisconl!nu,lles (that,$ cav,tles. chins. soeed brakes and so for!h)

SPECIAL CASE CONDITIONS

FIgh!er bomber

Cond,l,on Equipm?nt Iocauon WV

Takeoff A(tached to or #n compartments adjacent to structure direclly exposed to 0.7eng, ne exhaust ah of engane exhau$iplane(l minute)

Cruise (Same as above) o. t 75

Takeoff In eng, ne companment or adjacent to engine forward of eng#ne exhaustplane (1 m,nute) 0.1

Cruise (Same a$ above] 0.025

Takeoff. Iand,”g, Wing and fin tips L/ deceleration (fpeed brake) (1 m,nute) 0.1maneuvers

High q W,ng and fun tam V(> 1000 lbs/ft2)

0.02

Cruise Wing and fun COpS3 0.01

Takeofl All other Iocat, ons ( 1 minute) 0.002

Cargoltranspon

Cond,t,on Eau, Pment Iocat, on w ~

Takeoff Fuselage mounted O.c I

Takeoff Internal 0.005

Takeoff Wtng -ail of eng, ne eanaust Q 0.05

All Wtng I,LI and f#nt#p2 O.c I

1 Use wing and fln IIP specuum (see F!GURE 65)

J Excludes LIpOer wrface blown (USB) and e~ternallybiown flaP(E:a~

>/ 7ak.eoff, land, ng, plus 10percenl of cru, se time

119

. .

Page 133: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

32T

abul

atio

nof

Iem

uwal

we

Val

ue$.

❑C

OLD

DA

Y

❑H

OT

DA

V

TE

MP

ER

AT

UR

EO

UR

AT

ION

wE

IGH

TE

DD

UR

AT

ION

I

MIS

SIO

NB

WE

IGH

TIN

GF

AC

IOR

=M

ISS

ION

AW

EIG

HT

ING

FA

CT

OR

- WE

IGH

TE

DD

UR

AT

ION

WC

IGH

TE

OD

uRA

TIO

N

Sum

mar

vof

tem

pera

ture

valu

es.

❑C

OLO

DA

Y

TA

BLE

33

mH

OT

OA

V

,I

TE

MP

ER

AT

UR

EV

ALU

ET

OT

AL

WE

IGH

TE

DD

UR

AT

ION

Page 134: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-781

TABLE 37. Temc.erature level tabulation - ho! dav (example~

kliigh.low-low-ht9h

Weighfing factor = 0.40

Low-low-highWeighting factor = 0.25

Close wppoflWeighting factor = 0.20

IFerryWe, ghting factor = 0.05

Temperature Level

(“c)1)

71

367110

71

23

366410

23

I

MIN = 10”Cfor43 minutesMAX . ?I”C {of M minutes

INT = 35.8°C for 77 minutes

,NT . 23(27) . 36(38) ● 64(12j . ~ = 35827.38+12 7? ‘

1.

Duration

(Minutes)

145

601770

7s

60

70

607s

240

Weighted

duration

14.s

24.010.8

28.0

!8.7s

1s.0

14.012.0

15.0

;2.0

TABLE 36. Temperature summarv - hot dav (examole~.

Temperature Level Total Weighted Duration

[“cl (Minutes)

10 43.0

23 27.036 38.064 12.071 44.0s

123

Page 135: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

fw5iL-i+WiC-7~i

~

Temperature Level Durauon~ (Minutes)

Weighted

(“c) !! duration

.Ow.low.low

Weiqhltnq factor = C!.1O I

I

-26 145 14.5

High-low.10w-high I I IWeighting factor = 0.40 -26

1

130I

52.0

I

_iG 27

I

!C.s

Low-low-high

1

IWeighung factor = 0.25 -26 140 I 35.0

Close wpportWcI@wIng fa:tcr = !2.?0 1 -26

I

70 I 14.0-4 60 12.0

-27

1

75 I15.0

FerryI

I

We., ghr, ng f;ctw = 0.35!

?5f

~4~

!

IZ.Q

~, 5ele~ted Ievel$ and du,alionf (see 5.6.2.2)

MAx = f - 10) [10.8) + (-4) ( 121 = - 6.8°C for 22.8 minutes10.6 . 12

-27 {It .FAIN = L !- 25) [!2?.5J = - .26. I’C ior 142.5 minutes

15 - 127.5

$ince no level$ remain to select INT value

MIN = -26. l-C for 71.25 minutes andINT = - 26.1 °C for 71.25 minutes

TABLE 40. Temperature wmmarv - coia dav (examDie]

I TemperMure Level

I

Total Weighted

rc) Duration (Minute3)

-. 1S.o

-26 I 127.5-10 I 10.8 !4

I!

12.0!

124

I....._._._._...

Page 136: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

34

MIS

SIO

NA

WE

IGH

TIN

GF

AC

TO

Rs

—JI

BR

AIIO

NLE

VE

L(g

~i

n,)

——

002

001

---1

--D

UR

AT

ION

WE

IGH

TE

D

(MIN

)O

UR

AT

ION

1

...

..

..

..

..

Tab

ulat

ion

ofvi

brat

ion

Ie.e

ts

❑C

OLD

DA

Y

OH

OT

DA

Y

,

MM

ION

8W

EIG

HT

ING

FA

CT

OR

-h

.M

ISS

ION

XW

EIG

liTIN

GF

AC

TO

R■

7VIB

RA

TIO

NLE

VE

LD

UR

AT

ION

(gl/H

z)

002

101

—i–

..

.--

---

-.-.

..

..

..

..

..

-+-

WE

IGF

+T

EO

OU

RA

TIO

N

----

----

--,

TA

ELE

35S

umm

ary

ofvi

brat

ionl

evel

$

❑C

OLD

OA

Y

❑H

OT

OA

Y

r1

II

VIE

07A

TIO

NLE

VE

LlT

oTA

LwE

IGH

TE

OO

UR

AT

ION

I

002

100

1.

..

..

..

..

..

..---

----

---

----

----

----

----

----

----

----

Page 137: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

36.

-site

test

mof

i!eti~

~e.

N N

1

TE

MP

ER

AT

UR

E

EM

PE

RA

TU

RE

TE

MP

ER

AT

uRE

DU

RA

TIO

N17

AT

EO

FC

HA

NG

ED

UR

AT

ION

\TA

IITV

IBR

AT

ION

VIB

RA

TIO

N

PH

AS

EV

ALU

E~

C)

DU

RA

TIO

NS

TA

R

(MIN

UT

ES

)(“

C/M

INU

TE

)(M

INU

TE

S)

TIM

EP

HA

SE

VA

LUE

(gW

-!z)

(MIN

UT

ES

)T

IME

NO

N.O

PS

OA

KN

OV

IB

OP

SO

AK

TR

AN

SIT

ION

TO

II

INT

j!

TR

AN

SIT

ION

INT

MA

XM

AX

TR

AN

sIT

ION

MIN

MIN

11

TR

AN

SIT

ION

~!

NO

N.O

PS

OA

KN

OvI

E

OP

SO

AK

TR

AN

SIT

ION

(()

y

INT

j!

TR

AN

SIT

ION

INT

MA

XM

AX

TR

AN

SIT

ION

MIN

MIN

~.

TR

AN

SIT

ION

?

NO

N.O

PS

OA

KN

OV

IE

~T

AI(

Eo~

F

~,

O,O

OIg

?/Iiz

AS

RE

QU

IRE

DT

OA

SS

UR

EC

ON

Tl

NU

OU

SV

18W

T10

ND

UR

lNG

FLl

GH

TpH

A$E

$

,,,,,.

,,—,

--,

—,-

.,-,

.....-

,,,.

,-=

,,,,

_

Page 138: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

c1 w

LOW

.LO

W-L

OW

Wei

ghtin

gF

acto

r=

.10

-H-

Vib

.D

urat

ion

Wtd

Leve

l(r

ein)

Dur

(g~

/Hz)

002

10.

1

l-ltake

olfi

001

140.

314

.03

0032

5.2

0.52

TA

BLE

42.

Vib

ratio

n

Vib

ratio

nLe

vel

(g//Hz)

.002

.00

I

.001

2

.001

5

.002

.002

6

.G03

2.0

041

.007

7

TA

EIL

E41

.V

ibra

tion

leve

lta

bula

tion

(exa

mpl

e~

tiigh

.Lo

w-L

ow.

H,g

h

ILow

.Lo

w.

H,g

hC

lose

supp

ort

Fer

ryW

eigh

ting

Fac

tor

..4

0W

etgh

liog

Fac

tor

..2

5W

e,gh

l,ng

Fac

tor

=.2

0W

eigh

ting

Fac

tor

=.0

5I

Vlb

Dur

,lliO

nW

ldV

!bD

urat

ion

Wtd

V,b

.D

urat

ion

Wtd

.V

ib.

Dur

atio

nW

td.

Leve

l{m

tn)

Dur

.Le

vel

(rei

n)D

ur.

Leve

l(r

ein)

Dur

.Le

vel

(rei

n)D

ur.

(g’/H

z)(g

>IH

z)(g

.’/H

z.)

(gW

iz)

.002

10.

4.0

021

0.25

.002

10.

2.0

02I

0.5

(Iak

eoff)

[Iake

ofi)

(Iok

eoff)

(tak

eolI)

.001

143

57.2

.001

142

35.5

.001

218

43,6

.001

259

12.9

5

.004

120

.78.

28.0

032

5.2

1,3

.001

26.

01.

2

.007

715

.06.

0.0

026

5.0

1,25

.002

2.5

0.5

.001

26

2.4

.001

55.

01.

0

!1su

mm

ary

(e~

am

Tot

alW

eigh

ted

Dur

atio

n(r

ein)

1,0

163.

28

3.6

1.0

0.5

1.25

1,82

8.28

6.0

?)N

OT

ES

:S

elec

ted

Leve

lsan

dD

urat

ions

:

1/0

=,0

02g2

/Hz

for

1m

inul

e

MA

X.

.007

7g~

/Hz

for

6m

inut

m

MIN

=.0

012

g~/H

zfo

r3.

6min

ules

lf4T

=.0

035

g2}H

zfo

r12

.85

min

ule~

(l)

.001

g21H

zfo

r16

3.28

min

utes

toas

sure

cont

inuo

usvi

brat

ion

(I)I

NT

=(.

0015

)(1

.0)

+(.

002)

(0.5

)+

(.00

26)(

1.25

)+

(.00

32)(

1.82

)+

(.00

41)(

8.28

)

1.0*

0.5+

125+

1.13

7+82

8

.045

522

.—

=.0

035

12.8

5

4 m

Page 139: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

N m

FR

OM

LEV

EL

-54

°C

INT

c

MA

XC

MIN

c

+71

°C

INT

H

MA

XM

MIN

H

TA

BLE

43.

~er

atur

era

leof

chan

qe(e

xam

ple]

TE

MP

ER

AT

UR

ER

AT

fO

UR

AT

ION

TO

LEV

EL

OF

CH

AN

GE

C’C

)(M

INU

TE

S)

INT

C5

[(-2

6,1

)-(-

54)]

/5=

5,6

MA

X<

MIN

C

+71

°C

INT

H

MA

XH

MIN

H

-54

°C

7 5 8 6

!1.s

!0.5 6

[(-6

.8)

-(-2

6.1)

1/7=

2.8

jI-26

.1)

-(-6

.8)]

/5=

3.9

((71

)-(

-26,

1))

/8=

,2’.,

[(35

.8)

-(7

1)]

/6=

5.9

[(71

)-

(35.

8)]

/11.

5=

3.l

[(10

]-

(71)

]/1

0,S

=5,

8

[(-5

4]-

(10)

]/6

=10

.7

Page 140: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-781

I

I

127

Page 141: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE AS Random wbrabon test for V/STOL aircraft

Aero5pace Induced vibratton

WO = K(q)?, where q = dynamic pressure (whenq> 1200 ibdft2use 1200)W! = Wo-3dB

(K) Location factor Equtpment localion.—

0.67 X 10s Equtpment attached to slructure ad;acent to external wrfacej that are

smooth, free from discontirwi toes

0.34 x 108 Cockpit equipment and equipment in compartments and on \helves adjacentto external surfaces that are smooth, free from d,scont, nu, t#es

3.5 x 1O-B Equ, pine-m attached to structure adjacent to or ,mmecl, atelyahof surfacet

hawng d!$conl!nutl,es (tha[ !s, cavities, chins, blade an(enna$. and so forth)

1,75 x 10.S Equlpmenl en compartments ad!acent to or immediately aft of surfaces hav, ng

I dlsconttnult,es (that ,s, cawt,es. chfins, speed brake$, and so forth)—.

SPECIAL CASE CONDITIONS———

Cond!tton Equ!pment Iocatton WO(HORI ? WOWERT) 5

I I “K,.,. ,

TYF

A

Takeoff V Attached to or an compamments adjacent 0.7 0.0510 structure d,rectly ezposed to engtne

exhau$! ah of engine exhausl plane(1 minute) U

Takeoff Y In eng,m compartment or adjacent to 0.1 0.!7eng, ne forward O,l of engine exhausiplane ( 1 minute) U

Takeoff Y All other Iocat, ons(l minute) U 0.002 0.02

Y Takeoff or landing

ILl 0.5 m#nulesfor vermcal takeoff handing mode

.

128

)L

s

B

0.60

D.OA

0.02

Page 142: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

. .

aJ

—QEmx

188

129

Page 143: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

?.?! L- HDF!K.7s?

FABLt. 47 stores host a,rcraf! m,,sion ul!iizal, on. rates ior ewronmenlai testinq——.—.

Examole util, zatton_rates of mi\\ion profiles

I Mkon :, Percent Utilization RateI

1

I Ground Attack, Traamng

I

40

Ground Attack, Combat 20I

IGeienwve tianeuver% 2i2

I

sea::~, ~r,~ p.=>: .tic I

I!!? I

I

FuncT,mwl Check

~

5 ITra, ning Cycle 5 I

, ~~ J

lzSI”Ce It, e f!rstth,ee m~fsio”s, as a g,,., ,c., total 80 percent of the ultlizal, on ram, Ihe$e three mi%s,a-

profiles would be selected for comb, ned enwronmental tesung. II any oi the other mtss, om are

cielermfned 10 include extreme or Wstalned enwronmental CWidnifon$ IW1 eficourtiered ,r, [he f,,, !I , t, thereby x!dinqthe zc%tc?:ver:,:j.:c me:bl:ee 7,1; Y)071S,:h,er, ;!wse mIwcn\ a!; o :ho,a!d be m e:. e

!e$! cycle Illhe fir$! rntission <elected ,s utillzed twice mrnuch a\ the other two mns,ions, then Mnss, c,n

I should be run twuce as much per cycle. (See MI L.ST D-81O, Table 520.0-1)

130

I ,“, !”.... . . . . . .

Page 144: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

TABLE 48 Random wibratton. g,~ , (OVL). level ad;usfment factOr$ fOr the maximum predicted en.ironmenl(95th Percenllle wtth 50 percent confidence based on one-side tolerance Itm!t).

AIR. LAUNCHED g,,n, (OVL) MINIMUM

MISSILES AND FACTOR FOR DYNAMIC

ASSEMBLED BASELINE PRESSURE (Q)

EOUATION EXTERNAL STORES MAXIMUM BELOW WHICH FIGURE

CONDITION PREDICTED g,m, (OVL) = 1.3 NuMBER

(NU&ER) OF CONFIGURATION ENVIRONMENT (CONSTANT) APPLICABLE~1~f ~, y

COMBINEO1. MuLTIPLE-USE ALL 1.00 250 132

STORE (BASELINE)

2 SINGLE STORE o.aEl 264

3 CLUSTER MOUNT !.28 19s

AIR. TO. SURFACE (AGM)

4 Mu LTIPLE. USE 0.96 260 133

ALL STORES

5 SINGLE STORE 0.83 302

6 CLUSTER MOUNT 1.25 201

AI R.TO. AIR (AAM)

7 MuLTIPLE-USE I .07 235 I 34

ALL 5TORES

8 SINGLE STORE 0.97 259

9 CLUSTER MOUNT 1.38 182

1-

! THE MAXIMUM PRE21CTED ENVl RON ME NT(ASDETERMINED FROM mNDOMVlBWTlON

STAT15TICAL ANALYSES) IS OEFINEDEY +6dBLOG-LOG g,~, (OVL) VERSUS q LEVEL EQUALTO OR GREATER THAN THE 95TH PERCENTILE VALUE AT LEAST 50 PERCENT OF THE TIME.

SEE FIGURE 132 FOR THE BASELINE gr,n, VERSUS qFORALLsTORES

?’ CLUSTER MOUNT VALUES ARE ONLY VALIDFORaPTIVE. FLlGHTCONDlTlONS

Y EOUAT1ON OF LINE, g,m, VERSUS q(6dB10CTAVE ON LOG-LOG):(FROMi= 1T09) [gr~, (OVL)]l = (l OIEXP))T( BASELINEI

[exp]= [10g10(q)-(2.28 S33)l

[g,m, (OVL)li= (FA~OR)i [9rm~(OVL)], (B4sELlNE]

131

,. . . . . .. . . .. .. . ...-4 .“, , “,, ..,,,.”,..,.,,,. ma, m,,. ”r,.”,. m ,,, A,,,,”,. , .,”=,,”,,,, ,,nu= -”,, ,.””, . . .

Page 145: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

9LE

49M

e!ho

dof

~alc

ulat

ina

the

acce

lera

tion

gow

er$p

ectr

alde

n$itv

spec

trum

10pr

oduc

e

RE

FE

RE

NC

E

FIG

UR

EN

UM

BE

R

135

(a)

. N13

5(b)

f!‘eq

ual

10a

unit

-9,

m,(

OV

L)—

!.1

EO

UA

TIO

N

(ALL

PS

DS

LOP

ES

.M,

AR

EE

ITH

ER

t3d

B/O

CT

AV

E)

Wrj.

[(f~

-f,

)+

(fz)

ll%(f

df2)

11-’

W..

(LE

VE

LA

DJu

ST

ME

NT

FA

CT

OR

)’WO

Wo=

(gm

,)’w

o

Tlil

SS

PE

CT

RU

MIS

FO

RU

SE

ON

LVW

ITH

WIN

G.

MO

UN

TE

D

AN

DF

IN.T

lPS

TO

RE

51N

TH

ER

AN

GE

OF

q<2

501

bV\q

.ft

AN

DM

AC

HN

UM

BE

Rs0

.4S

.

rV~

=lf,

/f])(

f~-f

,)●

(o.5

)(f]-

f?W

])+

(fo-

f3)l”

w,=

(f~

/fj)w

lJ

W.=

(LE

VE

LA

DJu

ST

ME

NT

FA

CT

OR

)?W

o=

(g,~

,)’

Wo

WI

=(L

EV

EL

AD

JUS

TM

EN

TF

AC

TO

R)}

WI

=(g

,rnt

)’W1

TH

ISS

PE

CT

RU

MIS

FO

RU

SE

WIT

HA

LLF

ULL

Y.A

SS

EM

BLE

D

EX

TE

RN

AL

ST

OR

ES

.F

OR

ALL

DY

NA

MIC

PR

ES

SU

RE

S(q

).

EX

CE

PT

FO

RW

ING

PY

1ON

AN

DF

IN.T

IPS

PE

CT

RU

M

SP

EC

IFIE

DF

OR

TH

ER

AN

GE

OF

qS

2501

bUft~

AN

OM

AC

HN

uMS

ER

s0.4

5.

RE

MA

RK

S

(1)

WO

FO

RO

NB

OA

RD

EQ

uIP

ME

NT

AN

DF

ULL

Y.

AS

SE

MB

LED

EX

TE

RN

AL

ST

OR

ES

(2)

WO

,TO

PR

OD

UC

ET

HE

AC

CE

LER

AT

ION

PS

DLE

VE

L

WIT

HLE

vEL

AD

JUS

TM

EN

TF

AC

TO

R(E

QU

IVA

LEN

TT

O

WO

,FIG

UR

E13

$(a)

,

f3;

SE

EF

IGU

RE

S13

2T

HR

OU

GH

134

(1)

(2)

(3)

(4)

WO

FO

RA

SS

EM

BLE

Dw x

EX

TE

RN

AL

ST

OR

ES

,M

AX

IMU

MP

SO

LEV

EL

2

W1,

5AM

E,

FO

RM

INIM

UM

PS

D5P

EC

TR

UM

LEV

EL

WO

AN

DW

I,T

OP

RO

DU

CE

TH

EA

CC

ELE

RA

TIO

NP

SD

LEV

EL

WIT

HLE

VE

LA

DJU

ST

ME

NT

FA

CT

OR

(EO

UW

ALE

NT

TO

WO

AN

D

W,

INF

IGU

RE

135(

0

SE

EF

IGU

RE

I13

2T

HR

OU

GH

134

,7.

—,,,

,T–_,

—,,,,,,

.,,,Y,,,.,,,,,,,,,,,,,,,,,,,,

,,,~,,,,,,,

,,,,,,.,

,,,,,

Page 146: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

—— RE

FE

RE

NC

E

FIG

UR

EN

UM

BE

R

136

II

TA

BLE

49M

etho

dof

calc

Ula

tinq

!hea

ccel

era!

ion

pow

ersp

ectr

alde

nsitY

5Dec

trum

toD

rodu

ce

t‘

equa

llo

auni

l-g

,~

,(O

VL)

.[C

ontin

ued)

i=!

EQ

UA

TIO

N

(BA

5ED

ON

M(S

LOP

E)=

t3d

E10

CT

AvE

)

Voz

l(f:/f

,)(f

/-f,)

+(o

sl(f

J-f2

2/fl)

+(1

0-1,

)+

(f4)

[lne(

f~f4

])l-1

v,,

wo(

f//f,)

Wo=

(LE

VE

LA

DJU

ST

ME

NT

FA

CT

OR

)(W

O)=

(g,,.

,)~

(WO

)

W,=

(LE

VE

LA

DJU

ST

ME

NT

fAC

TO

R)(

W,)

=[9

,m,)

7(W

,)

TH

ISS

PE

CT

RU

Mlj

FO

Ru5

EW

ITH

EI)

UIP

ME

NT

INS

TA

LLE

D

INE

xTE

RN

ALS

TO

RE

5IN

TH

ER

AN

GE

OF

q?2

501b

dft2

AN

DM

AC

H20

.45.

$.E

EF

IGU

RE

135(

a)LO

WS

PE

ED

RE

MA

RK

S

(1)

(21

(3)

(4)

WO

MA

XIM

UM

LEV

ELP

SD

FO

RO

NB

OA

RD

EQ

UIP

ME

NT

INS

TA

LLE

DIN

EX

TE

RN

AL

ST

OR

ES

.U

SE

INC

ON

JUN

CT

ION

WIT

HLI

MIT

S

OF

FIG

UR

E13

5(a)

Wl,

SA

ME

FO

RM

INIM

UM

P5D

SP

EC

TR

UM

LEV

EL

W.

AN

DW

I,T

OP

RO

OU

CE

TH

EA

CC

ELE

RA

TIO

NP

SO

LEV

EL

WIT

HLE

vEL

AD

JUS

TM

EN

TF

AC

TO

R.

(EQ

UIV

ALE

NT

TO

WO

AN

OW

)IN

FIG

UR

E13

6)

SE

EF

IGU

RE

S13

2T

HR

OU

GH

134

,...

,.,.

Page 147: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDCIK-781

~=lo

—“1

134

I

..-. .— . ...—. . . ... . ..—.

Page 148: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

50.

Pre

limin

ary

oDer

atio

na!

desi

onre

quire

men

ts

(e~

pect

edIif

eol

Sve

ars)

-—-.

..

!.*V

1R

m..?

”,

—--

--l-

‘-’”’’

l’’’”’

”’”[,,,

_L2F

——

—.—

..–

r.—

..—

—..

..--—

nom

,m

enV

ttcm

EV

CM

1

IIC

evtlm

1m

m-I

LnR

IEvA

LIc

l.mc.

urm

nm

nI

Flm

rLlc

u7m

um.

Ikm

SU

IPIrM

lcm

7!U

lmE

UJC

t

P,O

MIL

CCM

11M

11O

S3OFO

PU

A?I

”W

UlM

IRO

IMC

NM

UIU

BE

S,~

C:

[OE

SIC

II?0

CW

81R

CD

LW11

018W

mS

OA

StD

0#IT

(IK

Z!W

NM

CR

7!O

rI

II

1I

I

!01)

!‘n

itT

ts,,f

fiLc

c.m

um.

.SIC

-16

)0M

D“1

L-S

TD

-81

O.)

CM

MIN

ZD

F.*

1M

olrlv

w$

.— V,r

.tA

IR

Tr.

lvcn

nlm

e

-Ilrc

llS

CA

I

?,*C

r

(In-

——

bv.

c18

-Cn.

cbo

.c

-to-

cro

s1

MM

*IA “1A

TA

1!IC

[)

L!.c

[0!4

70?

Cca

l&lm

m!

-lo-

c

m?2

m

T4*Y

-11

-cm

Zo

Ilzw

m.a

ml

,1$

1RU

W.S

-is%

m

bOQ

Ju

SU

?8X

IAU

mnA

lm18

-lo-c

[IM

DI

o-c

[WA

)

ml

14W

-lo-

cr“

R11

u!

-w-c

mm

11!lu

rRce

A1n

1cm

Cum

u-L

cuS

ou

-19*

Cro

tb

w-2

*.C

Im*

usW

cra

n4

Iw

R/a

R!4

WA

WA

lmn

h?

-II-

C

Iom

h?

Jb.c

WI

#vM

“c

——

./,

t!+

%41

CE

D?l

lEN

ul.

(U

TC

UA

L

%11

.1

WA

Wh

Irc

‘c c

#/&

1~

CE

DT

llmJu

LM

)A

(t#

-rcu

lutc

wlrl

mrr

)

10@

lA

T

-lo-c

Am

N-c

- luA

T1n

Uul

In[n

lvm

mm

u

-mm

lD1?

’lM

.cm

U.c 1-

mX

4A

l46

%la

&T

+8*C

Am

Mw

mM

WC

ton

41

O.c

mm

>&

.c

WI

A’t

]rc

lMX

Al

-IO

*C

MD

M.e

I!ll

AT

60.C

IIOR

1sA

t

11*C

llcC

L1-

Gt8

L1so

ulLA

PIA

?lO

m

mla

mu

31$

mw

rwn

Rar

cttu

mllc

lu1

IIC

C-U

.W

ltL~

%T

UA

?CD

Um

vm,!o

Slm

uam

lul

l?lo

-

TF

..ZD

CO

IID1T

IOII.

WC

orE

n

UID

O. ,.

,,.,,

,,,,

,,,,

,,,,,,

,,-,

,,,,

,.

Page 149: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.>

0.

:—

s.

:. .-Q-->.----

%.--::s----

136

Page 150: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

1’

.>

.>

-!----L

i

.>

I

I

137

Page 151: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I I I I I

TA

BLE

50,

Pre

limin

a~

op

era

tiona

lde

siqn

requ

irem

enl$

(exp

?cm

dlif

eof

5ve

ars~

.(C

onlin

.ec~

-

Ttu

lsvo

nlhl

Ion

CV

I.111

Ew

lmm

w).

nl

Ulm

—.—

——

wIL

s-m

um?.

,—

.— CO

VC

WD

-—- #/A

.—— #l

R

?W.

ICM

T-—

.—

Mla

-—— nA

IL

—...

SM

IP

ntM

1!rr

V.N

AN

CC

U?

MIN

AL

ICIW

——

.—

1.0

Iii.

?c#

p,r:

o,m

./.no

wV

on

,!+

0”,

1n

oun

——

—.

—,/

AW

AN

1&

owl

mm

?‘rn

ucx

zm

mm

um?0

1

luw

e

—.

wA

“/a

—-

1lit

Pm

mau

l

2In

.Iu

lm?

—-

&$

Um

,0.

1To

0.2-

DW

Urn

0.1

Cll,

$

wd

——

-

~

.——

11,

.m

m6-

Prs

noun

mu,

mm

ma

1m

lalrr

cs

Inw

nw

to

J>o

CJU

H-—

—.

9’/

Ad

A

2In

,t[m

milt

?0s

1lW

B

2lb

.rm

Wul

?0[

t.9

0U1

2In

.W

I“C

1’n

V(1

*

1aw

l

0.8

lm.

0U

nrrx

llW

I&

——

.

WI,

1IN

.?m

mm

z18

.

lUIW

?

110

ml

f

1M

lmn?

.I

—.—

I(A

#/& k’

1.—

—U

&m

l).

-j

.—-

WA

——

T—

WA

0.0

Ill.

,t

#no

un,6

Um

m.

mm

..?O

.!:

rc-

Ill-c

Pce

1nw

ar—

WA

—. L0

4D

OI!

U1/

rrl

,-1

0-C

?0

-IO

*C

1;cm

—- 1

f,.m

e

Bm

hY

[nn!

,Lm

J?

1tn

.U

*m 1

1Il.

101

Mm

——

-1,

/A

——

~–

.—--

l----

- 1m/4

—.

WA

“la

WA

ICC

—.

slm

AIID

DU

ST

T-

1In

.

WIL

BUP

— *JE

m?

Wm

.6>

0’01

s,

mm

01ss

Ir!

0.I

10

0.1

c/rt

lo.

*O

.tm

0.1

D1A

m7c

n,

-D

L4X

C7C

10.

1c/

fl—

——

.——

KU

:tsK

UJO

trl-

N,.

Kzu

rs0?

mm

on51

1.[

“11.

sllm

l$C

(mm

w

I,—

tlm

mm

,o.

tW

A

mo.

h-D

wan

l.0.

1

Clr,

l

tsIL

LS,

0.1

m

0.1

-

Dw

.zm

,

0.1

Clft

——

WA

WA

——

—U

,&

“/A

_— “/A

——

lAtM

r.11

W/&

t–j

mn

twllr

u-9/

&

mm

0?m

rmD

111.

1

mbs

lwol

m

*I4

u.P

L.S

IW.

hmsv

ucnt

Cot

limcm

)I

1~

-W

h

HMItl

xti$

mm

rom

mru

mw

mam

St,,

tcr

,,”?“

8T

tsrll

tP

,W

1OI7

O11

Iem

m

“IL-

S?>

%08

.Z

,.lL

-s?w

81W

,5,,

nlJn

4—

——

——

ml

Aw

hm

mro

.wum

Cot

tc,.w

ruvl

om0?

110

.l.”m

xus(

,.~x].——

VIA

ml.

——

——

9/A

——

—-

Wr

0?cl

mT

At#

ffa.—

__—

.

rum

sus

,1O

IT

..--

—.

w4

-+‘WA

—--

--

——

---

WA

— “!A

1-_..—

——

.w

A

II

N.2

:

_-–—

_J_—

_

l--_—

,“m

0,”

Co

”rh!

mu

1“C

.N1$

!K

ID

--..—

-—

.-.

.—-.

...—

—-

.._.

_..

——

__.

.—

.—-

,,,,,,

,,,,,

,,,,,,,”,,.,,

_=

,,-

,,.,,,..,,,_,,,,...—

__,

,,,,

,,,“,

Page 152: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABLE SO

MIL-HDBK-781

Pref, m,narv operational destq? requirements (expec:ed

I,fe of 5vears) (Cont,nued)

INDuCEDTHERMAL

FLIGHT EVENT

EXTERNAL INTERIOR

COMPARTMENT

LOCATION

RAOOMEPAYLOAO (FWO)

PAYLOAO (AFT)RECOVERYFUEL TANK

FMS

FAIRINGSFINS

ACTUATOR

COMBUSTOR

SURFACE

rc)

I

VIBRATION(ALL 3 AXES)

421

357329

366360

393

382382

NIA449

AIR

(“cl

71132

132143164,q~

N/A

N/A2t16

NIA

1

FLIGHT EVENT

CAPTIVE FLIGHT VIBRATION (INPUT)20-l SOHZ 0.0120~lHz-.

150- S00 Hz + 3dBJOCTAVE

500- 1s00 HZ 0.04g2/Hz

1500-2000 Hz - 3dB/OCTAVE

OVERALL: 8.24 9.m,DURATION: 1 HOUR PER AXIS

FREE FLIGHT VIBRATION (INPUT)

(FORWARD OF INLETS)

20-500 Hz’ + 3dBlocTAvE

500-2000 Hz 0.0Eq2/Hz

OVERALL: 11.8 9rrn\DuRATION: 2 MlNs. 15 SECONDS

(AFT OF INLE?S)

20-2000 Hz 0.43 gVHz

OVERALL: 29.2 9rm,

DURATION: 2 MINUTES

1 139

I . ..—. _____

Page 153: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE J I Life cvcle environments

U.’a. NAVYAN EXAMPLE

SUMMARY CHARTS FOR THELOGISTIC LIFE CYCLE

ENVIRONMENTSFOR A

LIFE OF 5-YEARS(43800 HOURS)

SUMMARY OF

STORES LIFE 12!>TRIBUTION (S-YEARS) IN MAJOR LIFE CYCLE PHASES

1. FACTORY/DEPOT REWORKHOLOtDELAY

IN. ROUTE MOVEMENT/ AND DuMP

STORE TRANSPORT HANDLING HANDLE STORAGE/MAINT STORAGE

(5 YEARS. HOURS HOURS HOURS HOURS HOURS

43800 HR51 ~ (~~~ (PERcENT)

AN ExAMPLE 1667 809

(3.81) (1.85)

ITEMNUMBER

1.2.3.4.5.6.7.8.9.

10,

SPECIFIEDEQUIVALENTAMPLITUDE~3-AXES,with excePIIon)

35G30G25G3SG (LONG);;: (VERT)

25G30G1 FOOT DROPON CONCRETE18 INCH DROP

6120 35141

(.:) (13.97) [80.23)

NOMINALDURATIOFY

llmsIlmsIlms18 ms

6 ms2 ms

Ilms10m5

MAXIMUMPROBABLENUMBER

ON CONCRETE{EDGEwISEDROPS)

3. TRANSPORTATION VIBRATION (SINE) -- LOG SWEEP RATE (ASSUME())ESTIMATED

ACCELERATIONITEM LEVEL

NQ&x&?~

1, 12. 1

3. 2A 35 s

ASSUMEDFREOuENcy RANGE(Hz)

2-5s-lo10-20

20-6060-500

6

;244143

1

CAPTIVEAND FREE

FLIGHTHOURS

~

22.68

(.05)

STORE

STATUSCONDITION

1

2s

:6661

2

VIBRATION ESTIMATEDDURATION DuRATION STORETOTAL IN-RESOURCE STATUS[HOURS) (MINUTES) CONDITION

3.0 30. 1

2.3 28. 1

2.3 2B. 1

3.6 33. 1

7.0 48. 1

140

Page 154: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABLE 51. Life cycle environments (Continued]

U.S. NAVYAN EXAMPLE

SUMMARY CHARTS FOR THELOGISTIC LIFE CYCLE

ENVIRONMENTSFOR A

LIFE OF 5-YEARS(438oO HOURS}

(CONTINUEO)

4. CAPTIVE FLIGHT VIB~TION (WNOOMJ - POWER SPECTRAL DENSITYNOMINAL AVEWGE

FLIGHT

LIFETIMEPERCENT SAFETY EFFE~lvE DuF@TION STORE

ITEM CONDITION MISSIONS FACTOR MAXIMUM EXPECTEO STATUS

NuMBER FOR STORE EMPLOYED ON q-LEVEL P5D (q2/Hz) AT MAX. PSD CONDITION

1. MEAN 8S.0

2 MAX 9 1.5

3. CLIMB/DESC 9.04. DIVE/PULLOUT 2.5

5 HIGH BuFFET 1,0

6 T.O./lANDlNG 1.0

7. FREE-FLIGHT 100.0

5 TEMPERATURE . HUMIDITY

1601401201007032

0- 2s-45- 6S

(70.1)

(60.0)(4s.9)(37.8)(21.1)

(0.0)- 17.8)-31.7)- 42.8)

- 53.9)

1.51.5

1.5

1.5

1.51.s

1.0

6. ACCELERATION (SUSTAINEO FREE FLIGHT)

MAXIMUMITEM LEvELNuMBER (9)

1. +31.02 -4.0

3 + 12.04 -12.0

REwTIVEHUMIDITYPERCENT

2031do47

4943342s16

3

0.040 1.4 Hr$ 5

0.090 1.5 M#n$ 5

0.025 9.1 Mans 5

0.021 2.5 Mlm 5

0.291 l. OMins 5

0.023 1.0 M(n% 5

0.200 4S8.0 Sees 6

PROBABLEOCCURRENCE TIME

OURATION~s

20.293.

1720.S367.8163.

843.229.

38.4.1.

STOREDIRE~lON STATUS

CONDITION

LONGITUDINAL 6LONGITUDINALRADIAL 6RAOIAL 6

141

-. _=.,,- . .-- .,-. . . . .. . .. .. . ..

Page 155: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

MIL-HDBK-781

7 ALTITUDE

8 SALT SPRAY

ITEMNUMBER

1.

I 2

9 ACOUSTIC

ITEM

~R

1.

2.

3.4.

TABLE51 Life c@eenvirOnments( Cmmtnued)

U.S. NAVYAN EXAMPLE

SUMMARY CHARTS FOR THE

LOGISTIC LIFE CYCLE

ENVIRONMENTSFOR A

LIFE OF SYEARS(438oO HOU RS)

(CONTINUED)

MAXIMUMALTITUDE[FEET)

3s000.>40000.

>30000,>20000.

5000.

MAXIMUMALLOWABLEEFFECT

MAxIMUMPROBABLE 5TOREDU RATION STATUS FLIGHT

JTIME) COND ITION EMEYL

17. Hrs

1. Hrs

5. Hr$9. Hr\

33. Se<

ALLOWABLE cORROSION 50.

LEVEL EQUIVALENT TO0.007 INCHES OF HOTROLLED STEEL DISSIPATEDPER 5 YEARS LIFE CYCLE.5AME, EXCEPT 0.001 IN. 5.

ASSUMEO

MAXIMUM FREQuENCY

LEVEL WNGE

MB O VERALIJ Wz)

110 20-20000120 20-20000160 20-20000

163 20-20000

1,2 AIR FREIGHT

5 CAPTIVE FLIGHT5 CAPTIVE FLIGHT

5 WPTIVE FLIGHT6 FREE FLIGHT

OIRECTEXPOSUREOURATION STOREEXPE~ED STATUS~DAYS) CONDITION

1,3,4

2,5,6

MAXIMUMPROBABLE

DuRATION[TIME)

33. Hrs

9. Hrsl.Hrs

w. kc

STORE5TATUS~NDITION

1

256

142

Page 156: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HOBK-781

TABLES1. Lifecvde environments (Cominued)

us. NAVYAN EXAMPLE

suMMARy CHARTS FOR THELOGISTIC LIFE CYCLE

ENVIRONMENTSFOR A

LIFE OF S-YEARS(43Eo0 HOURS)

(CONTINUED)

ITEM

1.

2.3.4,

ITEMNUMUR

1.

2

3.4.

12. ~ IT

1

2.

EXPECTEDMAXIMUMLEVEL(lN/HR)

2

22

2

EXPECTEDMAXIMUMLEVEL(INIHR)

10

1010

10

MAXIMUMPROBABLEDURATION

80. Hrs1. Hrs

3. Min

160. Sec

MAXIMLJMPRO.9ABLEDURATION

64. Hrs1. W%

2. Min128. Sec

MAXIMUM MAXIMUMPROBABLE PR08ABLEJJvfi gJQgJMJ

45 MPH WIND 38. Hrs0.001 TO O.12SINCH

DIAMETER PARTICLE S12E

SAME }.Hrs

STORESTATUSCONDITION

1

25

6

STORESTATUSCONDITION

1

2

56

STORESTATUS

CQND ITION

t

2,5,6

I 143

.

Page 157: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

AS

511N

?71

011!

1-1.vK

rom

?,K

XIII

C11

ON

KM

DLI

IR r—-

>.

cow

sw

Jw

!DE

IA1

,,.on

-or

ID,.,

?r”u

m

,——

ISm

co8)

11&

mJ3

_~

r ,-IW

ZL

PZ

1Ils

zcl

--l

no(2

01H

wns

19#

11-1

8.“s

——

611

0,13

:mm-As/Ac-mws

WAC

-C.—

-

,V1l

~A

-T

ION rn

m

.— — — SZ

1Iw

ns

.—-

— —

oP

EO

EPO

T-—

. TIM *C (?

ED

141L

~M

OU

RS)

23 (A)

30 (101

-10

(1)

10 (lb) L 30 (L

*)

-1>

l]) - >0 (Sb)

-13

(1)

TA

BLE

51.

life

cvcl

eenv

ironm

e.n!

:./C

o-!

inue

d)—

——

mm

rro.

imLt

WCL

Sor

Ulo

suiu

10cn

’trrm

wlm

A,

PLI

C&

lLE

1.A

NP

uWLt

4L

1lT

VD

E

.— w,

uWL

XA UW

.L

,,W

Jus

~__

.

lcct

LflA

-71

ON n

-.—

.—.

-——

-——

_,--

,- 1“.

0?H

OI

RO

LLtD

ST

U!L

Dls

srm

lml

,1.M

_——

——

——

——

— wau

!

-——

rl—T

——

r—

—.

—.

..

-1.

,— 110

a2

4>km

1.

20m

(I1

HI

:.;m

13,0

wP

llnl

mlm

ldm

mlJ

wi

2a❑

u14

mu

*8m

-1w

)lM

L),—

..—

.-

-1.

,—.

--

1.

-.

1.

Page 158: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

145

47-L

. . . . . .

Page 159: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

{

2.lW

IDLI

HC

10V

.ua!

l?c)

1.H

OLD

IC

UT

Ar

r.w

oml

1.w

A.s

-D

R7

M3

UIV

AL

AT

w.n —.

5.,C

srur

nM

m{.

:r

mar

6.“E

,C

JTnm

s,onl

!!,,,

,,.<,

.

.,.,

,,,,

1,,

1?C

CM

WF

UIA

C-C

OM

WM

AC

-w10

?E

Du

o?-d

I

TABL

E51

.Ll

fec

?cle

env

ir,?

n--e

-lIC

a+:

~nLe

U\

<ur

n,,

bnS

CW

U1O

(W

N!IM

L1,!,

s.,,”

,m

ow,

Liz;

lsllt

Llr

Lm

cl.c

(“m

lIllA

l,rA

nJm

lP.ls

l,-

,,>,

LIT

I!c7

C!.C

Duu

lrml

Am

LWE

L3or

U?o

suu

.T

OC

twln

”llllc

rrs

WP

LIC

MLI

lL!

AM

LUW

LC

rul.

cam

s2

n

WI-

S“0

0!41

108

lwm

cn)

,-uW

.L

rlnm

ccs

(,1

IHW

1sW

C#<

mc

—.

—.

1*-

MIS

122

()0)

lmlm

sm m

mA

Am

J

(lb)

—%

1sl!,

#II-

1P m

lb,

(>

b)H

OU

RSs

ix mm

A

IMm

>

ILVIB

M-

mm

Tlm

n

1-

;:109

UL1

nol

ms) —

.

I:) 1:)

+——

. 30

[IL]

-20

(11

m30

ms

(6)

-20

(8)

C)

mt

CIV

LUIA

lO1l

m=s

,C ,Lrlm

ol

lam

mm

SC

ALW

CL

VA

LWtL

wO

P7U

LZ

mm

lc-

Acc

m.m

A-

l&oM

(: WM

.)

,3C

U1L

1C

tccl

ll-!

---

04 7*

.—

6* U

—bv 18

‘T

——

b, Jo

.-—

SA

LTS

FC

A1

,“,

orIu

nn

o!.

!msl

tC

L0:$

s1vt

rtol

YE

AP

—,-

,,,,,,

.,.

Wm

.

1#/R

m

[Vu

mu

)—

-

— 10

[11

MI(

In lbm

w Imu.

)

Mm

Wsv

T)vn

1.U

IND

Dlt.

_-l_

_

_— _—

ST

AT

US

[XL

WE

o:

1. t.

—— 1.

—1.

.—

I I

Page 160: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

AS

mf?

llnns

A)-

ITIS

WC

n10

BE

Illc

Ellv

,”o

m,r

m

NE

W

——

,7.

Uou

ll!U

A?

I’wns

,olr

[mm

r.“

,,BN

J0*

CAMIE1

——

1m.

Otr

rmS

?ouc

E(

cutu

rr.1

—— I*.

41R

BA

sr/c

MR

m.

MN

IDLI

NC

—— ?0

.W

A?

ON

!!:,

”M.

,“,,,

“N.,

IIKF

,,1

1.rn

lnllr

l~

,LC

1“-

lIOR

— > ,1s

F *YS

— 11 win

!

— Am

.

TABL

ES1

.Li

ko

de

env

iro~s

.(C

ont

inue

d)

,,,

“1C

OW

S-A

Is

1m

:M

lkc-

cu

=--l

:0)

13c

11-i8

.m l-l

mm

mw

mC

ttvkr

.lt

[11)

!!,“

11-1

0,U

s

l-- —.

—.

C-c

o!w

sc)

5

?1D

T.V

O1-

hh14

Cfi

mm

UT

ITU

D1

-c (rm

OIA

ItLt

Ram

s)

0 >B

)10 11 !0 16

9)1> 1

01

r- (z)

19 [t) ——

10 [1)

13 (1)

m :C?

WA

LwV

,L

INM

AT

OR

1w

TE

$O

rl“B

LC

i.mtb

“ ,1 rm.

I,)S

A8L

C“W

V1

— M ka .— M b> CA

?!

—— 86 1*

:tLt

MA

-..” L- .— —

.

Sur

Srt

ul

lm.

ortm

r,!!

,,.[0

!ilf.t

LoI

MIV

AT

CD

Im

u

——

-

—.

=-’4

—-

1 9/ r u! m-

u) —.

1 w . ‘us

11-

W. la

)

R?l

WI

m12

}IK

ncs

I 1. —— 1.

Page 161: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK.781

‘“T- ,-

I‘,

148

Page 162: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-MDBK-7S1

Ii

I

1.

&I

‘ !’I

.

Page 163: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABI

E51

Q{e

cycl

qq-q

vjro

nmen

t!K

onhx

dt

D“,

>,T

IOI4

AJD

LCV

CL!

,.,

l.:?u

>~

fllT

C’Z

FVIR

LIm

Yf.

”T5

,,.P

,.lLL,

LE11

!ULM

MLF

u,w

WJ1

lH

OT

~S

:#D

0?T

“A

SS

UW

11O

*Arn

m’m

-lS

lnlm

Wco

wt-

.110

S

— %s

,C-c

ows

IWE

D?.P

er-

I’uO

-c [P~

OU

AJL

tlH

OU

RS1

50 (v)

-10

[11

c)c Ll

lnm

r

% —.

Su

UV

KL

mI

mm

m+

111

n?W

AC

-1

-k“a

mA

Oxs

-?l

CS

au

.

—,-

10w

INE

wIR

1lIQ

ZU

I

EV

EN

T

—.

10.

LIW

IImA

cl!

WC

wow

c)

s#L1

S?M

?

I..or

mR

C’L

LC[l

ST

EE

Lr,

lssl

rhrr

.ol

Yul

_—

0.12

s

cc?J

tu-

,M -!-.

——

.

——

-

——

-

SH

KX

(UU

?[llR

1

,-L

EV

EL

ten

US

CC

1,U

llu

ll— ,2 [m

)10

11l?

nx

0- 24 Iln ,10

mm

u,

F-

——-

0 l$U

AL

mlc

i!m,? v-

l]m

m

F

——

L—.

l..!.

1.

W 0—

1) mum

——

86 19A

M{6

)1>

#11

-IV

[2

#on

J)

la.

A/c

.Oan

WM

L1IC

,WE

lcw

-r

I1.

?N!-

.OM

TE

ST

-1-=

— -}-

t

— $.

— -1-t——

z.

——

.-

Su

LCV

tLm 19

—— 86 19

HU

M(1

1)13

[11

-1P

(% lull

1)

(b]

13,

I!-lrv

[% PU

T,

11

-1—-

——

——

WA

LWI.L

lb.

?L[c

M7

.lWC

!aN

nLlw

4!!V

,.F$T

10 “OU

RS

Page 164: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

AS

SW

,11O

RS

.,)-r

xmm

-rs

ass

lmc

Di]

Int

Com

u!k

To

w.

1“C

mm

ul.

Com

vs1

17A

B/A

c-1

tllw

lm!.

nw

lII

I

d.m

ul

“,,

——

1—.

lb.

lln-

:RA

?l&

u,,!

.0,0

(Sea

mm

D)

——

—.

11.

&ln

-m

An

k,“

nLW

n1?

s1—

—.

18.

Air

-17

0cn

An

Hou

ns,F

,,”,

,,,,.1

(Stt

won

_ll-

1?,

nll

u-

‘1>

,..,,

I,,”

1s,,,

II!rr

,31

,3,

11-1

8,IU

S

[1>

),,.

-9“ ,R

.2V

“<

TABL

E51

.Li

feO

/de

env

ir(M

WIW

It$

-mm

sC

DE

I”P

M I

w c PR

OM

*LC

IW13

>

)0 [1)

00 [1)

—.

80 II) 0 (1)

—.

ao (1)

o (1)

&o (14)

0 (1)

D“I

AT

!OM

Am

Llv

m.s

O*

Uvo

sulm

mC

wl”

cln

lwls

*?w

lchi

Lc10

Mr.

IilO

Lr.

c)31

1’:

Al I

Im rem

.—. SC

Am

m !% .—.

WA

LWIL

.—W

AI.E

VC

L

;X?U

XK

,9O

F?

nMl

Q-

Irl r%

.)

,084

lLE

,[C

Zm

l

t., 18

,,,.

i.l?

S...

1

0.1>

s

——

——

mm

— ,— ,— .—.

.—.

.—. Ib

odn

-m

10!5

,000

.

sun

.

Iwm

I*U

1P-U

]— H

aM

IDI

m 81n

mm

’.W

M.

— —. ::1 1-IIID

I

11m

m-

1ML

,WI)

cur

TIm WI*

O:A

.

13m

m.0

.031

‘m0.

1?!

[Ncn

r

,—. as

IVR

0.<

01m

0.12

%lu

ll

,—

5181

1JS

(Stf

llo

w.

0)

1. 1. 3. 1.

,—

2.

,

Page 165: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

lx N

assm

wrt

on,)T

m?m

-110

DE

INC

kvl*

omE

m

,,,.

C“,

,w

mlc

)ll

11.

Alm

-:M

J7.A

mltm

s,n

cl,,1

U.A

ULC

52.

41n-

;nkn

,Wflw

w

,3.

IAuh

’cll

k,,

ucr

rorl

t,l<

nr11

!![,,.

,L.

!,”c

l!

;Sva

om

)I

11co

ws-

AB

IAC

-CO

WS

IwL

CO

WS

2R

rA

1lhc

-

Dtll

-S

HO

C4

Vlm

Al

Ion

IMIM

1l,lI

Tro

n

l-LW

1.L

PC

RP

Mcc

s,

I

2?.

)0S

cc=

~H

OU

Mso

nm

mc

cI

—(I

I).*

*-

Lu*E 18

-23.

m

—(1

ILm

sn! no

nH

sn (nm

n0) &

(b)

Set

rum

$0,

mm

6m

N[Ih

%S

?,cm

m)

(on

W,(

T.

mv

-c [PR

08U

L1M

cm

s),—

-

Scc

Nor

tc 30 (1

)-1

%(1

)

mrc

n10

1S

UU IA

CE

;:.y

(AW

901

)

TABL

E51

.~

Me

enw

row

env

(Co

ntin

ued

)

KU

,O,C

US

C,h

UIU

(M%

IM,L

)U

.S.

wr

51O

IMi.c

clsr

lrLl

fi.cf

cu(R

C4!

11W

?AI.W

MIV

US

)5-l

ub

llrL

Clc

lt

c1st

KC

r.,u

lvkc

al[m

lor

1

~u.rm

mm

m!-

;; 1110

.)

1000

PD

CII.

ULI

VC

ET

mcw

r-—

.

SE

C-

ant

c ZA

T-

LWC

L)!

——

WA

nI

LEV

EL

t*

lCC

tLttU

-rt

nN

-2.

1.0.

-6.0

w*l

m-

Ilmu)

,82

.0.

11.0

”U

DIA

IJ

S,L

1S

?M1

IN.

orM

m,0

1.1F

D!;l

ZZ

LD

ISS

IW.lt

Df

?m

l

—.—

——

-— -—I&

oa

(*I-

JD

I)20

101>

.cce

ftt 1] 18/

11 km :a-

UL)

1] 1w ,1 Lu!

m.

IUL)

!UO

wm

-E;=In

bl,8

1D

IA.

.—

slA

nls

[SE

Em

mo)

.—— >.

-T- 1. 6.

Page 166: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

u! w

A5s

m71

1ms

,,,.,

:,,,

”1Is

To

“r,

Inc

Lw,!

“h?!

r.m

—.

16.

rut

nwur

100s

T-m

14L

ISar

tm

(N!

101A

L)

1PC

?10

TA

L~

LIC

.!l[I

IC)

&$.

IRt6

,1.!

G”l

TO

TA

L:u

lD&

”cE

Mm

i?w

r,ol

-[,

c1l“l

AL

rLrc

nr7

1n

m

,6.

raM

-rL

,c”

rcn

Asl

-101

M.

(*C

TT

nT#b

FL.

lGU

1T

IIW)

——

67.

rmm

-n.r

,0,,1

.1,

.?.

To

nlsl

w,

,,,,”

.,!!

,“!’,

.,,,“

F1

rmr

mm

!,F

L,r.

,,r

,,”r,

)—

—,,,

,.,.

,,?!

TABL

E51

,~i

fec

ycle

env

ironm

ent

s.(C

ont

inue

d)

A..

,-+*,

c)5

[!.

UW

-AN

A10

1V.O

ri<..

....

Ort

C,C

PM

’-AV

AC

‘“h

-c

1-(

Pm

rmm

llo

wm

ums]

ICC

?—

A!:

WV

.*m

(lM

ID1>

;:.0

( Am

-w 1—

.A

IRV

-m-

.OJO

[lm

lm.)

-m10

191*

C(u

mm

)

1——-

AIn

lCW

%.O

CO

(IW

JIO

CI

-Ml

’70

19:.

C[.

Wum

o

——

-

CN

Dor

rAm

l.t

+

mm

lD

.A

cccl

.cl,,

-T

IOP

I/: ru

v.1

PR

OIIU

I.EW

ncm

l—

—L—

u.1

},0,

(1)-

C-1

.[1

AT

(Lm

crll+

UT

1-

O1N

AL)

.W

OE

).7

.s.

-7.

s(M

nlu.

)

;o [,1*C

:!:;O

a?[L

OIC

17W

,1,7

1-

DIIL

U.)

.W

m44

.3,

-12.

11(U

IIIA

L),—

——

.61

.10.

0,(I

h,c

-1.

s&

r(L

OIR

lFJ-

u?l

-D

1*I+

L1.

IWJL

)M

.?.

-11

.0IIA

il!&

L)—

-

61+

10.0

.(5

-<A

?‘1

.1.!,

rb

(w

lE1r

LslN

,c1

DIM

,lL)-

..+.$

,-1

1,0

(UD

IAL)

19.

clm

DO

LLID

ST

CIL

DIS

SI?

AT

CO

/~

un

FuK

CU

SA

CO

US

-r,

cs

+

1dcn.

I*O

41(.

/-3

u) mm lMm

.

,—

‘T1604

1(.

/-3

a) 20

ml>

,aQ

* -r,——-

160a

(+1-

1dm >

010

b3,0

m.

_-l-

ulr

lNII1

(mu

mu)

— 1 (118

SIW

— —-

lNlm

(Pm

Mm

wm

-Ia-

nu

nO

H.

-—

—~

——

.3.–

I–.–

—–

,..,,

”,<

.,,!,

”,,

w*,

C7T

,,c,L

“Iv,

””(W

,.110

141-

t“,

svw

rrcm,,

!,wm

ms.

Stt

“,<s!

0.

Ms,

STE

MS?[

c.—

——

.——

——

——

ilA

Tu

s

itt

m?c

01

6.

6.

8.

b.

Page 167: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

NOTES TO ACCOMPANYU S NAVY STORES LOGISTIC CYCLE

OURATION ANO LEVELS OF EXPOSUR[7Ci EtiViKDNK4ENiS

so!? .4 I.!FE OF 5. YEA!?S (43S00 HOURS)

GENERAL - NEGLIGIBLE RESPONSE CONDI rlONS ARE INDICATEO BY A DASH. STORE STATUS DEFINITIONSliOWN IN ACCOMPANYING CHART TO NOTES (STORES LOGISTICS STATUs CONL)ITICIN.

NOTE U)

- .A5 MC IS AIRB.ASE OR .A!RCKAFT CARRIER

“ - ASSUMED ENVIRONMENTAL LEvEL

““” -ASSUME EACH TAKEOFF lSA~TAPULT, EACH LANDING AN ARRESTMENT

A- 25g FOR 11 TO 18 MILLISECONDS (LONGITUDINAL)1 FO13T OFiOP TG CUFJCRETE (CGRNEE L3Rofi](AS5L!F. !E!.! AX IP.!L! !.! c! ! !JCCL!!?RE!!CE PER 6 EVENTS! 5 YEARS)3.5g FOR 2ST0 50 MI LLISECONDS(VERTlaL AN DLATEFLAL)(ASSUMED4 OCCURRENCES PER EVENT/5 YEARS)

6- ]gihuid 1 HZ TO lUHZ2g FRG?wI I!JHZ TO 2CHZ3g FROM 20Hz TO 60HzSg FROM 60 ~Z TO 500Hz

C-25g FOR 11 TO 18 MILLISECONDS (EACHAXIS)1 FG07 DROP 70 CGNCRETE (COiiNt R unum)

------

(ASSUME MAXIMUM OF 1 OCCURRENCE PER6EVENTS/5YEARS)

0- ASSUMED NOMINAL LIFE LOADING/UNLOADING EACH TWO FLIGHTS(2 HOURS LOADING AND 1.5 HOURS UNLOADING) AND NUMBER OF FLIGHTS(AVERAGE 1.50 H6u RS/FLIGHT)

.A.!VROXIM.ATE NOM.IWM TOTALMISSILE NAME NO LOAOSLINLOADS FLT. liOURS LD/UNLD HOURSAN EXAMPLE -1 22.s0 23

E -THE APPLIIMEILE MISSILE BUFF ETfiHOCK LEvELS (COMBAT MISSIONS) ARE 29,~,(LO:JG:TLIDINAL) &5cj,~, (VERTlCALA?:D KT:RAL) 10 HZT060HZ; ASXIMED)

154

Page 168: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABLE S1. life cvde environments fCOntinWd)AN EXAMPLE

NOTES TO ACCOMPANYU.S. NAVY STORES LOGISTIC CYCLE

DUWTION AND LEVELS OF EXPOSURETO ENvIRONMENTS

FOR A LIFE OF 5-YEARS ( 43.900 HOURS)(CONTINUED).

F - SEE APPLICABLE MISSION PROFILE(S) FOR UtPTIVE CARRIAGE FORA-6 P-3FIQF-4 Dc- 130F/A- 18

NOMINAL UPTIVE FLIGHT VIBIWTION LEVE13 (ASSUMEO)

[FOR SPEC!FIC STORE FLIGHT HOURS, SEE INDIVIDUAL STORE DURATION ANCI LEVELS OFEXPOSURE TO ENVIRONMENTS.)

0.024 9UHZ, 20 TO 2S0 Hz0.004 gZ/liz, 2S0 TO 1S00 HZ0.012 gl/Hz, 1S00 TO 2000 HZ (MEAN CAPTIVE FLIGHT)

0.096 92/Hz, 20 TO 250 Hz0.016 gzltfz, 2S0 TO 1S00 HZ0.048 g2/Hz, 1S00 TO 2000 Hz (lNTERMl~ENT MAXIMUM)

BUFFET LEVELS (ASSUMED AT 1 PERCENT OF FLIGHTTIME)

IOHZ - 30tiz0.1 gVHz30 H2 - 200 ~Z

-6 dB/OCTAVE

G - SEE APPLICABLE MACH NuMBER VS. ALTITUDE FOR RECOVERY TEMPERATURE ANOMISSION PROFILES OF APPLICABLE CARRIER AIRCRAFTA.6 P-3F/OF-4 DC-130FIA- I B

H- lSg 11 TO 18 MILLISECOND (ASSUME0.40CCURRENCES/ 10 UNLOAOINGS)18 IN. OROP TO CONCRETE (EDGEWISE OROP)(ASSUME 1 OCCURRENCE PER 10 UNLOAOINGS)

I - ASSUME 12 HOURS EACH FOR STORE ASSEM8LY/DISASSEMEILY AND MAINTENANCE.

MAINTENANCE. INSPECT, TEST.NOMINAL ANNUAL ANO ASSEMBLY/DISASSEMBLY

MISSILE NAME FREOUENCY ASSUMED (HOURS)AN EXAMPLF 6 SB4

J - ASSUME 1 SHOCK EACH 1 HOUR AND 30 MINUTES IN DEPOT ANDASSEMBLY/DISASSEMBLY AND EACH 4 HOURS HANDLING TRANSPORT AND TEST

155

Page 169: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

TABLE 51, Life cycle environments (Continued)AN EXAMPLE

K

L

NOTES TO ACCOMPANYU.S. NAVY STORES LOGISTIC CYCLE

DURATION AND LEVELS OF EXPOSURETO ENVIRONMENTS

FOR A LIFE OF S-YEARS (43S00 HOURS)(CONTINUEO).

ASSUM1” 1 OAY FLIGHT LINE sTomGE PER 4 FLIGHTS, RUOY/ALERT 4 HOURS PER FLIGHT, AND LIVESTOPAGE AT ONE DAY PER LOAO/UNLOAO. AS FOLLOWS

LIVE FLIGHT LINE READYMISSII E NAME STORAGE STOFLAGE ALERT

y y @#iiii-Exx~

ASSUMING OELIVERY. EMPLOYMENT. AND REPAIIUREWORK LIFE FREOUENCY. THEN TtiEREMAINING PORTION OF LIFE SPENT IN DEAD STORAGE

TOTAL TOTALRECYCLE CONUS RECYCLE TO DLJRATION LIFE DEAD

MISSILE NAME FAnORY/OEPOT EUR DEPOT IN ACWE STOWGEIN DAYS IN OAYS STATUS IN DAYS

(PERCENT) (PERCENT) IN OAYS (PERCENT)(PERCENT)

AN EXAMPLE 265.—.. - . .

145 363(14.S2) (7.95) (2.87) (7:.68)

M - SEE INDIVIDUAL STORE LISTING FOR QUANTITIES

N - VIBRATION (RANDOM) ACCELERATION SPECriWL DENSITY LEVELS FOR ALL STORES IN FREE FLIGHT(ASSUMEO)

NOMINALRANDOM VIBRATION (gZ/Hz) FREOUENCY

LAUNCH ~ FREE FLIGHT ~

0.024 0.01 0.006 20-2500.135 0.08 0.02s 2s0 -15000.012 0.02 0.003 1Soo -2000

APPROXIMATE MAXIMUM FREE-FLIGHT EvENT TIMES (IN SECONDS)

MISSILE NAMEAN EXAMPLE

SAFE AND ARM FREE-FLIGHT9.10 16S.00

mFREE-FLIGHT

.

FUSING ASSUMEDAT 5.20 SECFROM lMPACl

156

Page 170: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDEK-7E4

I

I

o-

EVENTNuMBER

1

23456789?9tl121314is~~

171819>02122232A

TABLE 51. Life Ode ●nvironment%. (Continued)AN EXAMPLE

NOTES TO ACCOMPANYU.S. NAW STORES LOGISTIC CYCLE

DURATION AND LEVELS OF EXPOSURETO ENVIRONMEN~

FOR A LIFE OF $YEAR5 (43800 HOURS)(CONTINUEOI

STORES.- -ijfi c-> --.. -.+ -.s5iATii5 Lvlw”, , i“lws

STATUSCONDITION”

111

I136,!

111i:11111

;>=,.,, ”111

STATUS CONDITION

1, INOPERATIVE IN CONTAINER2. INOPERATIVE OUT OF CONTAINER

WENT STATUSUUMBER CONOITION”

~25 32627 2~~ ~

29 s30 231 3, A32 233 g

34 23s 236 2

536 239 240 541 242 243 b44 6

L

45 646 647 642

3. VISUAL, DESICAN7, HiJMiDITY (iNCFEiA7iVE IN CONTAINER;4. lNOpERATIVE - CONTINUITY/BIT (lN/OUT CONTAINER)5 PARTIALLY OPEFUTIVE6: FULLY OPEtiTIVE

157

—.--, . . . . . . . ,.%_J ..--..,4

Page 171: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

TABLE 52 A$wmed Ivoical attack mis$ion mofile~

_

MACHNUM-

BER

w

:S”:AN.DARDDAY)

r64614949691B62291862291E549

76436

ION [2 HOURS. 10 MINUTES)

EVENTTIME(MIN-uTES)

=

NC)ISTO3AY)

SVENT

wM-BCR

01

1

3456789

101112

Tn(”c)(HOTDAY)

056 OAY

TR(”C)(COLDDAY) IALTITUDE

(FEET) 10% OAY I REMARKS

-1515251s

242227

232310

0.01,000

30,0008,0003.000B,0003,0000,0003.0005,000

47,0004,000

0.0

0.00.6730.5820.6720.8320.7520.8320.7520.8320.6680.6190.5840.0

1536

-3 I21442744.’74427

-422415—

4568

t4877 ~’5577 !’5577 !’57

-145545

-54 GROUNO RUNUP/lAXl-35 TAKEOFF/CLiMB/RU N-OUT-53 CLIMBJCRU15E-13 DESCEND/ON-STATION-23 OIVE/ATTACK

-8 CLlM8/LOITER-23 OIVE/ATTACK ‘

-8 CLIMBIRECONNOITER-23 DIVE/ATTACK-23 CLIMB/DEPART STATION-55 CLIMB/CRUISE (BACK)-33 OESCENO/CRUISE/lAN OING-54 TAX1/PARK

HIGH-MEOIUM-LOW MISSION (2 HOURS, 10 MINUTES)

vENTrlMEMIN-JTE5)

-157

184628

1613

324263

197

10

-... .–—1P,($C)(HOT

TrJ-C)(COLDOAY)

O% OAY

vENT‘JuM-BER

TALTITuDE MACH

(FEET) NUM.

BER

0.0 0.05,000 0.45

30,000 0.6510.000 0.8520,000 0.8010,000 0.9220,000 0.7010,000 0.65

1,000 0.705.000 0.6S

500 0.932.000 0.80

[ST%N.OARODAY)

“d-cl(STDDAY)

OAY)

10% DAY REMARKS

o1

234

56789

1011121314151617

0249

186736436B6233A430700520

1.263881

1,055417960430401

0

1s16

-2730

4

36-3

-1638265843512647162415

4543

558216413427\56937685S881425545

-54-33-50

-8-28

-3-34-21-33-30-19-26-25-40-26-21-39-54

GROUND RUN UpfiAXITAKEOFF/CLlM8/LOWCRUISECLlM6/ON-5TAT10FJDESCEND/HIGli ATTACKCLlM8/LOITEROESCEND/HIGH ATTACKCLIMB/LOITEROESCEND/HIGH ATTACKOESCEND/ON-STATIONCLIMB/lNITIAL RUN-INOIVUAnACKCLIM81RECONN01TERDIVE/Al_TACKCLIMBIRECONNOITEROIVE/AT_TACKCLIMB/CRu15E(BACK)DESCENO/CRU15E/L_ANOINCTAXUPARK

I.1

5002.0001,000

10.0003,000

0.0

0850.550.B20.650.550.0

J/ OR MAXIMUM AS AVAILABLE [NOT LES5THAN 71oc)TR - RECOVERY TEMPERATuRETR ~R) = T- ~R) [1 + 0,178 (MACH No )?]

i

158

Page 172: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

FE.C

YCLE

/EN

T{S

EEG

uRES

IOA

ND

)1)

—-

IA,

lB. 1c.

1D.

.— .— !:G

pt,v

e

TABL

E52

.A

m{

.—-=

RELl

A81

LlTY

.DEF

\N

EOTE

KiT

EVEN

TSFO

RA

IR.ll

RfD

MIS

SILE

SA

ND

AS$

ENIB

LED

EXTE

RNA

LST

ORE

SF1

70M

OPE

RAT

10N

A1

LIFE

CYC

LEEN

VIR

ON

MEN

TAL

REO

IJIR

EMEN

TS(S

EETA

BLE

51)

GRO

UN

DFI

RE/P

OSL

F~

NoN

OPE

RATI

NG

OPE

RATI

NG

(SEE

FIG

URE

130)

.—C

APT

IVE-

fLIG

HT

MIS

SIO

NS

HIG

H-M

EOIU

M-I

.OW

H1G

H-1

OW

.HIG

H(S

EEFI

GU

RE12

0)

~REE

-fLI

GIiT

M3m

LOW

.LC

)W(s

EEFI

GU

RE13

1)

THER

MA

LTR

AN

SITI

ON

S

CO

LD.A

MB.

HO

T.A

hfi8

.CO

L[(:

EEFI

GUR

ES13

0AN

D13

1)—

——

——

‘OTA

LSFO

REA

CH

TEST

llEh

)hl

~dIo

rcal

cula

!—

—. G

)

DTA

L[H

EDIJ

LED

,FE.

CYC

LEoC

CU

RR

EN

CE

S

L1O

CA

TED

OR

TEST

YCIE

:vEN

TS,[I

ICEN

TAG

IIIS

IRIII

UTE

D)

—-

40 (50)

(50)

ALL

OC

ATE

DTI

ME

INIA

CH

TEST

CYC

LEPE

RO

CC

URR

ENC

E(D

ISTR

IBU

TE)

——

. 25M

IN

(12,

sM

IN)

(12.

5M

IN]

-——

- 2ho

urs

(14M

!SSI

ON

Q

(16M

ISSI

ON

S)

3M

IN

(4M

ISSI

ON

S)

6MIN

$[C

F)

6MIN

5(FF

)

—-

(3

TOTA

LN

UM

BERO

FEV

ENT

OC

CU

RREN

CD

URI

NG

1[S

CYC

LE—

——

.

7

——

—.

6

——

—-

6

Or

AL

IME

PF’N

TIN

AC

HV

ENT’

PER

“EST

:YC

LEH

CIU

Rs)

j)X

@

AD

JUST

EDTI

ME

INEA

CH

EvEN

TFO

RTE

STIT

EMFO

R10

CYC

LETI

STA

ND

TIM

EFA

CTO

R

0F2.

03@

(~x2

.03)

TOTA

LTE

STIT

EMH

OIJ

R5

5PEN

1IN

EAC

HEv

ENT

DU

RIN

GTO

TAL

TIST

(O

XQ

X1O

.——

[r.——

2.91

7SO

MIN

59.2

146

SEC

:(2

5MIN

(OC

CIJ

RFIE

NC

E23

SEC

)70

TIM

ES)

(25

MIN

235E

C)

.——

H-——

.12

4H

RS24

4.0

4M

lhl

(36

MlS

S10N

!i)(O

CC

URR

ENC

E60

TIM

E5)

(24

MIS

SIO

NS) u-——

————.

0.3

6M

IN6.

16

SEC

(6M

ISSI

ON

S)(O

CC

URR

ENC

E60

TIM

ES)

-——

——

——

0.4

12M

!Nlb

.24

Page 173: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I ❑A

I ~

I Elc

I ElD

~

(Comlrwd)

A MINIMuM OF FOUR TEST ITEMS AT 325 HOURS OF TESTING PER TEST ITEM ITHAT IS NOTLESS THAN 1300 HOURS OF TOTAL TESTING IS RECOMMENDED).

THE TEST CYCLEffIME FACTOR IS DETERMINE BY DIVIDING THE TOTAL TIME ALLOCATEOPfR TEST ITEM BY THE TOTAL T:ME PER TEST CYCsf ‘>3-C, <C0!7 = 28.29!, OR 2.03 Ti:.!E,_ .> ,“.ADJUSTMENT FACTOR FOR EACH TEST EvENT FOR 10 nCLES).

uSE TO ExpANDTtiE PROFILE TIME SCALE OF FIGuREs 143 THnouGH l* AND THECORRESPONDING TABLES (THAT IS, 2.03 TIMES EACH MANEUVER DuRATION FOR TESTINGIN EXAM.Lt mu, tLES).- .“--. ,

ONE SIMU~TEDMUNCH PERTEST ITEM (ASSUMED 32 SHOURSCAPTIVE FLIGHT/ lAUNCH)

SEE S.9.3. 1 FOR SCHEDULING SHORT-TERM AND LONG-TERM ELECTRl~L INTERRuPTS.

160

Page 174: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

M!4-HDBK-781

*.& R, al a

2

‘!

- =1

Page 175: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

m w

TABL

ESS

,A

num

ed

fn?e

.flia

htrn

iwo

nPr

ofil

efo

r●

xanw

hst

ore

(Io

w.lo

w),

vib

rdtio

~.—

SE

EG

EN

ER

AL

FR

EE

.FLI

GH

TN

OT

E(N

EX

TP

AG

E)

JIA

cTl

)AL

vALu

Ec

)Fo

YNA

h.llC

PRES

SUIW

,O

FEV

ENTS

IA

NO

2A

RE(q

)=

9250

lbvf

t~FI

NA

LV

ALU

EO

FA

DJU

$TEO

91rm

(OvL

)Is

EMp

IRIm

LLY-

LIM

ITED

TOA

gr~

,(O

VLI

MA

XIM

UM

VA

LUE

@Lc

uLA

TfD

FOR

Aq

s59

30lb

tift~

AN

DM

AC

H,:

2,0

AT

SEA

LEvE

LFO

RA

SING

LEST

ORE

(THA

TIS

,F

IIWR

E13

2,g!

,m,(

OW

LIM

ITFo

RSl

hlG

LEs~

oRE

=3[

)74)

.

J/M

MIM

LIN

lP

RE

IJIC

TE

12C

APT

IVE.

FLK;

H1

ENV

IRfJ

fJM

ENT,

95TH

PERC

I;NTI

LE,

S0PE

RCEN

TC

ON

FID

ENC

ELf

!VEL

(BA

SED

ON

AO

Nl:-

SID

EDTO

LERA

NC

ELI

MIT

),(S

EEFI

GU

RE13

2,SI

NG

LEST

ORE

)

;~lM

INIM

uMg

,m,(

OvL

)Fc

JRq

S25

0lti

f!~,

MA

CH

!S0.

45(S

EETA

BLE

48).

yM

INI

MuM

TE$T

ING

W.

(nO

)LE

VEL

SHA

LLBE

0.00

1gV

Hz,

yF

OR

TH

ISE

XA

MP

LE,

ON

ES

IM11

LAT

E12

L.A

uNcH

WIL

LBE

IMPO

SED

Ohi

EAC

HTE

STIT

EM,

CO

NSI

STIN

GC

)F10

TEST

CYC

LES.

,,,,,,

,,,,

,.,-

.-

,,..

—.

Page 176: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

1.

TABLE 55. Assumed free. fliaht m,s%;on profile for example store (Iow.low). vi brat, on (C.antanued)

GENERAL FREE-FLIGHT NOTE

Based on the approximate relationship of a constant baundary layer presure ratio with flight

dynamic pressure> and aerad ynamicall y-induced random vibralion (Ref erence 23. paget 21 and S8) and therelationship of WO = K(q)l (the $peetncm relatiomhlp between ●quipment Iaeations and surface

diicontinuities), the free-flight (g,~,)z acceleration. (hence. the kvel relationship for the P5D vemusfrequency) is assumed to vary in direct proponion to the jet aircraft $maath wtiaces flow and d,scont,nuity

wrface$ flow coefficients.

K [smooth) K [free-fliaht)

K (discontinuity) = K (captive-flight)

0“ [w,] - K (smooth) (WO) Captive = (0.1914) Iwl)]free - K (dtscontunuity)

high speed

flight captive PSD

when?:

Q(M = 0.45) SqSq(M = 2.0)

and,

W, = WO-3dB

These limits are ba$ed on Reference 23, pages 21 through 25 and the initial aswmptioni of the

MS O.45 and q= 2501 bs/ft2 the mmlmum level af WOfartecting.

then,

19fmi(q, ‘0)1 = (o. 1914)2 [g,m, (q, W,J]free high speed

flight captive dataar.

[g,fmkf# Wo)l = (0.4375) Ig,m, (q. w~)]free high speedflight Captive data

where,

the g,~, relationship is shown in FIGURES 132 through 134q(MIN) s q s 5930 Ibtiftz

qMIN islis{ed in TABLE .tBfor FIGuRES 132 thru 134MACH (MAX) = 2.0V- = 1116.89 fv!econd. (for Mach = 1.0 at sea level)

q(MAX = 5930 Ibvftz (for Mach = 2.0 at sea level)

163

Page 177: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TA

BLE

56.

A!w

med

Ire!

?.fli

aht

mi~

}ion

prdi

lefo

r•~

am!A

PM

ore

[Iow

.low

).$t

anda

rdda

k.

‘TF‘$

Fj~

.—.—.—

—JI

LIM

ITV

,4LU

EO

FA

D)I

J$7E

DF

RE

E.F

LlG

H7g

rm,(

CW

k)T

OS

5930

1bU

ft~=

q(M

AX

)(sM

AC

HN

uMBE

R2.

0),

SE

EF

IGU

RE

147

AN

DT

AB

LES

5

~/C

OM

PA

RT

ME

NT

Nu$

hB~

R(1

)IS

FO

RW

AR

DR

AD

OM

ES

EC

TI(

IN;C

OM

PA

RT

ME

NT

NIJ

M9E

R(2

)IS

GU

IDA

NC

EA

ND

CO

NT

RO

LA

VIO

NIC

SS

EC

TIO

N

——

3 F i g x G m

Page 178: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

-.

TA

BLE

57~o

mpo

~ile

le$l

cycl

epr

of,le

exan

lplt?

tir+

.t(

!$tin

qpr

o~or

the

relia

bilit

y

{ap!

ive.

fl!qh

t!e

stC

VC

I(!

!1?~

.- ;“ , ;: :_::

< ,, ,, !. ., ., ,. ,. “. ,,

,“ ,,,

,,

,,, cc k ZC

,0 ,:.

t,“

,

— .. ., !,,.

,.“

,

.. .“ ., .,..

,..

.., ,< ,.“ .,,.

,.,,

,.,

,-,

,.,

,.,

.1__

__.—

----

,-,,

.,0

$-$

-$,

o-1

~-,j

,.,,

-.,

,.,,

.,,.-

,1-I

I,“

.0,.

,,.

,,.,

,4,

+11

1111

_l..

l-..

.u-l

_.

__—

.

~T

~E

sspH

A:jI

NG

_—-

——

--—

-—-

---.

—-—

——

_.__

——

.—

T&

-SE

GM

EN

T,S

EQ

UE

NC

EO

ES

CR

IPT

ICIN

EN

VIR

ON

ME

NT

AL

:‘-”

---

‘.-“-

’”

~

,/ t r.,

...

,.!

,,m I ,( —!, ,,

’,,

,.“

.,,;

”,LIC

CP

-h

.

1111

L u I ,!

,8ru

t

,,,m

m

:,“,

,.,th

,,,,

1,,

,“,

~.”

d,s

.l.w

.,,.

,...

1.,lU

>?.

MI”

h.l”.hl,h

.(..l

.”.

.,,0

llS

LC

40,.r

,..fll’h

!!-

..1...

,,,,,

,.,,b

\.,,

,Opil..h

l.t.

.11

!.,1

<,.

1..

$..

1..!1

,,,,,,

,,,,

,,,,

,,.,,.

,.,,,

,,,,,

,,,,

,,,,,,

,.,,

_.— VK

WA

TIO

N— m

mix

Jrw

-. b -. I ,,,,

—-

,,,,,

,,,,,

,,,

Page 179: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I-.1t.,

I,.,

>1,

>..

,,,.

.,,.Iql>

,,id.

.,.Ivl

.14,

...

*,,ql,

,,.o.u

,0,n,”,

v..h

..,.,

,.“1

,”...

,.”O,

,,,,i

m,,,

..-,.*I.

“1.

-l,,-.o

lll.,s

rluvl

.1!.

.,!1:

T—

.—.

1

Iii

““

—.—

,-”-,-?!-!

!-1

:1:

.

,::l.)

.“L-,

..

!

.

..

,

b.,

—ora;;y,

,

:M!7-

Iy—

En,m

fl-,,

s,,F

*t-9tL

,L.,,-,1

(

)=-11-!11

,-s,.v,

,+-,W

O,

0,.,1

-0,

“,.,,..

/,,-,

-,,

,,-,1-,,

,,-”,-,!

.—‘“w”

~f;

‘:,m%~’e

;:l-yl::7,m

,.——

——

I

1-.

““u,

,*Wm

,,”’,“

,,,,

,,,,,,,.

,7>0

,s.,U

,:y,,il,

,.*

,,,”‘,7

mu

“,!2,rla

,::,.,,

,,,

,?,,

....,,,

...

,m’m

m.

‘!-”.0

IWO

*U

(,-,7-.

(-!-0(

“-’c-,,t-,l

-”{

cc

-.(.,0

,-$1

.$1

,,.’h”

,{-/-!,

‘,-,,.,

,(.,(-,

{

,(

‘/1,,m

,”

m,

‘1+

I

It1,<I

[“l”,S

ml’cu

-,ss,”I

,’,,,,,L.,’s.m

-1 ——.)

@l

m,

,W!X

”.—

—A1lO

Wl

——

3011L111V-—

——

—1I

311jOLld

301’III1”lVO

NV

AIIO

IMW

3’lljOLId

NO

IIVU

EM

—.

——

——

r:.——

——

——

ON

ISV

Hd

SS

3WS

1V1N

31WN

OIJIA

N3

NO

lldlWS

303L)N

3f103StlN

3W93S

1S31

——

.1

1.s31EV1

Page 180: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

P.4!L-!4DW C-791

I

I l-l : i_

167

.-

Page 181: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

F’Aii--HB6K-7s;

z‘5

‘2.

168

I

.—. .

Page 182: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1%

.—.

——

...—

——

—.

.T-–

-=_

_—

rES

_rS

EG

ME

NT

,S

EQ

UE

NC

ED

ES

CR

lf9T

tON

EN

VIR

ON

ME

NT

AL

ST

RE

SS

FW

WIN

Q

–1‘-”

”4

1u

. -. ,. ,. ,. :: 1,

., ,,:

.—.

,,m

,!4

s,.

0.

0,,,

w.m

.,,.

4,,

!.

.,.,

,,,,

,,(W

,,”,

<,

,,,”s

,0-s

,,,,

!,.

:,Ln

l/,”,

,,*,,

lc?!

m,

n,..

.mim

:Lul.mol,r.

,..!.

..,.

.,,,

,.,,

,F

.

,,,,

.!.

,.,

,.,,

!.,

(!.!.

,,..

,.

..

.?—

——

—-

0--

,1

,,.,

,.,

,

o-m

-,>

0-,

.4,

,-,,

-,,

,-,.-

,,,-

,,-,

)

Z-X

4

:-,0

-13

,.,

c-m

1-o

-m,4

0+,

,.,,

+,

,...

,,).

,,+,

,.,.

.,,

,.!!

...

..<.

-.

—.

t––

TH

ER

MA

LP

RO

FIL

EI

I‘—

––—

—-

——

—E

LEC

TR

ICA

LP

ftOF

ILE

7TM,

.+.)

0+-,

1

O.,*

-,.

O.W

-,,

“.,,

4.

,-,,

-,,

,.,,

-,.

,.,,.)

1

I**

1.!0

.11

1-)

,-,

0,

-.).

!.,..,.4

),.

,,-.

,,+

..,,

!.,

,4!,

,.,.

,,

.>

.,..

;

..

..

——

.-

“-’b

””l-”

cd-l!

-11

0--$

,.,4

.~s

.*4

“.,.

!-,

$0

...4

-,,

“-!)

-1,

-?.

!..,

.$-,

.

,.,.

-1.

.>.

,-,6

-,!

.1{

1zsTA-

— .A4

.$.

,,,

.,.

w.,

,

.0-w

.,-,

.!-1

,.,

.-1

.,,

-14

.,,

.,,

-14

-11

.,,-,

$.,

,-,

!.,

.-,

,.!

,.,

.-,

*.!.

,1.*

.

,,.,

,

\...

.

——1m

lJ&

c:,

yH

,.;;”

:::,:,

c

Ivl,.

tl

0+,

-,,

O-,,

-*

..)”

.*

0.1.

.,.

o-to

-ma-

to-m

,4,

-,,

0-3

0.9

0-,0

-$

0-,0

-$O

-10-*

0-1

0-9

e-w

-.0-

I“-*

,-,

!.!:

*-N

-.

,!.

,..,

,

—J

Page 183: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,.0,..,,..

1,

I

.*,,

,i[

,,..,,

is

8.(1.P,.,

>.

(,.,,’,

,.*(

p’,,

, dm,

,../0,>

.“O,

>>

..,,d

!v>.,”,

,.,,.0>

,,,

.’.S

,.ia$

0,

,,,S

1..,3

4,

,W,

:0,

.,,,

,,.*,4

>.

,,0,,

:..l.8,..

.’G.rwi

VI.

..n,1.-,,,,.,,,,,..!.,,,,

,!!.,.

——,,-,-,

[1-.,

-0

K-l

l-r

‘-,-0

,,-.-0

**PO

,-**O*

,*O<+,0

+

1+*W

,1-1

1-0

.,-,1-,

**O

-O,,-,,

-0

(***O

,,-,(-”

,1-,,

-0

II-0

>0

:;-~.”

,93

.3m

~ml

‘T ,,,,,,,,.,,,,

_—.

,(.,

,>..

w,,,,.”.

,.●u

.!—

.

,!-!!..

,-”l.”

,(-(,-1,-0

!-0t-w

-m#-nI-a.-m-o

6-W

-O

6-0

1-0

,.0!-0

,.1-”

,-0!-”

,-.,-,,

—*U.

p

~--

—,,.

-,,8

!,.,,.,44

0-.

,,.,,-,.,

-,,..,.-,,

-,mu.

;$-!,-(,.O

-:;..-.

~..

..

:--

.~.

,.,,-

,,-,*

,-.J

AI

“t-,’.,.

m.

.

“:IH

$!-(’.1

a-

440,*

.;u:1

::,

.m

..

,,..,’-(.-,

.“,”*

,-,,.0

,“

,Mo

~:

,,.’”,iyu

V-n[-o

um

1.

S*

-“l,-,-,!

,..

,,.,@

,“w-

#.(t.

-!

,,-,.-,

,W,

).,!S

-wrt

I.1$.1

,.,..,,’-,,.1u-$

(-1

,i-m

-1

1+

80

.1

(,-1,-1

,,.,,-,

,,-,,..,

l-*,-0

‘,.W

-O

,,.,,.”

l,-!”..

:m,,

x!,

”..!,m

...o

,!

,s,,,,,;::,,.,,..,

c-l,-,

$-*-D

.’.,*

I1

1-1

1-0

1.

1$

-1J

--.

,.,r-,

,->0

.’-,.,

..!,

(M-,,

-t

I-*Ot

l-UI

-t

,,,,(,,’::,11-

,,0,

,1

-

,,$!

s,-”-,

,t+l-o

m-t

*,-,,-0,,-1

(-1

OD

r-,,.,,

-.,,-’,

-!r-.!)

‘,.,1

-1,!-,,.

”!C

-,!-o

zc>x0

,..!-JJ~

,.,!-!.

u.”

,

W,,,,

u.,,’,.

,.,-,1,,.

W-U

,’.,{.’!

$,.,1

-”

‘-

.,!,’.1

>-..,,.,

,.

,,,”,.

“,,,..

.I,,Ui

i

-1,,.,,.,,

,.*...,,

VI*.

Oa

!m,.

-,,.

,,s”1

4-,,

---L-,,-*C

!c-c-.

....—

01

.-2‘..,

s—

c!.].“>

,~

“m.,

Lilt

,1.1

,3.1

lw,,;:~,,

ml,.>

,.p

olw

~~n

l~i,m

&ln

&l:

:

-..-L_..O

1,>

MX

1X

-12371—

.

...

..——

.—

-—

---.—

-...-..—

-——

—..

.—

9NlS

’VH

dS

S3tLLS

lvlN3W

NC

)tJlAN

3:—

—.-..

—.—

---—

——

——

__—....—

..—

——

-—.—

-.

.._——

-.——

——

——

.——

-

Page 184: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABL

E58

,---

—.

_..

——

——

—-—

——

...

...—

.—-_

.——

—.

...

——

--

EN

VIR

ON

h!E

FIT

AL

ST

RE

SS

PN

AS

ING

I\

TE

ST

@M

EN

T,

S.O

IJE

NC

I;oE

SC

RIP

ltON

____

_.—

—-.

—--

---

---

ELE

CT

RIC

AL

PR

OF

ILE

—-

“1.

,—

——

——

.—

——

1*3

Ir.

ruIl

,:$tl

Cm

u:c

c

la.’

F*

,*C

,

——

—“+

-m-,

,

,-,

$+,

,.W

-,,

t-,.-l,

,.,

,-!,

,.,,

.,,

,.,

,-1

!

,.x

+2

1-N

-?)

)-),

-10

,4

0-,

,,4

,+,

l-u-t

,,.

,..

m,-

,,-,

,

,.4

,.,,

,-,,

.,,

,.!,

..,.

.—.

——

——

-__

____

...._

—-.

THER

k!A

LPR

OFI

LE!I

J-— ‘7 ,.,$K

W,.

**A

~

-0+,-

—— C.

HC

TC

O-n

-m“.

:WA

:II

R/7,.rl

7m

fm

&::; S

KI

——

..*

..,,

,,.,

,.,,

..!,

.,,

“4,+

?

..,,

-,,

o++

0-,

,-,$

,-),

-,,

O-2

*-11

,41

S+1

,4M

+

WI-

J0

..-

O.u

.11

04

,4%

“-,,

.,,

0.,

.-,

1

...

7..

,

..—

[. . ~ ,. 1, ,, ,. ,. .. 1, #. l;: ,,. ,> ,!. ,.. ,,..

,,, ,, —

-&ii

~:

m-,,,,

”s,,

1!

.U.0

3

~ ——

-.3

4+

0.0

-,)

..,,

.,,

..W

.,,

O-,$*.

,.,

,-,,

,.,,

.,.

,.,

,.!,

1+

.0,

1-1

0-1

,,

-,.-

w74

0.>.

,-.

?..,

t.v.

,).

7.

.,,

,.!,

.1,

,..,.,

,

,-,

,.,,

,..,

—.

---

;*Z

;.XT

,.-l

$-1

,

{!-!,.,,

,,.,

.,

0-1

1.,

1“A

4

,,.,

,.,,

4,-

,,.,

!

“-,*

-I!

,-$

-I

c+-

0.,

.,.4

-.

:-II

;,,

..,,

.,,

..,.

.,$

,!4.

1,

m ,,

.,

,,

9 %1

,, ,. ,, .1 ,1 u 9>

: ,, !, ., ...

ix . ,, ,,

, m t, . ,8 ,, >1 M ,, : ,, “, ,, !.,

,!

-.

(,-,0

-0

“-,,

.!

0-,

..1

.,

I.<

,”S

D,”

W”

.“.”

0-1

0.1

.4).

!.-1

04

,-,

.,,

O-1

0-*

0-,

0-?

“-,0

-$O

.t,-$

,.,0

.$o-

w.!

“.,0

-*(-

,1.. J... ”.. ,-

,’-!

,

IW,.

,,,

!,,,<

,.!*

.”)

-.-L

“,w

,,o

,,.,

,!r

,lm

,,,-

...

.,V

”<l!

l.,.

,,.

”,

,.,

..,

.!.

.,’!,

,,,,

,,.

,,.,

,,,

Page 185: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Pv$iL-HWK-7~i

Ii

.. c.-. ,,’ ., .,, ,, ., ,,,um ,W”, IT. . . .

! ..!,, , s,,,,.., .,,,> ,,. u,. ,,>—

( :: -’.’.’ :-’ ...,., ;; :...; .. . .

i

I

172

Page 186: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

M!L-!!! MK-?81

;“’” T-

mI I

173

Page 187: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

TABL

E59

.C

on!

Do

!itt?

test

cyc

leD

rofil

ee

xam

Dle

time

line

.m

issi

on

oro

file

for

me

hiq

h.:

o,,

!IIC

)

teit

cvcl

e.:1

(Con

tinue

d).—

-..-

.

—._

._—

——

.—.—

...

.——

,——

——

——

——

——

——

TE

ST

9EW

EW

,S

EO

UE

NC

El)E

SC

fRIP

TIO

hE

NW

WN

MIE

NT

AL

ST

RE

SS

PH

AS

INQ

— 12

— ,, !. ..

,. ..

:: !, $.

:: ,. ,, —

!yur

~c

,mC

m.1

Cyc

#vtc

ld%

lcl

,—.

..0..,

,

0.,

0.,

s

,-,1

.7.

,-,,

.,!

,-,

$.!

s

I.0

..4

I*.4

* 1,-

,1-,

0

,-,,

-,.

I-1

04

II-

,1.*

1

,4>4

8

!--1

1

—.

lmu$

#u

“+%

””O

Qm

o.””

.mc$

——

pm ,g.,

m=

crn

0.”

!.,,

“-.,

-m

0.7

,+,

0-,

”4!

..

,,,4

,

0.,

..,

)

.-,.

-(,

,!.,..

!!

.-,.

.,,

b,..,

,

,.,.

-,)

1-,

,-”

.—-n

o-n

mk.

mw

~m

(u,”

r

——

.m

mCmmlm,

Cu

.wv,

rma,

lR

-Um

.,m

pit,

.,,&

,.—

——

OC

CU

RREN

CE

_ ——

.+.

”,

o-n-

$,

..,0.

!.

I+!+

*

,-,,

.!(

,.1

,-!>

,+$

..lz

I.m

.x

,.!,

-,0

,-,,

-,.

,-)0

-)1 1

1-11

+,

,4,.

.,

M,m

——

“.,0

.,,

0-,

”.I

,.W

I-.$

,-,0

-,r

“<..

,-,.

,,.

..

b..

)-.

.!

!-II

-,1

,4,4

,

,4,4

,

)-a-,,

G 7 ,! 16 1, ,, ,, ,, ,, ,, ,, , —

q ,, ,*

.!, ,, ,, 11

,, ,, ,, i’ ,s —

= .— ,.,-

,U,

ut,!

t.m

= —,$ ,5 ,,

-,, ,, ,, ,7 ** ,, ,, :1 4 16

——

nca

,’44

<?

o,.

!..

,.C

um

..

...

...

.

m,.,

mlt

,,!O

-wl

mln

,fr

o”,w

De-

mm

-S

7,,,

m1

..,..,

“-w

-l

0.,

0-,

,,

O-9

4*

0+,4

:0

-,.

+

,.4

$.0

1

!.O

,+1

,.,.

-,1

,4,-I,

,+,-

1

,--1

I

CLm

ltm!,,

m“l”

f./.m

.m

n.t”

11M

m8m

,nm

I .—,,*

,/.r

T&

m

mU

ufm

.,,,

,,.,

,,m

:L1.

tllm

l!t(t

in]

i,.,

04,

..,.

.,)

,.,”+

.

...,.

.,.

.

Wiw

um

,OA

m,,mm

,*,?

r.,

.

-iJ

---

——

!,,

u...,,!

,T

uu$

1,

~,,

V.lt

.,..

Ilob

C,el.a

1..4

.1,

10

:Iw

bC

,cl”

.2

.~.

~.

!0,

C,.

1..

1,

A,

!.

}/1

0.

!1.1

1.?

.!0

4,{

!-!1

0..

[10

P1C

4“.

.rd

10

..

l\O..)

..,.,d.rl”,,,,10,1,1.~,1,!

L111

kt.

,.”t

0.,

.,,

,,,,,

,,,,

,,,,

,-,

,,,.=

,,,,

—m

,,.,.

_,,,,

..=

—r

-,,

,,,,,,!!,,,,,

,,,

,,,,

,,

“,,,

,,,

,,

Page 188: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

-

I

1!

I

iii :..;9 ., ..: ; ,’1 +,.

-’-”-’- ,-{“—.-1

175

Page 189: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-!!CIBK-781

I

--LI g-gag:;,,..”..”.”. “,,ti I

I

% I -Ou”.wz I~ I g:~qy , .,,.?:,. , ,s“mdl. ,*W, m! . . .

,, , ,., m,. ,,,’, .7. ,,, ,. ,,.

t——

, x,:,:>

Page 190: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.

I

WI=-==+

177

Page 191: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,:a,

..— —II

—— ..- . .. ——- - .—— — ——. . .—_-. _.

k,~~: ! (~. ~~ ‘1-.—-.._—___-___=d-

}Ig’1--- -- m,.”, w –-–+ Ig ‘—-—--’-

!41il---”’”””– “’”’:= —–---+--l

1-1–l..––. . ..-~

178

Page 192: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.,,,.

.,,.,.,,,,

,,,”,.,,

,,,

1,0

>.,,

1,1

,,

—,-*

l--

,..(0

co-lo

(L-lo

SC-,’..

cc

-u.—.K

:,8:9,;

3m3~

——

—.

w-m

.

,(-a.

.,-w

,‘-m,

In-m

I*,,,

m..,

—.

,Ja

:

1938*,::m

—.

—.

—-

i: ,*<v

St

n[rufi

m,r,fl

“la

[6’“:;,<

Iv,:

,m!.;

1s.,,::,’,

,,,,.

,,,::,’

$.,,::,,,

,0’,,!:,,

(’.’!:+

,1!1

I

(1’,.,

,,b!

t

ms

>*.ik

i

,.qIIj&

jtjw

)w3H

1—

-—.

-——

——

.—

311JoMd

l~31~lJ3313__

.——

——

---

ON

l$V14d

S63M

1$lV

1.N31W

!40MlA

N3

——

——

——

—z+‘-m

!,-.

,,-0,-(,-,

,.t

~

We.,,.d

..>.>

,..,..0“.

,..),..,

,...J”.,.,

”,,

.,””,,.-,.

..

..

,>.

..

..

!,

a-+--i-

1 —.I.-—

..-.L

.-L—

.——

NOlldlUO

S30i!2N3nclaS

‘1NM93s

1S3_—

.—

.

Page 193: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

—.—.

I

MIL-HDBl(-78i

——. - .- ——— —.— — -.

.“. ,, .“

I

-. .. .. ..

180

Page 194: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.

.

t/N(t)

(t)

FIGURE 1,Duane OlOt.

181

Page 195: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

-—. -.. .—

I

TOTAL TEST HOURS

00

FIGuRE 2 Inter.al @lcIInf PxarqPIPcIala

182

Page 196: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.“

.

w w

.——

.23

r

——

.22

.21 .20

:19

.18

\

.17

\ \.16

\.1

5\

.14

\

.1:!

:\

\

.1’2

\ \.1

1\

.10-.

.0 9

TJ

,13

BS

ER

VE

~

.08

\

.07

\\

\\

~

%4

wE

IBU

LLF

IT

.06

,-

,05

-,\-

/--

._.0

4-

‘-<

___,

—--.

—__

__.03-

.02-’

I 1-/

.01-

‘\

.00

I~i——J———J—

_L-Jo--l-+*—

120

130

140

010

~o

30

40

‘o

60

70

80

ES

ST

ime

(Hou

rs)

IIGIJ

RE

3,G

moh

ical

daw

kt~

.,,

Page 197: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

n...........-------.----------/ \

/’ \--------------------------------------------------------------------,

\ \

\

//

\ /\ /

~nME

/

+ 3 dWO~AVE

FIGURE 4. Typical Ihermal $tr=s cvcie

0.04#Hz

2 80

FREQUENCY (HZ)

\

\

-3 dB/O~AVE

I

F!GLJRE 5. Vibra!ien sfres!

184

Page 198: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Alll19VEOlid

185

Page 199: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

r‘-

1 I

w o-l

1.00

0.98

0.96

0.94

0.92

0,90

0.88

0.86

0.84

0.82

0.80

0150

FIG

URE

7

:+— ——

.

——

300

450

MTI

W(HOIIRS)

~B@l:.1

![a.n<!t?5@!v4

600

Page 200: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

I

a=o.loB=O.1O

#,=100 H0URS@o=zoOHCJLJiis

REJECT

.’,.’

,,,.’

.’,,’

.’,.,.

~ro=ls,.’

..

f -------- ------------------------

--------------------

,.’

,.’

c+bt

/

●.b[

/1.=2060 \

1I I

1000 i ‘* 2000.. . W

,,-,.,

,,-ACCUhlUJA~D OPERATING TJME (HOJJRS)

,,-.’

I

FIGURE& prObabilitv ratiOseauential te5t(exam01el.

187

Page 201: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Chargeablefailures

111213741s16111s1920

L-

MIL-HDBK-781

Decision Risk$ (Nominal) 10 Percent

Discrimination Ratio (d) 1.5:1

T71_l17”len

0 10 20 30 an 50 m

TOTAL TEST TIME (IN MULTIPLES OF LOWER TEST MTBF. e,) Y

L3ndardized termination time, t c

Rejec! at ths Accept at t~ 2

N/AN/ANIANIANIANIA0.341.562.783.995.2o6.427.64&86

10.0711.2912.5013.7214.94 1“28.6416,15 30.0617.37 31.27

ZiEiFl2122231425

35363738394047

andardized termination time. t ?

Rejectuth S Accept at t. 2

38.5739.7841.0042.2243.4344.6545.S647.0848.3049.5049.5049.5049.5049.s049.50

NIA

Accept-reject cri~eria

!/Total test time is the summation of operaung time of all units included in test $ample?~To determine Ihe actual termination tome, multo ply the standardized termination Ume (1) by the 10Wel teSl

MT8F ( 8,).

FIGURE 9 Test Plan l-D.

188

Page 202: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-I+DBK-781

OC CURVE

.

fEiEa=la = 10 percent~ : p5Pyrcent

. .

{o~’’’’’I’’’’’ ””’’’’’”” ‘“ )

1.0 2.0 3.0 e“

ExPD3RI~ TIhfE CURVE

20

i~I

i6 I \

14I

12~ I \

10- ,

8. / \ 1~.- /’

4 /

o1.0 2.0 3.0 00

1.0 e. 4.5 e;1

TRUEI’i’fmExwmm AS KULT!FUS eo, el

FIGURE9. Test Plan I-D, (Continued)

i89

Page 203: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Decition Risks (Nominal) 20 PercentDt$crimination Ratio(d) 1.5: 1

I

-.———

.——

——

ChargeableI

failures

0,

09

REIECT

/

/CONTtNUE

TEST

tandardized termination time, t ?’

T

Rejecl at ~s Accept al 142

8.76 16.359.98 17.57

11.19 78.7312.41 19.9913.62 21.2114.64 21.9016.05 21.9017.28 21.90lEI.SO 21.9021.90 N/A

Accept-reject criteria

II TCIIal IeSt time ij the $ummat, on of operating time of all unil% included in te$t Sample

2) 10 determ, ne the actual term( natton ttme, multtply the standardized terminatmn Ilme (I) by the lower IeslMTBF( 8,)

FIGURE 10 Test Plan II-D.

190

I

5 10 ?5 10 25

TOTAL TEST TIME (IN MULTIPLES OF LOWER TEST MTLIF, &l) Y

tandardized ter

Reject at (ns

NIANIAI(IA

.241.462.673.90S.126.337.55

nation time. t ?I

Accept at tA z

4.195.406.627.839.05

10.2611.4912.7113.9215.14

Chargeablefailures

)

Page 204: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

In

.

EMPE

CTE

OTE

STT[

ME

EXPR

ESSE

DAS

MUL

TIPI

.ES

OF

130

1

P!?O

BABI

LITY

OF

ACCE

PTAN

CE

0

0 “1a).

*.

0 N “0

DI,

J

&o

mm

,-4

~

..

r \

ann

.-w

..0

0 :.3n

-mm :: m

m3>

““

CLm

o

Page 205: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

Decision Risk$ (Nominal) 10 Percent

I

Di$cnmina[,on Ratio (d) 2.0:1

10

1s

5

5 10 15 10 15

TOTAL TEST TIME (IN MUL7TPLES OF LOWER TEST MTBF, 8,) !~

o

I Chargeable Standardized termination time, t?,

failures Reject at tgs Accept at t, 2

0 N/A 4.40N/A 5.79

; WA 7.183 .70 8.S64 2.08 9.94

3.46 11.342 4.86 12.727 6.24 14.108 7.63 15.49

Accepl-Re1/ TOtal test time i, the ~“mmatiOn Of Operatinq lime c

Chargeablefailures

91011121314Is16

I criterta

landardized termination time. t ?

Reiectat 1A5 I Acceot al 1.2

9.02 16.8610.40 18.2611.79 19.6S13.18 20.6014.56 20.6015.94 20.6017.34 20.6020.60 NIA

MTE$ ( 8,).

FIGuRE 1 Test Plan II I-D

192

Page 206: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.. -

EXPE

CTED

TEST

TIM

EEX

’PRC

SSED

ASM

ULTI

PLES

OF

00

.-Ll

PRO

IIAB

ILIT

YO

FAC

CEPT

ANCE

..

.‘&.

bl”o

,uco$

Page 207: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,,,,,,,,,

,,,,!,,

,,,!_

___,,,

,,,,,,,

,,,,

,,..,.

.,,,,,

,,,,,

.,

..

..

P_...-

\.— r .——

_—\ —\.—.—

.—~uU.<

\—+

—.

‘\,—.

—-.

..

m“

—.

\——

__..

Page 208: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

t#lL-HDBK.7Sl

I

1’

a = 20 percent

B = 20 Percentd = 2:1

OC CURVE1.0

.9 i

.6

.7 f

.6/

!.5

.4 /“ 1

,3 /

7 /. .

.1i

o J:. Il,trml,t!1.0 2.0 3.0 90

1.0 @i 6.0 Q1

TRUE HT5F W%ESSEO AS W!LT!F’KS OF 9., Qi

EXPECTEDTEST TIW CUR.VE?.4

L2.2 -

[ I\ ~-.i

2.0 /

1.8 ,, -

1.6 -1

1.4 1

~.~ 1

1.0i

.Br I

.6 I

.4 t /

.2 },/I

, I,

1.0 2.0 3.0 00

1.091

TRUEMTBF EXPI?ESSEII AS WLTIPLES ‘F ‘Qt ‘1

FIGURE 12. “Test Plan Iv-o. ( Continued)

195

Page 209: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

!4!L+99K.781

oeCl$i L!~! Risks (Nominal) 10 Percen:Dl$clilninat,on Rati~(d) 3.0:1

‘ r —-–~-—

I~ ~

[

6’–—

.—

D&l~~

—..

____ 1-’”I ACCEPT

.—

— t,~na “,/ 10I MICF . @,

.-La . v

TOTAL TEST TIME (IN MUL77PLE$ OF LOWER TEST MT’BFJ @:)!/

WANIA

.572.223,875.527.17

IQ.qs

I Chargeable Standardized termination time, t 21

failures

r’ ‘eieda”n’ ‘ “’’”’””-2 ‘23a561

~,?~

5.407.050.70

10,3510.3510.35N!A

Accept-reject crit.prla

Lr TOtaI test t,me is the summation of operating lime of all units included in test Sample.

Y TO determine the ZCWd ierfninalion the. rnuliipiy the standardized termination time (t) by the iower testMTBF( C?:).

FIGURE 13. Ten Plan V-D

196

. . . . . . . .

Page 210: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

A6!L-F!9BK-7M

OC CURVE1.0.

.9t

.6 ~

.7 /~

.6/

1.5

.4 /

.3 /

.2 I

c . :~ percent

B = 10 percent

d= 3:1

.It / I 1

ot’~,’’’’’’’’’’’’’’’’ l’” ““d1.0 2.0 3.0 ‘aO

1.0 ei 9.0 Q,.

--- -. -- “

TRUE MTBF EXPRESSED AS WLIIPLD ur WOI al

1.4 I J

1.2 / I

‘!~j ....,,.1.0 2.0 3.090

:.891 9.091

TRUE MTBF EXPRESSED AS MULTIPLES OF 9., ~1

FIGURE 13. Test Plan V-D. [Continued)

197

Page 211: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B1

&ci\ion R%kt (:icmiinal)Discrim,natton Ratio (d)

3

1

——-——

7-

.—

..— — ——

)%%E.pe.eddecisi.. @.t

/

b MTBF . &

I

.75 1.50 2.35 3.00 3.75 4.s0

ONTINUETEST

——— .

L

.—.

TOTAL TEST TIME (IN MULT3PLES OF LOWER TEST MTBF, @t)IJ

ijl WA.1-4,32.36 4.50 1

4.50 NIA

~

Accept-reject Criteria

~1 T~Ial ,e~, time ij the ~“mmatiO” of OperatinQ [i me Of all “nit$ in~l”ded i“ test mmDle

!5

~1 TO d~termin~ the aCLUal Ierminat!on ttme, mul[cply the standardized Iermmal(on urne (1) by the lower les!

I

MTBF[ til).

FIGuRE 14. Test Plan Vi-D

198

Page 212: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

..

-..

.

EXPE

CTED

TEST

T“(M

[E’

KPRE

SSEI

)AS

MUL

TIPL

ES(IF

90

0 10“ N 0“

k.

PRO

BABI

LITY

OF

ACCE

PTAN

CE

0“1

., -,(

Page 213: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Deciwon RMs (Nominal) ;G %,cemOiscrim; na?ion Ratio !d! 1.5:1

6

r

——

5/ 1

RLIEff Y

I

III

galCuu+rp-..-.... I “

1

I<u IIn.:3

/I

%z

1/

tt I

ACCEPT

]

I

~ / I

1 1 3 ● 5 6 7

TOTAL TEST TTME (IN MULTIPLES OF LOWER TEST MTBF. &)LI

I

I

200

Page 214: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w 0

...

z! g xl m,

EXPE

C”TE

IITE

STTI

ME

EXPR

ESSE

DAS

NULT

lf’LE

sO

F‘o

.?0-

c>:

[. “0 S’

- “0,,

1 !.OF

ACCE

PTAN

CE

,4.

..

“Llm

”wa)

w”o

\

1 \

Page 215: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

i

MIL-HDBK-781

Oecision Risks (Nominal] 30 PercentDiwriminat,on Rauo (d) 2.0:1

3

r

—.—--?-

REJECf

2’I

3

~CON#IE

Y

2

~

$t

E.p.cwd de.ision ~.t

1,0 1.0 3.0 4.0 5.0

TOTAL TEST T3ME (IN MULTIPLES OF LOWER TSST MTBF, (17$),

mStandardized termination time, t v

Accept-reject Cmeria

11 TOWII test time is the summation of Operaling time Of ail uniL$ included in test sample.ZI TO determi ne the actual termination time, multiply the standardized termination time (1) by the lower KeSt

MTBF ( 8}).

FIGuRE 16. Test Plan VIII-D.

202

I

I

I

Page 216: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1

I

I

.

(

Ez3=E=2I I I

.li / 1

EXPECTED TEST TIME CURVE

::~.9( i I I

I

.8r I Ir , i

I.71 I I , IL

K I I I...5 I

.4 / I ~

L.2 / I ! I

!.1 Io

# 11 1.0 2.0 3.0 ‘=’0

%

FIGURE 16. Test Plan VIII-D. (Continued)

203

Page 217: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Mii.-i-iimt-m

--.---Ut.IJkL 1

CCIW:WETEST

II

I

ACCEPT

IIII

I IATEST TIME !~lL;IPLES OF @i)

FIGURE 17. Fixed-duration test plan (examnle),

204

Page 218: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HOFEK.7FI

10°A CONSUMER’S I?ISK WI TEST PLANS

1yW&R

MT43F (C+o)FORPP03uZER’5RIW or

~ Ic% 0; 20”/. a~ 3W. a

8

TOTAL TEST mME ( IN MULTIPLES OF LOWER TEST MTBF. 8, )

Trsr PLAN NUMOCR OF 6AILUR[5 ToTAL TIST ttmc m ACCf?Ti6BLf 8 OISCR!MINRTIONRAIID. ( @a~t,) *ORNuMBfRs (MuL~/ts OF [MuLflE$Of

ACCEPTEDPR00L2CtR3 RISK

REJECTED a. 30V. a.zo~. a. 70..;

10.1 0 \ 2.30 230. 646 103: 11 8s

10.2 1 2 309 1.94. 3.54 472 7.32

10.3lo.d10510.610.710-810.9

>0.1010.1110-1210.1310.1.510.1510-1610.1710. IB10.1910.20

2

3a5678910111?13141516171819

3a567s91011!2

1314151617>81920

5326687.999.27

10.5311.7712991.i2,

1541

166017.781896?01321.19224$

23612475

25.90

1.77,167+1.59 +!.55 .1.s0 .147.143.1.d2.1.40.1.38.1.37.1.35.1.34.1.33.t.32 .1.3> .1,30.1.29 ●

1.9s!.9s1.061,80!.751,701,661.63I,to1,S61.S61.54)“52$.501,48

3 4?

2911591,213,122112 0?1 951.89!.04

\ .79

1.7s1.72

1.69

t .671,6>

1.62

1.60

4 B]

3833291701.702.S32391281192122.002001951911.87, Ba1 781.78

FIGURE 18. 10 Percent Consumer’s Ri$k (8) Test Plans

205

Page 219: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MTBF (XC31) ) r-

M::.-HDBK-78?

20% CONSUMZR’S RISK (p) TEST PLANS

--r-rT—

~

t

+

+y+~ , -#-

,4 ,5 !6 ,7 lB ,9

-+424

TC2TAL1”ESTTIME( IN MU LTIPLESUF LWMERTESTFJTBF, 61 j

20.220.3:..:

20.520.62G.720.820.9

A3.lc20-1120.1220.1320.1420-1 s20.16?O.! 720.1820.1910.20

1011

13

56789iil11121314IS16!?181920

2,994.18~,: ;

6.727.91S.aa

10.2311.381>.5213.6S14,7815.9017.0118.1119.23.T~.34

11.4411,5423.63

1.s0.1.83.;.:0 .1.14.1.32.1.; G.1.20.1.26.1.25.IJa.!.23 .1.22.1.21.12!.1.20.1.!? ,1.19,1,10.!.1s.

2.132.24:.921.051.75

i .6a1.621.s7

1.341.s11Aa1..61.44

1.381.371.3s

3.632.792,:02.172.03:.s21,031.771.771.671.641.601,s81.551.531.s11A97.Xa1.46

5.623.883.!s2.762.512.332.202.092.011.941.891.Ba1.801.761.731.7C1.611.651.63

FIGURE 19. 20 Percent Conwmer’s Risk (B) Test Plans.

206

Page 220: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1,

I

TOTAL TEST TIME (IN MULTIPLES OF LOWER TEST MlSF, 8, )

11s1 PLAN UUM8[R Of FAILURtS TOTAL TE5TT1MCIT) ACCEPTABLE~ DISCRIMINATIONRATIO. (&./6,l flOR

WM91RS [MUL~tS OF lMU;T~LM ?R032uCE71’SRISKAC(f~TEfi Ril F.7to ., g .jo:i 22 .20!’,

36.1 6

a . 10*;? xl 1.20. 3.37 535 ,,.~

30.2 1

30.3 230a 3?0. ~ 4

30.6 530.7 6?0.9 7

30.9 830.10 930!1 Ill

30.1 z 1130.13 12:0.!: !330.15 8430. tb 153$:7 1$,30-10 1730.19 18Jci.>c 19

234567891011121314is161710192C

>.a

3624,76s 89700a;;9.21

103011,39J2.47t3.s5ta.6z1S.69$676178198901996ZI 02?208

1.22.

1.20.1.19+!.s8 .1.17.

1.15+1.15.1.14.1.74.1.13,1.13.

;.:2+1.12.1.13+1.11 .1.11+~.11+;.l; .

1,10.

3.22\ .6;1.721.631.>51 w1 a61431.40! .38

1,361.2a1.331.311.301.29).>8~,::

1.27

2961 3:r 071911.751 711,65I 661,S61.331.’301.481 451 431,421.40339!.3s1.36

. .459~ ?g2.73243: ~~

20s1981.931,031.7a!.731.691,661 63I 601.581.5b, 5a1.52

I

207

Page 221: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MiL-ilCWK-78i

--.. -.--.,-.LUNt lUt-NLt

~O.OO LIhfITS

9.006.oi2?.~rJ

6.00~.q

4.00

3.00

2.00

].y

.80 — 702

.70 — 80%

I I I II I I I I I

.- I I

. ,,.30”

.201 2 34 5 678910 20 30

TOTAL NL04BER OF FAX LURES

FIGURE 21. Demonstrated MTBF confidence limit multipliers. for failure calculation.

208

Page 222: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

___

c1 c :0 m ::

w o *

LOW

ERLI

MIT

Page 223: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

MIL-HDBK-781

\

[\

Sfmdord f,xed-d. ratton tesf plan

J1

/Slonaord ti,ed-duration tast plan

/

=i!h :S:!; rejecl ior,

H

//

H

//

/ /

H. .

‘1\\\\\\\\

\7

mm~“w I 00 2.00

—S.oo

I4.00

TRUE MTEIF !1?4 MULTIPLES W LOWED TEST !tT~F)

PROGRAM WWs?G@S &IS[sSh!E:iT

FIGURE 23. Test Pian iX-b,

210

Page 224: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBIG781

1’

1.00

I.80 I

51

/.

Izz“

: ““l H

I

1.

-t Illz .doz

‘1

1/1sg

.20 I

~,~t

.Co.50 1.00 1.50 2.00 2.50 3.00

,00

.75 “1.50 2.25 3.00 3.75 4.50.00

TRU[ KTEF FxPR[SSED AS HULTIpLE oF oo.o~

FIGu RE23 Test Plan lX-D (Cononued)

211

Page 225: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-I’(OBK-781

10.00I

.;tandmd fised-durutmn test plan

5000

‘Stondord lined-duration lest plonwith ●arly re)ac lion

25.00

20.00

15.00

5.00

0.00 I

— Early -occept testplan

0.00 Loo Zoo 3.00 4.00

TRUE MTBF (IN MuLTIPLES OF LOWER TEST MTBF)

PROGRAM MANAGER’S ASSESSMENT

FIG URE 24. Test Plan X-O.

212

Page 226: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

PR

OB

AO

ILIT

TO

FA

CC

IPlfl

NC

E

-~

CL-m

o

Page 227: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

kJIL-H02K-7al

,Skmdofd ftxeu kmlon Iesl plan

[email protected]

Ia.oo

2,00

0.00

\

\

\

\

\

\

\

\

\

tes! plan

0.00 Loo 2.00 S.oo 4D0

TFiUE fkiTBi (iN MULTIPLES OF L@VER TEST MTEF )

PROGRAM MANAGER’S ASSESSMENT

FIGURE 25. T~.

214

Page 228: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

PR

oB?W

IILIT

YO

FA

CC

FP

TA

NC

[

“- o

-r—

.——

- ——

— —

——

-. .——

——

.——

.——

k‘--

i—

—-——

-‘-

.

‘i) —

—— ——

————

Page 229: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

““’G!A =,,..W.W’..

‘Standard fixed -duratmn test plm

s -.$JU5 T // \ ,Early-accepf test plan

-0.00 1.00 2.00 S00 ● .00 s 00 6.00

TRUE MTBF (IN MULTIPLES OF LOWER TEST MTBF)

FIGURE 26. Tesl Plan XII-D.

216

Page 230: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

:‘k

ma) c,

=.7—.

o.-

y“7

—.—

——

.——

.

——

..

——

..—

—-

——

——

.

o c> n c. x! .: m

O.m

o

IIII

II

,.,.

,..

Page 231: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-7BI

,.. S1CW3 t,aeo-dumtwn fesf Plot

‘--~

:)?s:

\

‘7

4

m 1,00 z .00 300 4.00 5.00 6.00

TRUE MTBF (IN MULTIPLES OF LOWER TEST MTBF)

PRCGfifiM MA NAGCR’S ASSESSMEN7

FIGuRE27 Tea Plan Xlll-D

Page 232: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

z c1 c ,% . .

,.

Pllo

Bho

ILll

YO

fA

C([

Plh

NC

C

.— -. —.

—.

—. ,,

Page 233: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

S,arJa,3 lq. ea-~. ra!. on les, PI:}.5 :.= ./

w~fontioca fixed -d. rolto” test plor,7“001(x “ wltll ewly rejection

/ /‘“”;// \i \

moii7 \\/ //

1 H4.00 ~ / / ‘K

0.00c 00 100 2 m 3,w

~-. . {a ,C3 5.(XJ ~ ,00

TRuE MTBF (IN MuLTIPLES OF LOWER TEST MTBF!

PROGRAM MAKA~ER’s ASSESSMENT

FIGURE 2B lest Plan X.IV-D.

220

Page 234: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

M! L-HRBK-7$31

gc CURVE

I

I

20 percent

zo percent

2.0:1

FIGu RE2B, Test Plan XlV-o. (Continued)

221

Page 235: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Siondord fmed-durotra. I*sI pion

‘“ ~“–

/’\Svmutord h.ad-d. rotion test

with eorty reiecf ion

/F\\/\

“=t“ 1

1.00 z ,W 3,00 4.00 3.00 6.00 7,00 8.00 9,00

TRuE MTBF (IN MuLTIPLES OF LOWER TEST MTBF1

PROGRAM MANAGER’S ASSESSMENT

222

Page 236: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

PF

!ON

MIIL

IIV

OF

AC

CIP

IAN

C[

ss’

— \ —..>

—.

——

0! c!--

1— J.—- .—— ,,,

-— .-_

A,

——

.——

7 h.

\

——

——

——

Page 237: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,,,

EX

PE

CT

ED

TE

ST

OI!I

RA

IVO

N(I

NM

uLT

IPLE

SO

FLO

WE

F4

TE

ST

MT

BF

)

-1

,,,–.

._,

‘,-

Page 238: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

%!IL-!ID8K-7S?

OC CURVE

a=

p=

d=

10 percent20 percenX3.0:1

OG :.50 3.00 4.50 6.00 7.50 9.00

TRuE MTEF [xPRZSS[D As WuLTlpL~ OF ‘o, ‘+

FIG URE30 Tesl Plan XV1-O (Cont#nued)

225

Page 239: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7B?

.. Slandord 7$ntd-durOl,O!, teSI Qlm4.4C ,.

. /’:___

4 23

i4 co

+

i/’

Sto.dard ficed-dwation k.! plan300 with ●orly rejection

3,60 + /

i340

~,:~ i

300 i

Z,no#

2 60i

2.40

42.20

2.CKI1

{

‘“0$ /,.60

1.40il

1.20

1.00

.80/1

.,G $ /

.~ o \/

~.20

0.00000 100 200 300 ● 00 5.00 600 700 e 00 9.0?

TRuE MTSF (IN MULTIPLES OF LoWER TEST MTBF )

PROGRAM MANAGER’S ASSESSMENT

FIGuRE 31, lest Plan XVII.0,

226

Page 240: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

OC CURVE

I

-.. -

flGURE31. Tesl Plan XVll-D. (Cont,nued)

227

20 percent20 percent

3.0:1

Page 241: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

ExP

EC

TE

DT

ES

TD

UR

AT

ION

(IN

MIJ

LIIP

1.E

SO

FL.

OW

ER

TE

Sr

MT

8F)

,,,!,,

,,,,,,

,,,,,

,,

Page 242: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,.

——

.—

—.—

,t

—(,.

E

——

.——

.

—.

.L

—.—

.-—

——

Y

L

.)c.

.—c:

.!

1 ., ‘4!

i

.>..

_-—

-——

.>..

i,;

&.k

A“

33NU

ld331i40

AIII

IWU

OM

Page 243: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.eo hi.60

.40

Y

plan

0.00 !.00 2.00 3.00 4.06 5.s9 6

TRuE MTBF (lN MuLTIPLES OF LOWER TEST MTeF)

I

FIGURE 33 Test Plan XXO

Page 244: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

UC CURVE

or 1.00 2.00 3.00 4.00 5.00 6.00TRUE H7BF [W’RISSCO AS MULTIPLE 0: 0., 91

‘aC

Q1

FiGuh I 33 lest Ran xX. E (Con[!nueci)

Page 245: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

ExPE

CTE

DTE

STD

URA

TIC

IN{

INM

ULT

IPL4

SO

FLO

WER

TEST

MTB

FI

w

! —.

——

——

-.7-

–.,,

—,,,

..

Page 246: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

.

UC imvE

1.00

c/.80 /

8 /sz: .60z

.00

.75 1.50 2.25 S.GG 1.75 4.5:.WL3

iiiii~ xiBF EXPP.[ . . . . - . .. . . . . . ...,. ,< UI, ITIDI r OF @o, @i

. 3,-! -a...=nt.)” p.! -.

= 30 percent

= 3.0:1

@o

%

FIGURE 34 Tesl Plan XXI. D. (Contlnuedl

233

. . . . . .

Page 247: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

REJECT /

I

I 20 --——- .- –

5

0

-— .

Cinargeabie

failures

ot234

s67a

RUEU

..—.

——

/

/

/

t, - U.721-2.W

/

L

/

/

/-

,_/f /I

ACCEPT \AND

coNTiNuETEST L/

+

4CCEPT

t, =0,72T .3.17

1s 20 25

TEST TIME ( IN MULTIPLES OF LOWER TEST MTBF, 6’l)Y

S:anda:c!ize{

Reject line

NIA

WANIA

.702.083.486.866.2’i

31:irnc.t?

Boundary line

4.40

5.797.1$

8.569.94

11.3412,72;d, io

1S.49

I

—chillgulb:e

failures

9101!

121314

15;6

DLIND.ARvLINE

/’/

#

5t2edarc!ized test !ime, t ?’

Reject line Boundary line

9.02I

16.8B

i 0.40 i8.261!.7? 1?.6513.18 21.0414.56 22.4215.95 23.8117.33 2s.19

1s.72 26.S8

1 Todelerrnine lh? actual tesl urn?. mult,.dy lie ~tand,wdfized te!l time [!.) by the l&er te$l MTBF I (7 )(See4 B.3 3 )

ALL-EQUIPMENT PRODUCTlON RELIABILITY ACCEPTANCE TEST PLAN.

FIGURE 3S Test Plan XVIII-D

234

I

Page 248: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

PRO

BABI

LITY

OF

ACCE

PTAN

CE

“.

“r,

“m

m...

mk

“arr D

PRO

BABI

Ll”r

YO

FAC

CEPT

ANCE

T \ \ \ 1

..,,

.,,,

,,,,,,

,,.,,

,.,,,.

,.,,,,

,,,

,,,,

Page 249: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MJL-HDBK-781

ACCEPT AND

/

CONTINUE TLST REGION

\

REJECT REGION

i3

sINGLE FAILURS

BEYOND THE

B~Uf:DARY L!NE P.~L!C’~

~

1

ITOTAL 1[S1 TIME (IN MULTIPLES OF LOUER TEST MTBF #l!

NOTE : THIS IS NOT TEST PLAX VI II-D

FIGURE 36. Boundaw line criterion for reiect-acccDt decision

2361237

I

Page 250: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.liDBK-7&l

~, ,otaI ,e$t ,,me is the ~Umrnation Of operating time of all units included in test *mP1e,,11 ,.,*h- ,=nda?d,zed te$t, ume(t) bythelower te$t MTBF(@t)1; TO dewmwne the aclua! :c25: Ome, m- .12., . . 5.-

(5WA833)

FIGURE 37. A1l.eQuipment test plan derived from Te$t Plan I-D

238

. ...>... -.. ..k_ ~=

Page 251: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

TRUE HTBF AS MULTIPLES OF 91

Page 252: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MII.-HDBK.781

I

I

I

!-—~—

CW<<,a”” R,, h% a = p = ,0 Pete., Rfl Icl ,Z BOUNDARY / /

O,%cmnm.l#o. R#!JfJ(.1! 1.5 1 UN1 , lIN[ /—.. —

REIEC7

Tf S1

/+’ /

7r

— .-5 10 15 20 2s 30

ChargeableI failures+.. .

0

11 2

I 3A

567

89

TOTAL TEST TIME (IN MULTIPLES OF LOWER TEST MT9F, 8 \ )IJ

Standardize

Reiect line

N/AN/ANIAN!A

0.70s1.92

3.144.355,57679

:st time. t 1

Boundary line

4.16

5.386.597.1319.02

10.2411.4612.6713.891s.10

Chargeablefailures

~o111213141516t71819

Standardized

Reject line

8.009.22

10.4311.6512.8714.081s.2916. s I17.7318.95

est time. t ~

Boundary line

16,32

17.5C

18.7519.97

21.18

22.40

23.6224.84

26.0527.26

Accept. reiecl criteria

~? TOtal te$t time i%the $Ummat,c,” O{ Ope,ating lime of all U“IIS included in lest sample.

~; To determine the actual [est tome. multiply the standardized test time (1) by the lower test MTBF (8:)

(See 4.8.3.3.)

FIGLJRE 38. A1l-eqwpment te~t plan derived from Tejl Plan H.D

240

Page 253: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

n c-l

c ;0 m

0‘L

L

PRO

BABI

LI~Y

OF

ACCE

PTAN

CE.+

r . . . .

..

I

_

I I— —

n c a < m

I

Page 254: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MI1-HDBK-781

.

,,,,,,,0,, R,,i , a .8 . 10 Perct.1/

RClrC1 z

20

15

s

~.—1 Chargeable

failures

01

2

34

5678

TOTAL Tcslrwt (INMULIIPLt50r LOwtn TE5TM70f.@, 1$1

Standardize

Reject line—

NIA

N/A

N/A

N/A

1.15

2.5363.9225.308

6.69

w7.166 I 11

6.55 !2

9.938 !3

11.32A la

12.71 1514.096 }615.48

Standardized test time, t:

Reject line

8.089.47

10.8512.2413.6315.0116.3917.78

Boundary line

16.06

18.2519.6421.0312.4023.79

25.18

26.57

Accem-rejecl criteria

,. ?Olal [es! tiW islh.?%umma!.fiwof cwerattnqtimenl all vnit.$induded in test sample.j TOde,e, m,ne ,heac, ual tc$t ,,,ne, rn”ll, ply the,tandardtzed test tame (t) bylhelower leSt MTBF (0, )

(See A833)

FIGURE 39 A1l.eouioment test olanderived from Test Plan 111.D

242

1----------.-

Page 255: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I.

: w

-“ 6 c ,%

c“-

1-

— -. \ — . c % % — — —.

,.7 1’ 1,—

——— — \ —

.-?

1 \ t i i \ .

-r-

-— -—

,,,-.

-,-,

,,–

,–,,

,,,,,,

.

Page 256: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,, ~,

,, ,,

.——

——

0+.

——

.—

....

——

.—

——

—-

,.

——

.—

__—

\i

\l

q—.

:m r

\5 Y———

\

,,,,,,

,,,,,,

,,

——

——

—. . L : . L-—.- —

—:m

=[2

$:

.4

\\

\

-.

Page 257: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

:

1.

OC CURVE

.0111~

1

.9 ~/

.6 Q\

,7 ~ 4

.61/

.3

.2i

.1

~.25 .5 .75 1.0 1.5 2.0 2.5 3.0

TRUE MTBF AS MULTIPLEs oF ‘1

FIGuRE 40. A1l-ecuipme!7! {es! glan d?~~v? d from Tesl Plan IV-D. (Continued)

245

Page 258: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

i

IG ——-—

t

. . —

RHECT

,- I,6Aw-3.2V6

/

L

/

/

3

-z//ACCEPT

.+,2

TOTAL TEST TIME (IN MULTIPLES OF LOWER TEST MTBF 01)!’

I ~~,argea~!c Standardized leSt time. t ?’

failures Rejecl line Boundary line

iJ WAI

II 3.3C

WA. 494

;

I

o 6.59

3 I .65 e.24

4 3.30 9074.94 11.s4

l:!6.59 13. i6g.~fi !4.93

accept-reject cnterta

./

//

,/BOUNDARY

LINE

5

(jee4833i

Page 259: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1

f-r- mlmrr- .-., . . . .

TRUE t4TBF AS MULTIPLES OF ‘+

FIGuRE 41. Ail. ectu,pmentt.?%t Dlander, ved from lest Plan V-D. (C.anunued)

247

Page 260: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

~lL. HDfj K-7Bl

0,<,,0. R4,L, a . /3 - 20Per’eu,t REJEC1 z BOUNOARY

0s,<r8rn#.a,tOnRalm (d! 30 1 LiiuE Z’ LINE

‘< ‘ / .~ “

3~7R.EcT ~--~”1,= 1.M8F -2.079

z

t

I

t

;2—

aACCEPT

.

/

ANDCONTINUE

ITEST

~’k

ACCEPT

,b ./1”0’9 II

1mAccepl-re)ecl Crlterla

!( TOIal te~, ,imel, lhe~ummal, On Of Opera~ing lime of all unils included inlesl%amp!e.

ZI TOde,erm, ne,heaclual,es, time, muli, plylheslandardized tesllime (l) bylhelower 1e%1MTBF( 81)

(See 6.63 3.j

Page 261: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

a UJRVE

1 .0

.9

.8

Page 262: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HD&ii-i8i

I

fKfECT , ‘ BOUNDARY,

~.llzi

7

-I%+ .7+=

* ~

/

TOTAL TEST TIME (IN MULTIPLES OF LOWER TEST MTBF, “,]~’

I 6

N/AN/Al,lob~.j~

3.544.7s

~,$e I

3.764.97 I6.197.AO 18.62 IY.E.4

Accepl-re)ect Crllerla

A,II.eQ,, ipmPnt I.est plan derived from Test plan V1l-o

250

Page 263: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-581

cc a!?w

1

I

“:...5

.4

!.3 I I r

!.2 I i /IWlj /

I,,, ,,, . . .

,1 I ! l!

t- /f/~J/y I(-II 1 , I ,

.25 .5 .75 1. 1.25 1.50 2. 2.5 3.

TRUE MTBF AS MULTIPLES OF e]

FIGURE 43 A1l-eau,gmentte%t plan derived from Test Plan VII-G (Cmmnuedl

251

Page 264: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

CH

AR

Gr

AB

LEF

AIL

UR

ES

I

—.

L.JK

I-.

O

——

N,-

::z

&:s

:

—.

y!,b

y,-

aw.g

~

——

,

0..

.-.._

.,_

__ !

I t

-’__

____

3 -1 D ,- Zh -t “\N—

-—

——

z m :ic

e

\

.,,.

,.,,

,,,,,,

,,,,.,

,.,,,

Page 265: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

L,.25 .5 .75 1.0 l.< 2.0 .?.5 3.0

TRUE MTBF AS MULTIPLES OF 91

Page 266: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

----- --- ;

----- --- ;

x III----- ----I

----- --- x

----- --- ;

1 I:I

ltl FAILURE T*LI Znd FAILIJRE TIME

FIGURE 45

,.. - -- .:--- .-..—. . .- —.- . . . . .._

Time truncation (tvve I censoring]

254

. . . . . .. .. ..-. ._ ._. <r4.s _. ~+...__ ._ -_..-.. —... .

Page 267: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MI!.-HDBK-7EJ1

---

\-------

I

0.) 3wllVl13dw31

255

Page 268: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

V18RATION.25PC12CEN1RANDOMPREStLfCIEO DUTYCVCLt

/

uAl;t

COLD i:SOAK ,. :

(s:.701[s :2.3. a”d~) ,; LOW TEMPERATURE

HOTSOAX

!@N5?HcYcLtl

1 1

lfME-MOURS

NOTES:

1, Rate OYchamber temperature chan?e shall be a minimum of 5°C per minute. unle>~ Othe~i$especif, ed or approved by the procurtng activily.

2 Moisture level 10 be sufficient to cause vi~ible condensation, frosting, and freezing

3 Hot soak and cold soak are optional

A. V, Lwaloon, electrical stress, duty cycle OFF

F;GLI,Q: 47, Co-,5, ned e,n.v:ronmec:a! te; : prcf:le !07 mcbile Crcwnd e~uicmenl

256

1

Page 269: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

?w::L-HD3K-7E?

I .

I

-:

HIGH OFF

,,,., ~NOMINAL

.- 4--I

LOW ; 1 VOLTAGE

I

I

/

/

/

/

/

/

/

~~’’””COLD ,-35

SOAK 2 4 6 8 10 12 14 16 18 20 22 24

TIME (HOURS)

t-

-So.c

FIGURE 48. Naval surface crab mission environmental profile for ex.lernallv mounled eQutPmenl ( cOld cvcle}

257

Page 270: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

45

35

3a

25

2[

_. — .

HIGH I I

1 I 1I

INPU T NOMINAL I

VOLTAGE II

DUTY CVCLE LOWI I

)N I J

}FFI1 II

VIBRATEON - 25% RANOOM PRESELE~O OUTV CVCLE1

60”CHOT SOAK

r

‘1)

FIGuRE 49. Naval surface craft mission environmental profile for eflemallv mounledeauiDment (hot WClel.

I I , I , I t I , 1 I

10 20 30 40 so 60

‘TIME IHOURS)

258

Page 271: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

HIGHt

INPUT iNOWiNAL

iVOLTAGE I

ION: OUW CVCLE

L!OFF :

I VIBRATION - 25% RANOOM PRESELE~EO DUTV CYCLE

,,

,16

F’

12

10

8

It

IttCOL[SOAI

‘L-w.{

I

I I I I I I I I I Iz 4 6 8 10 12 14 16 10 20 22

TIME (HOURS)

FIGURE 50. Naval surface craft miswon environmental Prof)le for internally mounted eaU!Dment ( cOld cvcle ~- 1

259

Page 272: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.—i- ‘“

,1

HIGH 1 1 I

55

50

45

3s

30

25

20

IN 1 i NOMINALt1

—. PuTLOW VOLTAGE

I1-

ml DLflV CVCLE i

OFFL

VIBRAllON - 25% RANDOM PRESELE~ED DUTY CVCLE

65XHOT SOAK

I I I , I , I , I !

10 20 30 40 50 60 70

TfME (HOURS)

FIGURE S1. Nawal surface craft mission environmental orofik (or internally mounted eaui Dment (hot cvcle ).

260

Page 273: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

5C

45

4[

1’

,

(

IHIGH I

1 1 WXAi%&La-l- NPUT

)W: J VOLTAGE J4

)N i OUW CVCLE

FF :

VIBRATION - 25Y* RANDOM PRESELE~EO DUTV CVCLE

I I I I I , I I I I I I

4 6 B 10 12 16 i6 i~ RI 22 :G

TIME (HOURS)

-E&c

FIG UR.E 52. Naval surface crafi. mission environmental PrOfile ‘Or internally mOun:ed

eaui Dment ( temperature controlled 1.

261

Page 274: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7S1

HIGH II

INPUT I I NOMINAL I I1 I

LOWI

VOLTAGE Ii }

ON DUW CVCLE II

OFF

I I

vmRAnoN -25*A RANDOM PREsELEmD ouTv CVCLE

II 1I ~5.c I

t HOT IISOAK I

S5

50

45

40

35

30

25

20

15

10 -

s

o

-5 I ! I ( I I , [ I t I I I I { ,

140 142 144 146 148 1so 152 154 156 158 160 162 164 166 1

TEST 71ME (HOURS)

8

FIGURE 53 Naval wr(ace craft, mission environmental profile for internally moumed eguipmen[

jtemperature controlled).

262

Page 275: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.010

,009

.008

.(10

7;

C106

< ..rJ1

35-M ~

,004

lx P :.0

03& WI ‘x .

.002

g n.

.001

——

==

= /’——

.—

——

.

—.

1020

— —-

——

——

— —-

— —-

FREQ

UENC

YHz

vibr

atio

nsc

hwfu

le:

3ho

urs

out

Of

a?L

-hou

rc~

l~.—

.—

.-—

——

——

App

lysp

.rlru

mA

once

for

10m

in.

(5m

in.

up/5

min

.d$

wn)

10m

lnut

e~w

ithW

)~

[l~r;

at’1

7n

AIIO

IV<

prct

rum

B[O

r20

min

.(I

I:,”,

)w

ith1’

3-%

Hw

4JIm

cvH

rnt

i’i~

,,,~

ci>

rr:h

kshr

t~”e

pnC

YC

ICS

h.R

attle

d.’fn

aqe

spec

trum

B.

lr~,n

spor

tatio

rra

ndom

spec

trum

.-.

—.—

...

..

.——

--—

FIG

UR

ES

4~

wfa

cecr

aft

and

$ubm

atin

e~

rtix

??Q

w2

,,,,,,

,-—

...=

.,,,

,.,,,.

Page 276: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

—.

—.,

{1,—

00

:--

---

--=

----

----

--%

----

--‘

7

‘)

I.,,

,.,,

.,,,.,

.,.,

.,,,.

,,.,

,,..,,

.,,,.,

,,,,,,.

.,,,,,

,,,,

,,,

,,,,,,

,,.

Page 277: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

--- !.””

.—

aPProved by the Procuring acuvlty. -MOIit”re I=iel:0 be wff!c,en. , la cause visible condensation. frosting, and freezingHot soak and cold soak are opuonalVibration, electrical stress, duty cycle OFF.

NOTES:1. Rate of chamber temperature change $hall be a minimum of SOC per mmute. unless otherwise specified or

2.?4.

FIGURE 56 combined enwronmenlai Iesl Profiie iul m~rir,e trd$. KiUiP-.en~

265

,.-

Page 278: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

‘~T I i

I I 1}

I

Il\l\

I II Ill IvIv \ .-

lTME (MINUTES)

Mi>sion Type

LOW-LOW-LOW

Ferry

Seek & Attack

Surface surveillance

Ferry

Ferry

Characteri$:icsI II

AITACK AIRCRAFT

Allitude [1000 h)~- ~

2Mach No. (M) 0.6 O.aDcrat!e.n (mum ! 2 60

Alt#tude ( 1000 h) &J~

Mach No. (M) O.bDurat;on (m(n) 10

ANTISUBMARINE WARFARF. AIRCRAFT

Allilude (1000 h) o-do 40

Mach No.(M) 0.6 0.6Zura[iurt {mnr,.; 15 ~~

Altitude ( 1000 h) 0.1Mach No. (M) 0.6Dural,on (min.) 5

Altiiude (10!20 S.) f).~e

Mach No. !M! 0.6Duration (mIn.) 14

Ps,ii;e

Ill

20.68

8

32i3.6si

28s

4U0.65265

1

0.25448

380.6565

ELECTRONIC COUNTERMEASURES zNRCWFT

A!:itwde (!000 ft) n.1’j 35Mach No. (M) 0.6 0.7Ourat,on (mtn.) 13 242

Iv

~

0.467

40

0.655

v

~~

0.43

32.LI

0.410

40.00.420

\ .0

0.47

38.00.4

2\

35-o0.420

266

Page 279: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

I

Mi$sion Type

LOW-LOW-LOW

Ferry

LOW. LOW. LOW

Ferry

LOW-LOW-LOWreluel Ong

Strike refuel

CharacteristicsI (1

FIGHTER AIRCRAFT

Altitude (1000 ft) 0-1 1Mach No. (M) 0.7 0.5Duralion [min.) 2 68

Alotude (1000 ft) o-35Mach No. (M) 0.7Durat!on (mtn.) 12

RECONNAISSANCE AIRCRAFT

AlliIude ( 1000 ft) 0.1Mach No. (M) 0.7 0:9Duration (m, n.) 2 63

Altitude (1000 ft) 0-38Mach No. (M) 0.7Ouration (min.) 13

TANKER AIRCRAFT

Altitude (1000h) o-5 5Mach No. (M) 0.6 0.44

Duration (mIn.) 4 40

Alutude (1000 ft) 0-15 15Mach No. (M) 0.6 0.58

PhaseIll

1

0.75

350.7231

0;910

380.74

244

5

0.4460

15

0.47Duratmn (min.) 0.7 24 58

Iv

1

0.s72

1

0.49

67

5

0.4437

150.5E

19

v

1-0

0.5

3

35.00.517

1-0

0.5

3

38.0

0.518

5-o

0.46

15.0

0.411

I

FIGURE 57. General mistion pro foleand charafleristics forsixaircrati tvvesand twelve missions (Continued)

Page 280: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-tiDBK-781

Mv,,,t

h%!,Mv,,

W W Mv, VII

Illi

h .

II Iv v VI WI

M,x

\(

—.

llME (MINIJTES)

Mis., cm TyDe

Close%upport

High. Low. High

In.esugat, on

anti Atlack

ContactInvestigation

Characteri$W\I

Phase

1! Ill Iv v

ATTACK AtliCRAFT

32 32.5 5 50.6E 040 0,73 0.83762 ~ 61 7

32 32-1 1 NIA

0.6: 0.L?5 0.84 NIA

55 u 5 WA

VI VI! Vlll lx

AIIiIude (1000 h) 0.32Mach No.(M) 0.607Ouration (m~n.) 5

Altitude (1OOOW o-32Mach No. (M) 0.60Duration (min.) 5

WANIANIA

5-400.70

6

40

0.6863

AO

0.6851

40.00.4C

17

40.0

0.4018

NIA

WANIA

1-40

0.705

ANTI-SUBMARINE AIRCMFT

Altilude (1000 fl) 0-38 38 38.0.5 0.S N/A

Mach No. (M) 0.6 0.6 O.A 0.25 NIA

Duration (min.) 6 155 9 120 NIA

Allitude ( 1000 ft) 0.20 20 20.1 1 NIA

NIANIANIA

0.5-400.75

40

0.6140

40

0.6108

40

0.7127

40.00,4

10

NIA

NIAWA

1-40

0.75

40-0

0.410

Mach No. (M) 0.6 0.7 0.4 04 NIA

and Intermediate Duration (min.) 4 .s6 6 211 NIA

Altitude ( 1000 ft) 0.36 36 36.1 1 NIA

Mine Mach No.(M) 0.6 0.6 0.4 0.6 N/A

Lay, ng Durat,on {min.) 6 140 9 20 WA

WAN/ANIA

1-40

0.7s

40.0

0.48

FIGURE 58 General mission Drofile and characwri$lics for six ailcraft lvDes and twelve miss, ons

268

I

Page 281: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

. . ..- . . .. . .. . -.tmaranemucs rnaseI II Ill Iv v VI

ELECfRONIC COUNTERMEASURES AIRCRA~

w Vlll lx

36-O0.40

12

35.00.40

16

40-0

0.517

42-o

0.519

40.0

0.s17

40.0

0.517

40.0

0.418

34 34.1 1Altitude (1000ft) &34Mach No. (M] 0.6Durallon(m, n.) 10

Altnude[1000fl) O-33

Mach No. (M) 0.60Duration (m,n.) 10

10..90

5

NIA

NIANIA

1

0.5029

1.36

0.708

360.58

29

Penetration

Standoff

0.s7 0.85 0.s032 5 29

33 33.30 30

0.70 0.60 0.6742 1 49

FIGHTER AIRCRAFT

35 3s-10 10

0.7 0.9 1.0

87 3 7

30 30-1 1

0.7 0,85 0.857 5 11

30 3-5 50.7 0.8s 0.4269 3 59

30.35

0.701

NIA

NIANIA

35

0.7041

Altitude (1000fI) 0.35Mach No. (M) 0.7Duralton (min.) 8

Allilude(1000fl) 0.30

Mach No. (M) 0.7D“rat,an (min.) 7

Alt,lude(1000fl) 0.30

Mach No. (M) 0.7Durauon (m,n.) 7

N/ANIAN/A

1

0.857

NIANIA

NIA

N/A

N/ANIA

10.40

0.87

40

0.775

Escofl

42

0.766

Htgh-LowLow-ti,gh

1

0.85

9

1-42

0.856

Close

SuppofiNIA

NIANIA

5-400.85

A

40

0.774

RECONNAISSANCE AIRCWFT

High-Low.H,gh

Altnude(1000fl) O-33 33 33-1 1Mach No. (M) 0.7 0.75 0.89 0.7Duralion (min.) 8 75 3 17

N/A NIANIA NIANIA NIA

WA NIA

NIA NIA

NtA NIA

1.40

0.99

40

0.7586

TANKER AIRCRAFT

Al:iWde (1000 fI) 0.35 35 35-5 5Mach No.(M) 0.6 0.7 0.4 0.65Duration (min.) 12 40 9 61

High-Low-

High refuel5-40

0.77

40

0.7239

FIGuRE 58

——_

General m,swan orofile and characlerislics for six aircraft t We% and twelve m,wons (Conltnued)

269

Page 282: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

MVIMv

W MIII M,V

m

vAF

I II Ill Iv VI

TIME (Ml?4Uf’ES)

Miwion Type Characteristics PhaseI II Ill Iv

A7?ACK AIRCRAFT

Altitude (1000 ft) 0.28 28 NIA NIA

High. H!gh-Fl)gh Mach No. (M) 0.6 0.75 NIA NIA

Durauon{min.) 8 60 NIA NIA

ANTISUBMARINE WARFARE AIRCRAFT

Altitude (1000 h) 0-38 38 NIA NIAHigh-High-High Mach No.(M) 0.6 0.6 NIA NIA

Durauon (min.) 15 105 NIA NIA

FIGHTER AIRCRAFT

Altitude (1000 fl) O-35 35 35 NIAHigh-High-High Mach No. (M) 0.7 0.7 0.9 NIA

Duration (min.) 7 46 5 NIA

Allft”de (1000 R) O-35 3s 3s 3sAir Defense/ Mach No. (M) 0.7 0.7 0.67 1.35Capture Durattion (min.) 7 16 60 4

Altitude (1000 h) O-2 2 2 WALow-Low-High Mach No.(M) 0.7 0.5 0.9 MA

Duration (min.) 1 69 5 WA

v

28-430.74

38-400.76

35-400.8

1

3s.-400.8

1

2-3S

5

VI

43

0.8S6

40

0.6104

40

0.743

40

0.719

350.757

\

Mv,,

vu

Vll

43-o

0.428

40-0

0.415

40.00.5

13

40-00.512

35-o0.s

15

FIGuRE 59. General mission profile and characteristics for four aircrafl tvpe! and seven mis~

270

Page 283: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.iiDBK-781

Mis!ion Type Characteristics PhawI II Ill IV v VI Vll

RECONNAISSANCE AIRCRAFT

Altitude (1000 h) 0.2 2 2 NIA 2-40 40 40-0

Low-Low-High Mach No. [M] 0.7 0.75 0.9 NIA 0.9 0.75 0.5Duration (min.) 1 52 10 NIA 7 60 13

Alt,tude [1000fI) 0.35 3s 35 NIA 35-40 40 40.0High-subsonic M,ach No. (M) 0.7 0.85 0.9 NIA 0.8S 0.5

Duration (mtn.) 7 58 16 WA 2 64 13

FIGURE 59. General mission prof,le and character+ st, cs for four aircraft typ es and seven mtswom (Conljnued)

271

Page 284: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

4sr

TIME (MINWES)

FIGURE 60 General mijjion Drofile and characteristics for an atlaCk aircraft on a hiGh-iCmw-lOw-F, i~h m,i$i,~fi

1.5M1.8t+ A

45

[/ -

0.8M ~.?y4

35=

I

“\g 30

~ 25

/

1.8M\

CJ.5M

a ~@

z L!i :5,

< 10’

,>, ,

j , ! !

o 5 10 15 2fJ 25 30 35 40 45 5055

TIME (MINUTES)

FIGURE 61. General mission profile and characlerist,c$ for a fiahter aircraft on an inlerceDt miS5i0n

272

Page 285: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

50.1.8M

45 - 1.4M 0.87!440 -

0.87ME 35 -

$ 15 -

10 -

:~o iO .?0 30 40 50 60 70 80 90 100 110

FIGuRE 62

TIME (MIN~S)

General mossion profile and characterislict for a reconnaissance aircrah on a h,ah.wc.ersonicm,ss, on

Altitude . 8000 fl

CLIMBMach nuii - 0.75 CLIMB

Temperature - 3*C Mach nu~ .0.80

Duration = 1 minute Temperature m lY CDuration = 5 minutes

CRUISEAltitu~ooo ft

CRUISEAltitu~OOO fl

Mach number = 0.85 Mach number = 0.8STemperature - 1.S”C Temperature = 1.5°C

FIGuRE 63. M,swonprof,le forlemoerature raleof chanoe Calculation

273

Page 286: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

PRESSURE

ALTITUDE(1000 Fll

60

so

40

E0sz

z30

>~

s

20

10

00.2 0.4 0.6 08 1.0 1.2 1.4 1.6 1.8

MACH

I1

FIGuRE 64 Dyqa-;c p.essure (q) as fu~clion of Mach num!wand altilude

274

Page 287: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Wo

MIL-HDBK-781

FUSEMGE, -6dB10ClAVE

.. -- . ---- . -----------------------,., i

,’ :

+ 4dB/O~AVE

\.J’’’’’’” : \,’

,’ :\,’

,’/’

FREQUENCV (~Z)

------

WING AND FIN TIP

-V\ \

, \i100 2000

FREQUENCY (Hz)

FIGURE 65. Random vibration test envelooe for iel a,rcrafl

275

Page 288: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

&llL-HL)BK-X?l

—... .— --—

ii-l:_..—~

I

I

.

Page 289: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

,

.

40

OASM

———

35

30

2!!

20

1‘5

1[

0.5!iM

r–

,0.60M

//0.8SM 0.70M \

0.I13M

0.60M I0.60M

/

TIME UMINUTES)

FIGURE 67. Miwion nrofile [? Ia@k).

,—, ,, r-, ,,—— —=,”,- ,,,

Page 290: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HRBK-7M

AT II~

1,

I1,

II

I

(Z@)”M

Page 291: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Ott

OiN

091cO

wO

*CO

zc00c

Ouz

09ZO

ttO

zz00

zC

M\

09L

(I*Lu

LO

ot

Ml

l——

—rT

TT

T7—

-1—

7—

——

—~

—xl

0//’

.,~

Q’

—.—

——

-——

—.

——

——

——

—.

.--

zoo

”e?m

——

.[00

:~

-V

oc

l”

(SU

flNib4)

3W.1

Oal

WV

00609C

09C

Orc

Ooc

Ooz

09Z

Otz

Ozz.

Ooz

08

I09

bO

vbO

ttO

OL

0109

‘i —M

[w%

ot

NIW

:)SZ

L‘—

––—––L—

Idlw

M’9

-

—+

4

—A

W10H

——

—1

I--4 N

Iw:9.V

13Z

——

UJ*O

NJW

ofU

3d0.NO

N!d1W

OC

UldO

NIN

OC

/

M3dO

NO

NN

lbWO

C

,0-0!)-

o!!

-O

w

.Q

f-

.Q

“.

-Q

~.

g

0;

01g

at$n

0$Q

-O

b

.0s

-0!1

-01

103

——

AV

OZ

I1O>

—.

Page 292: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

CO

LO[M

Y-—

——

——

—.

.

80-

70-

60-

50-

40-

,,,,,:

nopE

m+

q;:i

:\.,,.

.,N4

G ~30

—30

wN

NoN

.oP

En

j_,,W

?w.

z>

~a ~

10-

=0-

r-1

0-

-20

.30

t

30

MIN

OP

tfl

,l=

?:t

sTm

AIN

L.

45X

I?N

N-

:~,,

,~

t~

II

II

II-

L-&

-L-~

-:

oU

D10

020

03W T

IME

MN

IJ1’

Es)

,Sm

6

.005

1

.-

;? x,0

04-.

——

.%

.00:

.—.—

—-.

L?!

,002

-

.001

.——

-——

——

--.

__l~

--l~

~~

A.~

_~—

-J

00rio

100

300

400

Soo

600

100

TIM

E(M

INU

TE

S)

FIG

UR

E70

.A

ltack

airc

rati

te$l

~mfil

e(c

10sN

U2P

-!2@

,,,,,,

,.

,,,,,

,,,,,,

,.,,

.,,--

Page 293: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

——

r.1

co

CO

LDD

AY

+—

IH

OT

DA

Y—

30M

lNN

CIN

.OP

[~/

++

-–

30M

lNom

‘----

L YO

MIN

\‘x

TIM

E(M

INU

TE

S)

.008

-w.

x..0

061

-. “~ c..0

043

L

.-.0

02-

——

—-

——

——

-

.--—

—-

-——

——

0._

L~~

-*—

o’60

no10

0!1

011

016

0VB

O20

0,2

1$k+

–k+

”–$<

~$=

Ok:

40

A

TIM

E(M

INU

TE

S)

FIG

UR

[71

.A

ttack

airc

rafl

te!~

rofil

e(h

iqh-

low

.ticl

hj.

.——

——

Page 294: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

i

Page 295: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

F-

r+n

MIL-HDBK-7B1

Ig1

OJ 3wllw13dw31

283

Page 296: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL.HDBK-781

00 ~QOm---

Ig

1

m

I

I

Page 297: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

80 70 60 50 40 30 20 10 0

-lo -20

-30

.40

-50

-60

-.—

—C

OLD

DA

Y-—

-——

——

——

HO

TO

AV

,,.—

.+

30M

l16M

OM

.OP

iU/

30M

INO

Pi

n

5.IIW

MIN

‘\

30W

INIIO

N.O

P(R

(

30M

IMl)P

tl!

I_

.——

.—I

-—~.

o~m

——

S.O

%M

IN\

.2 ——

—~

~.~

——

——

—J—

——

00t n

o30

041

0M

O66

07K

I!0

0I0

?0

TIM

E(M

FN

U7E

$)

I

.002

_

$7 ~ ~!

.001

——

——

——

——

—.—

——

——

——

-——

s01.~_

—1~

.L—

——

—J—

——

----

----

----

-J0

60m

o30

0a

lo34

066

070

0m

l!0

?0

TIM

I(N

llNU

7E5)

FIG

UR

E75

,A

SW

airc

rafl

teN

Pro

file

(con

tact

inV

~,Ii

aaliW

L%9&

..—

Page 298: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

(X) 3wllvU3dw31

286

.

Page 299: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

a:

287

Page 300: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

!, I

no 70 60 so 40 .20

-30

-40

-so

.60

CO

LOD

AV

——

——

-

/—30

MIM

NO

N.I

>P

IR,Z

30M

INO

PiR

6.1

2WM

fN._

30M

INN

ON

.OP

in

/

30M

INO

Ptn

,,—

...—

—H

OT

DA

V—

—.

...

.I .—

.——

\

5O

WW

llN\

f

——

——

——

—.—

zS

,OW

MIN

\

==~—

~_L

Lo

30

100

*50

100

>s0

300

3s0

40D

4,30

WD

S50

600

llME

(MIN

UT

ES

)

.)02

g %.0

01

L-

——

.—-—

——

——

——

??

0LA

.Ld_

——

——

——

——

050

tell

150

?00

250

300

J3a

400

430

500

S50

600

71M

E(M

INU

TE

S)

FIG

LIR

E78

.A

!iWai

rcra

ftte

stpr

ofile

Jhjo

h-hi

ah.h

iah~

Page 301: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

80 70 60 so 40 -20

-30

.40

I

-6[)

1

.002

0

——

CO

LDD

AY

——

——

!10

MIN

UO

N.O

PE

R/

:!0M

IN(3

PtF

l

6,1”

mIu

N--

30M

IHN

ON

.OP

IE

/

30M

illO

PfN

,.

--—

_U

OID

AY

—.

-—

\

/S

,OW

IN

——

——

——

7,—

d—

———A

L——L

——A

6010

0>

0030

060

0S

oo60

0lm

o10

0lo

o10

00

73M

E(M

INU

TE

S)

.——

.——

——

——

-——

-——

-—

A—

J——

L-—

—J—

-——

——

—J—

——

——

——

—0

6010

0‘lo

o30

0a

0050

0$,

0070

0am

mm

m

Page 302: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

F/

I/’~

I.

>:1xdII

II-i_. I

I

IIIII

I

-.

Page 303: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1——

CO

LEI

DA

Y—

—--

--+

.-80

—H

QT

DA

V—

7(I

-

60-

50-

G4(

I-

330

-u z

20-

$ :10

-

>0 r

.10-

.20-

.30

.4[)

.50

1

_30

MtN

NO

N.O

?lR

30M

INO

?ln

.—-l

l--30

MIN

NO

N.O

PIR

/’

30M

INO

Pf

R

@..38w

MlN

.-

F—— ——————.

Sow

ln

-—

LSO

TJM

IN

.—.—

——

.—.

I5.

OW

MIN

.,(,

G—

--.~

—_L

—~

.-L

.

010

0200

300

400

500

600

70L0

ml

ma

woo

lllto

1200

I

114

00

TIM

E(M

INW

5)

t.0

02-

s g q.0

01—

——

——

——

3

(1‘,1A

.—l—

——

—.—

-~~—

-~0

100

200

300

a00

soo

600

700

800

900

1000

tlw12

00I3

0014

00

mm

(MIN

UT

ES

)

FIG

uRE

81.

AS

Wai

rcra

ftte

$tor

ofik

!ffe

r~.

.-.

.–—

,...

_,,

—_,

,,,.

Page 304: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w m N

80 70 60 50 ao

G L30

z a20

~,(

)

2rJ

E10 .2

0

.30

.03

.50

-6Q

CO

LOO

AY

——

-l-—

I—

}101

DA

Y—

—“

3.3

MIN

NO

N.O

PC

R30

MIN

OP

CR

/-”1

f.M

TJl

vlIP

J-

30M

lldN

ON

.(IP

FII

/

‘30

MM

oPrR

b-——

——

-5

OW

!N

\

1,$,

OW

MIN

TIM

E(M

INU

TE

S)

FIG

uRE

82.

EC

Mai

r(ra

fltI?

!tP

!LJ~

_@_!

)

Page 305: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Iv w w

I——

—C

OLD

DA

Y—

41

80

H01

DA

Y—

——

—.

,—

70/

30M

INN

ON

.OP

ER

//f—

l—-

30M

INO

P[*

60 50r\

/,

S,o

%nm

l

40-

H

6.9

%(N

‘-m

[/

lnm

alm

30-

20-

T—

_-x#

:,,N

10-

30M

llfN

CW

OP

UI

o

:/’

30M

I14

OF

IR

10 -20

$,

Ww

mm

\—

.—

-30

-40

~$.

o”m

n

-50

-60

‘—

’~-d

~<

~-~

~o

0160

8010

012

014

036

0

llME

(MIN

UT

ES

)

002

-

~. ;

.001

——

——

——

——

—.—

——

0!$

’,0

,-&

”--7

%%

r---

JtiA

_L~

-L—

6080

100

!10

140

!60

!80

110

300

320

*OO

410

840

460

77M

E(M

INU

7ES

)

FIG

UR

EB

3.E

CM

airc

rall

te!,l

prof

ile(m

nd.o

fll.

.——

,,,,

,.,,,

,..,,

..=

-,,

,,.._

,,,,,

,,,,,,

Page 306: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

“’l--nI

.

x

im

I

I:

294

Page 307: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w .0 w

1——

CO

LDD

AY

-——

—–”

l“—v–

––H

OT

OIA

Yz

80/-

-1,_

__70

-

60 50 40-

30 20-

10-

1X

IMIN

NC

IN.O

Pifl/—

—3(

1MIN

OFf

R

1

,6.

9WW

N

/

7,S

YM

IU

\

,.30

WM

IN—

——

7.—

1(

10M

INN

ON

.OP

IRo

30M

INO

PIR

.10

.20

.30

\

%O

WIN

-=

r—.—

—-4

Jlb

=-”‘

“O-’”

“’0“J

.60

b

_~-l.

_——

L——

~—

J—J—

J—~

—J—

——

J

060

8010

0!>

0!4

016

0*8

O10

0?a

o16

011

030

012

034

036

0

llME

(MIN

UT

ES

)

I

.002

—.-

3 ??,0

011

--—

——

.——

——

——

.

0h

1/

I-l

__J-

._-~

~~-

1—_L

.~~~

o60

0010

0I>

01

ao16

010

0?0

0U

lo16

0.%

0m

31n

3ao

360

TIM

E(M

IN~

ES

)

flGU

RE

85,

Fiq

hter

airu

all

If!ft

!xof

ile(~

ah-f

icth

-hia

tj.

.,.—

,,,,.,

,,.—

Page 308: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

&flL.iiDBK.78i

o.) m.ullvu3dw31 (ZHIt6)0M

296

Page 309: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

8( 7[ 6( 5( 4[ 3[ 2[ 1( o

-1(

.21

.31

.4(

.5(

.6(

003

002

001 0

.——

CO

LDD

AY

—I

.-—

HO

TD

AY

——

.!I

30

RA

INN

ON

.OP

IR/

30

MIN

OP

IR

74K

IMIN

-.

30W

INM

ON

.OP

tn/1

0M

INW

’111

k—.

NYC

JMIN

/—+

l——

——

+’+

J

-,#-

~~

——

—l_

__L_

L~—

~no

100

!>0

140

!Go

100

Jw22

024

026

0am

Wo

320

340

360

TIM

E(M

INU

TE

S)

.--.

.-

.——

.——

-—

—-

——

——

——

—-

——

—.

1+/

8.L

_—_L

——

L__

L—

—J—

—J—

——

—J—

—J—

~—

~~~J

o’60

80!0

0!2

014

016

0!n

o20

011

024

016

028

030

031

034

036

0

T3M

E(M

INW

ES

)

FIG

UR

E87

,F

iahl

erai

r{ra

ftte

sto~

ofile

,=!n

~~

and

caD

t@M

Page 310: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-14DSK.781

Page 311: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

..

w w w

Em

70 60 50 40

G >30

z ~20

$,0

20 c.1

0

-20

-30

.410

.s0

-Go

——

—C

OL

DD

AY

30M

INN

ON

.OP

IR

/

30M

INO

PIR

k

1/–-

--”

5.ow

lwM

S.3

WM

IN

*=-

S.o

w?m

l

——

l’-

HO

TO

AY

.

-7.

dwlU

INL

‘7S.O

YJM

IN—

llME

(MIN

UT

ES

)

1

,--

.00B

-—

~.0

06~ M

90.0

04.-

.—

.

s.0

02-

-——

——

._—

——

—.

.——

.__

——

0j’+

——

—-—

-’0

6000

100

I10

!40

160

180

200

21D

,,$&

—-p

$,~

e.5R

0

TIM

E(M

INU

TE

S)

FIG

UR

E89

,F

ioht

@r

airc

raft

test

orof

ile(h

igh-

low

.low

.h~

..—

Page 312: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.

.\

J . . ,,, ,

-:1-

(ZHIr6)0M

Page 313: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

.

(2:) 3wllvM3dw31 (ZH@XOM

301

Page 314: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I-——

—C

OLD

0A%

——

no- I

70-

/

/_—

30M

INN

l)N.O

Pfm

6030

MIN

OW

R

30 201

10!

30M

INN

014.

OM

RI

30M

INO

PIR

-——

-——

—-

HO

TD

AY

-——

——

——

-.

l+-

.—

v-(

I~

.s

WC

mm

Ii,?.

cmet

li-

-10

rC/M

!N

——

_.7

d.[

WIN

7

1(:;;r:n

:uS

KIlw

w

.40

#5Y

LMIN

1

.50

.60

.+—

—-—

——

d—

—~

~i7

o60

140

I40

160

?10

260

3110

350

390

430

4.70

S!o

550

!!90

UJ

o F.J

I I

-,–

——

,..—

,,,,,

,,..—

,.--,

,

TIM

[(f

WlN

l17E

S)

L..0

03-

~ ~,0

02‘-

-.-.

-.

$,00

1-

——

——

——

.—

——

——

-—

—.—

.—

0_L

L—~

4—L

——

~—

~—

-+

0’60

77

100

$80

t60

>20

?6C

IJI

M35

039

043

0d

70

510

Sso

590

TIM

E(M

INU

TE

S)

FIG

LIR

E92

.F

inht

erai

rcra

flIe

flpr

ofile

(do$

esu

ppO

@.

——

-

Page 315: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w o w

1

80 70 60 50 40 .20

-30

.40

.ss?

-6(

—C

OI.O

DA

Y–—

——

HO

TO

AV

‘—.

,-1—

-

30M

l!lN

ON

.OPE

n/

30?4

1!10

PE71

O.V

C~l

N.%

30M

INN

OW

OP

IR

/30

MIN

OP

1R

(

1w—

6.9K

I?41

N

——

——

——

—-

‘1

cc%

mm

---

-w -+—

——

——

——

——

——

——

——

——

_—..

~~

—30

0●

O!0

0rm

70D

6010

020

0

l’lM

E(M

INU

TE

S)

I‘1

;.0

02-

X “m—

——

——

;.0

01—

——

——

——

0l.-

+~

_~—

—~

~-—

l——

——

~—

——

J——

——

—44

050

0600

700

n60

I00

200

300

TIM

E(M

INU

TE

S)

flGuR

[93

.F

iqht

erai

rcra

ftte

stO

KIfi

lP(f

@r@

Page 316: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I—

I

(\\

1:

I

b.) 3mlvn3dw31

304

Page 317: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

(u 0 m

80 70 60 50 40 30 20 10 0 10 20 30 -40

-50

.60

.010

t

.—C

CIL

DD

AY

——

—-+

1——

H01

OA

Y—

——

jOM

INN

ON

.OP

II!/

31>M

INO

PIR

30M

INN

OI1

.O$U

R,

30M

IMO

PE

R

(r-–

-e.

,30

.0.C

iWllN

TIM

E(M

INU

TE

S)

-.

Page 318: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL’HDBK-781

0.) 3nnlvn3dw31 (ZHIr@3M

306

Page 319: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w 0 .J

Bo

70 60 50 40 30 20 10 0 10 20 -30

-40

.50

.——

CO

LOD

AV

30M

INN

OM

OP

IN

/

30M

INoP

ER

[

---~

~:,

-

——

-H

OT

OA

V—

30M

WJN

ON

.OP

IR30

MIN

OP

CR

/\

_/6,

0KW

IN

——

.

k-3

0,0

YIW

N-

11.W

CM

IN—

—.—

-—

l.rrc

IMlrI

1 \

F—-

————

—J

-!J

,~C

,WIN

4!1

.60

#-—

.J-—

~—

l—f’

J_L_

—.

,,

060

8010

012

014

0!6

01

120

Iao

?60

280

3m32

0

I;:.00

2—

-z

73M

E(M

INU

TE

S)

—1

‘j?

I;? .0

01-—

——

——

——

——

——

.—

——

——

——

——

—-,

i

T3M

E(M

INU

TE

S)

FIG

UR

E97

.R

econ

naii$

ance

airc

raft

left

prof

ile(h

iah-

wpe

rwm

ic).

._—

——

—.

Page 320: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

I

1,, ,,, ,,, ,,, ,,,,‘\\ . ~v -1

I

Page 321: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Lu o In

80 70 60 50 40 .20

.30

.40

-50

CO

LDD

AY

——

/-30

M(N

160N

.OPf

R‘

30M

!NO

P[n

30M

INN

ON

.OW

R

(

30M

INcm

n

F

—.—

J

SO

Tm

m

(4

I—

HO

?D

AV

,/l—

-7’

7

,--

6,0

Y(M

N

.——

——

——

——

——

1,

7.O

Ylh

llN

I

-60

llMl

(MIN

IJ7E

5)

.003

G ?

-t

,002

-—

~

—1 60

0

TIM

E(M

INU

1E5)

*F

IGU

RE

99.

F(e

conn

aim

me

airc

raff

~e$

Ipro

fil~

~.—

——

——

Page 322: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

(2HIz6)0M

Page 323: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

IAJ

.—-

CO

LDD

AY

—80

-

TI

—H

OT

OA

Y—

——

w

7(I

-

:E%

’m”’”

~l

G5_

___—

—60

-

so-

40-

30-

/

~30

.WC

mm

20-

30W

INN

OM

.OW

R10

;~

30M

INO

P1n

(1la

mIM

IN\

——

——

——

10 20i8

.OY

IMJN

30 .40

:-f

,{,

~—

—-l-

o-%

~—

——

~~

.

“60

to10

011

0t*

Of6

(I18

020

020

030

032

036

036

036

0m

o41

0

T2M

E(M

INuI

E!j

t.0

02-

1.-

.001

——

.——

—,—

——

——

——

——

Page 324: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1:

I

i

(ZH@)OM

312

I

Page 325: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-H9BK-~8~

I

I

I

i

I---5

I 0.) W’llw3dw31

313

r

II

II

I

1!

~

,1

t 1 1 1 I

Page 326: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w b

.—C

OLO

DA

Y—

—-

80t

70-

60-

50-

:40 30

-E $

20 10-

s 20

-lo -20

.30

.40

-50

I-6

0,)

~

.008

z x.0

06~

. m

1x

.004

?2

/—JO

MIN

MO

N.O

PIR

/

30M

INO

PIU

_30

MlN

NO

N.O

VC

R30

MlN

OP

tR

,--

’l-s–

1-_-5.

OY

IMN

—.

—-—

H(J

1D

AY

..~

.—.

,

..a.

o.c

mw

N

-1&

l,

.~—

——

d—

-.—

——

——

so10

015

020

02s

0N

o35

04L

m4s

05LM

lIME

(h!lN

UT

S!S

)

—.

.—

-——

—-.

——

——

——

.——

—-“

-——

——

0:~

—~

—~

——

——

-——

—-’

100

!so

20[1

130

3110

Ho

mo

aso

5W

TIM

E(h

llNIJ

lfS)

IIGIJ

FW

lo4

Com

~,s

itete

$tpr

ofile

.@

llWk)

..—

Page 327: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.-—

50

40

10

10

0.60M 0.66M

0.59M

I I I ! I 1 1 J

40 80 120 160 200 240 2B0 32C

TIME (MINUTES)

FIGURS 10S TvD.? A V/STOL airborne earlv warnina mission profile

10

0

0.66M

0.60M

0.S9M

I I ! I I I I I I

30 60 90 120 150 180 210 240 270 30(

I TIME (MINUTES)

FIGURE 106. Type A V/STOL anti-submarine warfare mi$~ion profile

315

Page 328: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

..—

I

so

43

[ “1

0

MIL-HDBK-781

—. —. ---—

0.5!

0.67M 0.29?4

0.64M

—1--L-L~. I f I I [ I I I I I I30 4s 60 75 90 105 12[

0.59M

1s

i-- -

I

I

77ME (MINIJ’ES)

FIGURE 107. Type A V/STOL contact mvesliqalion mis~ion profile.

I \ ~,,-1

I

I&’o -=g

E:410,a

iOM(HOWR)

0.47M o,67m 0,6SM

010 20 30 60 6a 40 70 B

TIME (MINUTES)

FIGuRE 108 Tvae A V15TOL marine aisault mlstion Drof61e.

316

I

Page 329: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-7LM

--—. .. —. —...——. ——

0.6M

‘59’” ~

0,61M

0.67M

\

r 1 , I I , 1 I0 25 so 75 100 1M 150 tls >00 12

llME (MINUTES)

FIGURE 109. Tvpe A VfiTOL surface attack mission oroflle.

—. —●p -

0.6M

30 -

e

~

0.S9M

=g 20

0.6M

o.S9M

g

!0 -

I

I ! I I 1 I (

o 30 60 eo 120 150 180 >10

——.—.

6M

J250

TIME (MINUTES)

FIGuRE 110. Type A vKTOL lanker mis!ion Drofile

317

,.. —

Page 330: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

— .— .40 -

0 60M

30 -

0.60M

10 -

0 .S9M

10

0 I I I I I I 1 I I0 40 80 120 I 40 160 ma 140 2s0 320

FIGURE 111. T.foe A V15TOL werlical cmboard deli.erv mission grofile.

II 40

I

30

-. . —

O.aw 0.7M

J,4M

.-—. -—— .——

0.7SM

D.87M

1.B3M1.aM

100I I I I i I J

15 30 a5 W 15 90 10s 120

TfME (MINUTES)

FIGuRE 112 Type B V/STOL combat air palrol m,ssion orofile

318

Page 331: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

MIL-HDBK-781

— .— -

so - 1.6M

1,6M O*M

60 -

9.6M 1.bM

~

130

:

:>

; 10 0,9Mt

10

0.27M

0+ 0.9 M I I t I I I I I N

0 5 10 15 10 25 30 33 40 45

llklE (MINUTES)

FIGuRE 113 TVDe B VISTOL deck launched intercept missoon profole

‘,82MO.BM7

O,C!M

.83M

0.8?J

\0.27M

! I I I I I \ I

20 40 60 80 900 1>0 Iao 160

TIME (MINUTES)

FIGURE 114 Tvpe B VfiTOL subsonic surface surveillance mission Pmf,k

319

Page 332: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

. . . . ---- -----

I .

MIL-HUBK-151

-.

L--”-k”.,1~.—.._—..-_

80*—---——mm 0’, —.- —. . . . — 1+ ..! c...

60/

g :,:b;y, 0., “

40

20s oY,,UIN

,! %’”!” -

: “Y’ ,,-(.

!, OYJ MI. >

-60

0 60 I 20 180 260 300 360 420 660 360 660 720

TIM! (MINuTfs)

1.0

[

0.1 — --

0,01

S-O.OO1

O.OQOt

1-0,00001 — ,0 60 120 180 lao 300 360 42u 480 340 600 660 711

TIME (MINUTES)

I FIGURE 115 TVDe A U/STOl airborne earlvwarnina environmental vrofile

,0 “f” . . . 0.,.0 ,U1. -

10”- 0.,.

;1/ — ,~*,N0 60 120 18o mo 300 360 430 4E0 540 600 660 7X

TIME (Ml?6U1t S)

1.0

~ 0“ --——

=. 0,013

0.001

0,0007

O.cooo1 ,0 60 120 180 240 300 360 420 430 360 600 660 7>0

nMf (MINUTES)

FIGURE 116 TVDe A VISTOL ant,. subrnari”e warfare environrne”lal prof,le

320

Page 333: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HOBK-781

I

1’

“nI=’_-”” ‘O’OO”’~1” ‘-‘ ‘—----– r.0, ...60 -

40

20 - ,7::::0:,0., n

0 :!-20

- -i I40 1 1 t 1 1 1 I 1 1 ! !,

o 40 30 120 ?bo 200 mo 200 320 360

I

TIM (MINUTES]

O.WO 1

I 0.00001 ‘ ,; ‘ , I I ! , I I 1 I 1 ! 1 10 Bo 1>0 160 200 240 103 320 3bc

I TIME (MINU1[S)

FIGuRE 117 Type A V/STOL contact invest, ~ation environrne”tal orof,le

TIME (OAIMUIISI

I .0

0.1 F~ 0.01

s0.00 I

0.0001

?.00001 \0 40 80 120 160 100 240 280

FIGuRE 118 Tvpe A VK.TC3L marine assault envim~menlal grof,le

321

.— ---- -.

Page 334: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

——. = —.. - .. .

.—- . .

.-— _ . . ,,,. ~,, ______

1.”- 9.” 0?1.““W WI*

I—~——— “O! . . .

;%w,m /--%*V”.

b= L/ ,,..C.U.

—— .-— A..

120 180 ma 300 334 am Uo 3ao a

nm mmums)

<:

-. [

*0.01 }. - --

L..__. .i0.001

0.000!

1.00001 .-

0 W 120 I 00 2M 300 360 410 40 no 600

TIM[ IMIWJ1[S)——

FIGuRE 119 TyDe A VI’5TOL surface attack environmental swof,le

——. — .—. — . .. ——

40 I J 1.0 an 110 9 no ma 300 3bo a.30 430 w boo

TIME (MINUTES)

1.0

g 0.1

b-e 0.01s

1-

--

0.001

O.WO1

[ 0,00001 ~

I

60 120 180 140 300 160 Uo aso no 600

T(MI (MIwWSI

FIGURE 120. Tyge A VtSTC3L tanker environmental SSrOfIle

322

)

I

I

Page 335: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

MIL-HDBK-781

—. . . . . ______ ..—

80

r

Com 0., — — “0,0..30y:mwy .

60

G~ul /

s,- “8.

1‘#> 20 - -“m ,Ww,, ,,.””,.

~o - ‘“’*W” \z .202’,

,,,.””UI

s40 6* ’U911.

401060 1xl lBO 2U 300 360 620 660s6n 600 660 721

TME (MINUTCS)

1.0r

1%“0.01 _ --mm 1 I

TIM[ (MINU1f S) 1FIGuRE 121. T~ ●nvironmental Pro(file

90 ~COLD . . . — — .010.,

“ :.”,:CI-WI-,.

60 -GL60 -.g 20

~o -

:-10 - B*MO. rim wt. 1,0-0.

P40 - “-’”w”

TIW(MH6U11S)

1.0 r

t[ 0.% _ --

-- 0.01%

0.001 IO,wol ‘r

1,0000< t

0 40 80 1>0 tbO 200 240 am 3>0 w

TIM[ IMINUTES)

FIGURE 122. TVPe B V6TOL combat air patrol environmental Drofile.

323

———. -— .. —.-— .

Page 336: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

— . ..— — —-—— -..—. . . .

t

——.

–l—

--— ,0,0 . . . ——— “o, . . . —

au: ~,: :,~ .Om .

l—

= 60 -

k 60

zs

10,Os. (-.

:0 -U,. cmnl

pat! -n.. -.0-.

40 . . . on.

110 tM 960 *M am

Twt (-U7ES)

—— . . .

120 2U

; 1.0,~

L--;.’,~0.1-.r 0.09

O.m 1 — -— — -—

D.0001

-, &-

10 40 60 80 Wcl 120 140 !M S80 200 110 24[

TIME (Mwumsl

FIGIJRE 123 TVOe 8 v/STOL deck-launched tntercenl en.ironmenlal prof,le

al ~{ , 1 , , , , , t , , 1,

40 90 920 lbo 200 ma Mo 310 36(

nw (MINUTCS)

1.0

g 0.1b-. 0.01t

O.w 1

O.mxll 1-1.00001 1 ,

0 40 m 120 MO 2m 240 220 320 360

nMc [641NUTESI

FIGURE 124. me 8 VfiTOL surface surveillance environmental Drofde.

324

L–.—-.....

Page 337: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

0.02

O.oa

gvnz

0.00:

O.ooc

O.ooc

o

TAKEOFF

CRUISE

I 1

0 so Soo 1000 2000

FREC)UENCV (Hz)

FIGURE 125. Turbowopeller vibration test soectra for eauioment mounted within the fuselaae (examrde.j,

325

.

Page 338: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

Page 339: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Pha

seI

Te$

tP

hase

Def

initi

onI

Dur

atio

nI

Ope

ratin

g/N

on-O

pera

ting

I

Aw

fff%

::::k

:::a’

30M

inut

esO

pera

ting

BD

efin

edby

airc

raft

miw

ion

prof

ileO

pera

ting

Mi~

sion

Obj

ectiv

eD

efin

edby

ai!c

rall

mi~

sion

prof

ile

:O

pefa

t@g

Idle

Let

Oow

nan

dLa

ndin

g

E

Def

ined

byai

rcra

ftm

istio

npr

ofile

Ope

ratin

g

Gvo

und.

Hol

Day

See

NO

TE

Nor

hOpe

ratm

g

LW

’%t%

%:’x

:%y

30M

inul

e\O

pera

ting

Def

ined

byai

rcra

ftm

issi

onpr

ofile

HO

pera

ting

Mis

sion

Obj

ectiv

eD

efin

edby

airc

raft

mis

sion

prof

ileI

Des

cent

Ooe

ratin

gD

efin

edby

airc

raft

mis

sion

prof

ileJ

Ope

ratin

gG

roun

dCol

dD

ayS

eeN

OT

FN

on.O

pera

ting

—C

OLD

DA

Ym

TR

AN

SIT

ION

TO

HO

T

k

HO

TD

A?’

DA

Y +“”

rRA

NS

tllO

N

co;):

J

I

Bc~

A\

NO

TE

:See

5.6

FIG

UR

E12

7.T

wic

alm

issi

onte

stcf

cle

grof

ile

Page 340: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

cl.) 31mLw3dw11

328

Page 341: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

J—

L

.

-.

0

0.) mmvwwu

329

Page 342: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

(4J

L4J

0

——

-F

IRS

TH

ALI

CY

CLE

(Ath

roug

hH

)—

——

-.—

—.—

——

,——

-,

!RA?

l~llO

N

1T

R4N

N11

0M

——

CO

LD04

V—

—A

MD

BjfN

T~

.....

_--

~M

B,[,

~,

DA

Y.

.—-

-,*+

_—.–

,0,.,

,—

...-;

,

_Ml$

slo1

4p”o

r.t.~

+.

J:,,,

:.lp

//p,

+

1

Smou

mO

P1:

R4

710)

4;/-

’–””

I$k:

::p”o

”L[

-1{S

CIN

OIE

I)—

OP

IRA

TIC

NA

~—

a~I

LI –cO

’”DA

’--m

-M8’

rN’O

A’~

f>(S[1NOI

I1)

V:-

T-\

t-’’:

i!:&

/d

1-rL

Tt

7G

ISO

UU

OK

GR

OIIN

OO

Piln

A1l

ON

lPc

Rbl

lom

-~M

-—\

.—-=

=—

._—

-.1

1N

OIE

S:

.-l

.

(xc

TA

ULt

46!O

n11

STS

uwfr

nc[.1

t.A

LI,G

RO

UN

DOP

IB,A

IIOM

Ml

fsIJ

IPM

SN

1O

Pi

R~

TIP

IGA

No

Mol

l.oP

tmfi7

1MG

Com

mow

sa.

OM

1c[

)MP

Ltll

aCtl

WG

INS

WW

Hb

AN

DIN

OS

WY

Ho.

——

.._

——

1m

ouw

o_

OW

RA

tKIM

I

<—

—.

J-

-r

——

——

SE

CO

NO

HA

LFC

YC

LE(1

thro

ugh

0)—

FIG

UR

E13

[).

Typ

ical

reha

bilit

vca

ptiv

eIli

qht

leit

!equ

ence

(Or,

eW

@.

——

,.——

~,,,

,,.

,,,.,,

Page 343: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

-F

IRS

TH

ALF

CY

CLE

(Bth

roug

hH

)‘—

——

-—C

OLD

DAY

—~

w wt

——

—B

—*

—.

MIS

S1O

NP

RO

FIL

E-—

+

P4+

—-

-——

-

0.—7

—.

MO

TE

:sf

tT

AB

Lf46

FO

R1[

510f

FlN

1710

1#.

..—

*——

CO

LO08

V‘+

\hM

%lll

oM-I

L fiMB

ICN

fD

AY

/

c

\

N

1RA

NS

ITIO

I

+%

” DA

Y

——

fiMW

f-NI

DAV

-—-9

E—

——

——

——

b

—.

MIS

SIO

NP

NO

IILE

~—

M-—

—-

——

AM

BIIN

TI)

AY

‘—4

RA

NS

ITIO

N

HO

T●

Oav F

/

// \f(

\ TR

AN

smoM

.*

DA

Y

—H(ITD

AY

——

——

—.

H-~

—M

ISS

ION

PR

OF

ILE

+

-—H

O1

OA

T—

.$E

CO

NO

HA

LFC

YC

LE(J

thro

ugh

p)‘—

——

——

——

FIG

UR

E13

I.T

vpic

alre

liabi

lity

free

-flic

sht

IeS

Iw

auen

te.

(on(

!cv

de}.

1 1

Page 344: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HC3EK.7E1

?3436799, 23 4 $879* I 234e67m9t,.2 *8

, , I 1, I 1 I 1

,.O

, n-

LINE EOUATIONS:

‘~~~1 , (~~~~o~) ,Qrms [oVL] : (IOL

[EXP] = [LOG, ofa)l - 12.2S5332)]

(FAcTOR);’- sEE TABLE 48

Q(MIN) S. Q ~ q(MAX)

332

Page 345: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDEIK-781

I t

I

I I Hlllli

. . .

I Illllllly,{lllll]. ,/l,; f I II

,/

, ‘/,, .,,!l\ l,,,,

IO’ *L- zI 1 I I I 1 II I 1 1 , 4 , / A-,,, ,,, , .- ...,1 1 1 1 1 , I

I ! I I I t-t

I I I 11111 II I I 1 H

-1-u

LINE EOUATIONS:

~rm, ~ovL) , ,,0 [ExF]) (FACTOR), (FACTOR)i --sEE TAE)LE 4s

[EXP] = [LOGto(Qli - (2.285332)1 qlMIN) S. Q < a (MAx)

NOTE: THIS FIGURE uSEO IN CONJUNCTION WITH TABLE 46

333

Page 346: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

~u,v,, IttuOPE

49/ OCTAVE

M

,

I I L(,

10*,c?b

:

.

s

1

lo’s

8T6

s.

I I+i .,, .,

a 0 —L.

2

w 1 MULTIPLE -USECOMBINEO ALL

,,,f

IiSTORES

1.3 ~,ln5 :ovL)

:Go ,t

a — +7

I 1,1!,!! ,,

I I 1!6

IMINIMuM OVERALL Qrm%

5,I

,. F9P. ebc!+ NO. c (2.45 l~ii~l.!,1 !.I

I I1

i

I r I 1 I I I II I 1 I ! 1 , 1 1!

.L— ~ ((MINI S. (sEE TABLE 48) I

s I I

I

t-

1 II

1 I I!,!,

2 1

I II a, OYNAMIC PRESSURE 1. 1[ ‘1(l b/ft2)

,~-1 I

LINE EOUATIONS :

arms IOVL) , (10 [EXPJ ) (FACTOR I, {FACTOR) i ‘- sEE TABLE 4E

[ExP~ : [LOG;C(a): - 12.2a5332~ tl(MIN) S a S q lMAx)

NOTE: TMIS FIGuRE uSEO IN CONJUNCTION WITH TA9LE 48.

FIGuRE 13A, Random vibration max!mum pred, cted environment for air.to-air (AAM) a,r.launched

w~$

334

,

Page 347: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.

(a) MING AND FIN-TIP LOCATIONS ONLY ON A~

r

N

g,rn,(WL) =E

& ● 1.3 (CONSTANT) fi~c~(grnJ(See TABLE 48 )

i-lft=SHz

W. -(1 .69) Xo (5EE TABLE 49) (See NOTE)

Wo .-7 f~=2000Hz

z I0 y I

-ada PtRoclavE20sf25100Hz

r< w- 1R -m k, I

;i1 %1

<f2 = 3rd rigid body wing-

1 pylon-store frequency

1(Hz). otherwi~e,

f,f2 (rein)- 20 liz,Hz. fZ

*2 1. (ma.)= 100 Hz. ral QuEMcv (Ml)

USCwIT1’1fOUIPMINT RtOuIRttii N15 FROMFIGunEt36b Swl LLASWITH fULLV A5S1MBLCDlX1t FINfiLSTORE.

(b) ALL PVLON LOCATIONS ON AIRCRAFT

vN

g,m, (OW -~

A; = 1.3 (CONSTANT)

i-l

(SEE FIGuRES 132 THROUGH 134)

Wo3dB PER OCF&V1

I ~,I

1 1~,

I I

I I

I It

1, *2 b

FREOUENCV(Hz)

f, w 20 Hz

f2 - (Calculated from f3and Wovalues)

f3 = (Calculate according to table514.3-VI, Method 514.3, MIL.STD-81OD.

f. -2000 Hz (if f3z 1200 Hz,otherwise. f~ofl . 100 Hz)

w~ = Igrm, [OVL)12R0

Wt ● [9rm\(OVL)12 RI

(See TABLE 49)

NOTE:USE FOR ALL OVNAMIC PRESSURES(q) AT ALL LOCATIONS. EXCEPT AS UMITEO 9V (a) ABOVE.MINIMUM g,~, (OVL)=l.3 (SEE TABLE 48) [

FIGuRE 13S. Assembled eaternal stores andair-launched weaPons-vi brati0nalresoonse

acceleration PSD versus freauency soectra.

335

Page 348: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

r N

arm, (OVL) = ~ A,

i-l

(SEE Fi13uREs 132 THROUGH 134)

MB ●EM O~AVf7 I

YIIII

I d, AII

; I

I I

I I I

I I

t, f> t,

FRIQutMCV (H,)

fl m20 Hz

fz _ (Calculate from f3 and W. values)

f3 _ (Calculate according to TABLE 514.3-vI.Method 514.3, MIL-STD.81O)

f,-fJ* wOoHz[sf~)

f~ .2000 Hz

WO = [grm, (OVL)]~ ~.

W, _ [grm, (OVL)]? ~,

(SEE TABLE 49)

/- -MB ●a ocrAvL

NOTE:USe in conjunction with”the limits shown in FIGURE 13 S(a). For qsq (rein) (see TABLE 48) and MachsO.4S, mimmum g,m, (OVL). 1.3

FIGURE 136. Equipment installed in a$sembled external stores and air-launched weapon$-vibrational

I remonse acceleration PSD versus freauencv spectra.

336

Page 349: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

2.0

1.0

0.1

0.01

fq=5Hz

f2 - Fiwt rigid body wing-pylon-store frequency [Hz)mherwise. f t Sfz ~ fl

f, .20 Hz

1!

I

1

f, f~ f~

FREQUENCY (tiZ)

Test duration = 6(X) seconds (minimum totalt:~~refr each mission profile = 18 seconds

x- f4umber of buffet maneuvers (minimum of 3,phased durin mission rofila). Maneuver

“i” 4“conditions In uon bu et Include (but arenotl!m!tedtol:tif}-g diveanack.tight twnsRPO, and high an low speed: tails.

6- Avarage induced buffet duration, in seconds.

NOTES: 11. This spectrum will be superimposed on the applicable acceleration PSD spectra Of FIGURES 135 \

and 136, according to the mission profile definition of flight phasing. I2. Weight reduct!on factor not applicable for th!s spectrum.3. See TABLE 49 for Equations to solve for Ml, M2, AI and Al.

FIGuRE 137. Induced b“ffe! maneuver random vibrat, on response spectrum

337

- . —e.. —--

Page 350: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

ALT

ITuD

E10

00F

T.

uz

z

180

SE

CO

RO

Su (?

MA

CH

dC

NhN

GE

INT

RR

EC

OV

ER

Y

NU

MB

ER

TE

MP

ER

AT

uRE

~‘C

(AV

ION

ICS

tc)c

AT

!ON

l

-m~

00&

00G

;“o

“00;

:Z00

----

-t@

730 S

EC

ON

DS

D ?5 w

teo

SE

CO

WO

S

a. Ln

1

u

‘1 1

16e

sEC

Ieo

SIC

Page 351: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-H06K-781

LEGEND:

r - CONIRACI fNOITEMSl.>Q mfi:i:$fmwrm

svsTtM \l/ ‘“sYs1m4●CWORMAMCEKOUUIIMEMIS

coMPATt9mlrYKfoumthmlnls

r ‘oG)a ;.%}- T r- ;[S~w-pR%oy, - II CNVtnONM!NTAL I .~~CJUALlF1CAT80N TESTS

-l NON.[NVIJIONMCNTA1 I

J LOUUIFKATION 1[S1S j

---~-- --- q---

I I

;__+lII

II

cRCLIIDEVIL

1[$1

II

II

IIII1IIII

;?J%%=%Y

w “’co:lION

‘-”-””-‘ Y &------

&h%m9-’J.1w?4+zh-$IGURE 139 Environmental engineer; na rxoqram schematic

339

m, ,,,. ,s =,, !-, _= , ._.,...,- .-.., e....- —.-

Page 352: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

——

—.

----~

—---—

.-

..

..

..

..

....-

..

..

..

..

..

.-----------

----------------------

----------.

..

..

..

..

..

35vaU

JWi:

..

..

..-,----------------

---------------------------

.------------------

---------------------------------------.

,,,.

.,,,,,.

,,

:i\=’&

~=

ti=$+

:a+@

J=’~

71.

----------------.

..

..

..

..

..

..-------T

--JI:.--.:IiiiIIIii!,“’’”E

&a

G]

NO

ll>ldS

Nl

WA

A13>

3U+

9N

110t4

vH

-.--...-----------u

.--

....--.---..

--l----

1:................---------------------

---------------i

,------------------

.------.------

-------

LOdIO

11L

N011V

180dSN

V81

[,:,.,.,”

.+&

J++

LRiq

‘=&

=*:=

#i-----.b-------------

.........-................lE

JLejE[~

~~

:~-1

!,---------------

.---...!

,..

..

..

.---------

..-------

...-!

------,

Page 353: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

1’I

..ImuJs

PAclomv

ARRIVAL

1rU@NTHs h Q 12 la 36 La 60

1 w

~

1. ASSUMED CAPTIVE

FLIGHTAAUNCM

R1lRflVAL

2. ●ERIODIC

MAINIENAMCE

lN5Pf CTION

CALINDAR

3. uWCMEDULf D

MAIN1tN*WCt

(lSTIMATCO)

4. 0i5. KS:%t=LYl

ASSfM5.L Vis)

,

FIGURE 141.

5 VfARrOTALS

(15)

(5)

(20)

(s)

(7)

36 a 60

Eurooean scenario assumed maintenance schedule and Dossible operat, onar

uttltzauon rate for envlrOnmenlal analvm (example).

341

Page 354: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

..

.,

.,.

.

—-

——

--—.--..

—.-—

——

...——

.-..—

——

——

.{alow

?xa]!allllul!nD

aDIP

1.(Gl.#P

ua>5

uedoOInjI

wdal#ll

.mt$ap

le8uawuo1#.

uaJO

,au,,aw

#tluaw

a.o#ulab,e~

{o(3H

nc)Ij

——

——

——

.—

.631,GSIM

,0s311,

*?4vnu.“”

O,J>

,t3W

?31T

ddV

10N

W84

a.

‘Ln,o

dunm

mI

:1O

UU

).0

4h3m

d6M

SO

ud

7W

63,!I

‘.nM

CC

9>

.ti!1

,.W

o,c

,wlv

-10d30,

NO

IAaM

nd/sAvO

N1v11103

I)

z●

(IAc1

3N1731U

ILS

IMI.

.1O

u,.m

vmnm

scw8,

1A%

V71V

0-AU

OI>

W)

,11,0”l“O

Ud

Rn6S

,

Page 355: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

Ii,

Page 356: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

.0r

El,j

.9

EvEibT

FIGURE Estimated percentage of ttme d,str, bufion for tranwmnation. holdldelav. and handltno.

for nom, nal-orobable factorv-to-theate, movement ttmeline

344

Page 357: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.-

——

.a

.—

ouiu

wuadm

31

%--&

’“,*”

Page 358: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-!iDBK-781

A \l \ l\ u I I 1 4

I

1 346

!

Page 359: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

...

..d

Ma

c.

Mubl

clcl

l

Page 360: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HCM!G78?

{HIGH-LOW-HIGH)

STANCM,RU DAY

,. “,”32. SEC

2 U?”s. . . .

50

t

2 ■lus. . s..

:0s!”s23 Sec.

24-C

I, . . .

\J z ●,.S

I37 SEC,

\

L=ExJ20 M1.sIf, :::,

“.0 6,s,4 ❑INS30 Sf-c

~ ‘7’0” ‘ ‘

4“, ”s12SEC

\

l,” C - “,”9,

FIGuRE 145 Assumed twxcal altack a,rcrafl operatina enveiope (standard oavi showina the assumeci h,qt>-

1Iow-h, Qh m,ss[on pro f,ie. (Conl, rweci)

I

348

Page 361: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MiL-HCt6K-761

I

I

I

Page 362: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

3C x

m

!0 o

For

max

imum

tmdu

ranw

See

FIG

UR

E13

2-13

1t7A

9LE

4$.

NO

TK

:C

)

for

th?

g,~

,(O

VL)

.(95

~h

000

$upw

impo

whu

flet

spec

trum

ofF

IGU

RE

149

at3

dive

.at

tack

poin

tspe

rcen

tile.

with

50.p

erce

ntfo

r6

seco

nds

dura

tion

emh.

conf

iden

ceba

wd

ona

one-

side

d22

.65

‘-to

lera

nce

limit)

.

11.2

2—

——

.

5SM

INS

—I

57M

INS

–—

61M

IN$

–—.

63M

INS

-—.

/15

MIN

S

6.61

40M

INS

~

[

\\‘—

-10

.40

1.69

*I

1)

S6

min

$.

2162

rein

s.

3)66

min

$.

WE

NO

TE

:—

Ei5

MlN

ST

hem

i~si

ontim

eson

this

—G

]M

INS

figur

e,F

IGU

RE

144,

and

TA

BLE

52m

uft

bead

just

edby

the

fact

orin

NO

TE

!Bto

TA

BLE

53

(thi

s●u

nmpl

e,2.

03)

1201

WN

S

7 I

MIS

SIO

FIm

u(M

INIJ

lt5)

lham

takr

dto

lmjlr

q).

TA

ttLI

53($

?s!Im

c.o

t?)a

.dl&

aLf

S1

Vib

ratio

nfa

ctor

[g,~

,([lV

L)]2

fligh

lm

i!sio

npr

ofile

high

-low

.hi

ghus

ew

ithF

IGU

RE

S13

0A

ND

144

exce

pt(“

),ve

rw!

min

imum

.——

—ig

[m~(

@JL

llz{e

rai-

——

——

Page 363: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

w w

44s la

IOM

RA

FT

7[’M

inim

umca

lcul

ated

valu

efo

rW

~(f

ri?e

fliM

)M

UM

beZ

0,00

1g?

l}lzf

orvi

~ra

tion

test

).

~N

OT

E:

Tha

mis

sion

times

onth

isF

IGU

RE

.F

IGU

RE

147,

ond

TA

BLE

56m

ust

be

440.

16T

Af3

Lf53

.(?

hism

m@

.2.0

3)m

ultili

edbth

efa

ctor

inN

OT

EB

to—

—..—

——

——

1

30SE

CS

\

1.20

”,—

—-

Use

with

FIG

UR

E14

7.T

AB

LE

5s,

ond

TA

BLI

1S

6(f

ree

fliht

twt

cycl

epr

ofile

%6u

RE

131)

120SE

CS,/’

MIS

SIO

NT

IIUE

-SE

CO

ND

!i(F

RO

MLA

UN

CH

TO

Spl

.AS

H)

TA

BLE

53(S

EE

71M

EN

OT

E)

AN

DT

A@

LE57

FIG

UR

E14

EI

Sto

refr

ee.

fligh

tvi

brat

ion

fact

or(g

,m,(

OV

1.))

~IIi

ght

mi!$

ion

prof

ile(I

OW

-IIY

W)

we

with

FIG

UR

ES

131

thru

t34

and

TA

BLE

48_—

——

——

——

GIe

)—

1flo

SEC

S

Page 364: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I I

w m N

AC

CE

LEIIA

TIO

NP

SD

(92f

14Z

)A

CC

ELE

RA

TIO

NI

P$D

(#/I{

z)

. 0

----

---

-- .._

Page 365: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

Wll L-HDBK-781

i

I I

C. ON-BOARD ECW!WMENT H!f3H SPEED

SeeFIGURE 135 (A) for wing and, fin tip installation. Wt rffsq -~t lg,~, (OVL))Z vibration factorothew.vse, s:e et e.!! dynsnvc pressures. q.

‘WO(TISTI - W, i9,m* @~Lj)2 wibraii~n fMOF

e (No weight reduction factor)~=: ; qz250 !LV f@.. P&.:.h =(!.45

& 5.E!$X!O-4

: ‘“

[

3d9!@~AYE ‘j,:~~ - 3db KFCTAVE

$I

w;

,\g~, (OVL) = 1.0

“1 I I

1g

!

<I 1 I

1 I I

20,W

Soo~m

iOOO

FREOUENCV @iZ)

1.0

0.1

Co?

Time of application of spectrum :6 seconds. perOCcwrk?roce, =Infrnufi, 3 O:<ur:en<e: per .=; ::18!?.

ft-SHz

f2 mFirst rioid body wing-pylon-store frequency (Hz)othew”ise, ft Sfz sf~

f~ .20 Hz

I

1

0.001

fl f~ :3

FREQUENCY (Hz)

~f!wEs;1. This spectrum will be superimposed on the applicable acceleration PSO spectra of FIGURES 13S I

and 136. according to the mission profile definition of flight phasing of buf+e~.

I ~ See TABLE 49 fo,eauationsto solve forR4,, MZ,A, andAz.‘.”.reigtik raiiuc; io,-l fa.fiw riot appliceb:e %: :%8 :p2ctwm ~

FIGuRE 149 U“il.gaM5 (OVL)-acceleration PSD versus frequency spectra (continued)

, -“-.

353

.

Page 366: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

lfl -:

,,:.

IW<.%

Rc.10-4

1

10-5~, 1 , , , i , I I 1 , , I , I # , 1 ! t , II.”J 10 100 1000

FREQUENCY (Hz )

FIGuRE 150 Vibrat,on p!ofdes for rail !ransportatlon

354

Page 367: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

1~13M

r191:l

(SWIN1il)3W11

0:s,

Ozc082

Obl

—-%

-JJ+--l--

001—

~—

-r-+%

10000“

.—

-—1

——

[000”0=

—--

——

——

{

G-

—..—

—100”

>N

J.-

10”-

———‘“sauurm

rA

uaAa

Wx)aO

’IIWH

SN

OILW

NM

ISUOI

NO

daS

lfld

XJO

IMS

of‘am

M-sM

HaJ

a’lllvls

M04

NnoIis

$nvAnaulI

9NIufla

i~

~+

+14

-~I

Imom

.(s31n

lw)

31111I

09COtt

Ozc(lot

082092

Obz081

091O

bI021

00108

09rm

-—~

—~

+”~

-~+

$

N[li/3.01INIH/LOIL

L--—

—A

vaL

Otl

–—+

AV

(Ialoo

—<

09

of]

49.

..

Page 368: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-H13BK-781

0020,

O030Coo40r

O05C0060

007000s0<Oo90c01 Ooc01100120 5000013001400150 50100330<

034003500360 505003700380 5060039004000410 507004200425cIM30

04400445 5040

04500460 100470C0480c0490C

0500<05toc

0520<05300540

0550

Appro, imatefy optimum Rel, abrlity bounds

read m3, v3, m2. v2, m 1, vI, sf201, c(20), tm, 2(20),22(20). z3(20),

8 z4(20), tk, suml. wm2, sum3, sum4, wm5, rinteger k, nf(20), n,l

Input # \ystems, time on ten, # failures

print 5000format (2x, ‘Give number of subsywem~.-)

read (5,6060)kprint 5010

format (2x, - Enter data \tarting by subsy!tem with !mallest total time on test. -)

dol Oi=l,kprint 5050,1

formal(2x, ‘Enter data for $ubsystem’’,ti4)print 5060

format (2x.-Enter this subsystem’s total timeon lest. -)read (5,6060) z(i)prOnt 5070

format (2,, -En!er th,s subsystem’s numbm of failures. -)read( 5.6060) nf(, )

if (nf(i) .gt O) go to 10prim 5040

format (2a, ”’Zero failures: analysis impossible “)

go to 105continue

Second pan:

Calculation of M and V

Preliminaries:

Do ZOi= l.kzl(i] = l. Ofz(i)

z2(i) = 1.Ol(z(i). z(i))

FIGURE 152. Proaram Iistina for FORTRAN Droaram,

356

Page 369: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

05600570

C&o 20

0590C0600cc0610cc

0620 5080

0630CC 3006m0650C0660c06700660

0690g?~o

0710C0720

07300740

075a

(

z3(i)= 1.0/( 20)””3)zd(ij = 1.O/z(i)” J

cor,tifiue

Do30i.l,k

print 5080, z(i),zl(i)t z2(i),z3(i). ~4(ilformat [2x.f 12.3,2x4(f 12.9,2x))continue

More than one faiIurelsubq.Tt@m

suml .0.0

wm2 = 0.0wm3 = 0.0

SW?!4 = 0.0

Do40i=l, k

n = nf(i)-1suml =wmi +in=zi(ii);tifi2 = n’z2(i) + ;urc2

FIGURE 152. Proaram Iistina for FORTRAN prcmram - Continued.

Page 370: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-78?

k)7tiG077C

0790 40

0795CC0800 50900860C0870COEaoc089009000910cc0920 6000

0930C0940{C950C

I 096009700972c<

I 0974 60050980r

I 0990<1000110IO1020103C1040 5010501060

10701080

1090

1100 601110

1120

I 125cc

wm3 = n“z3(i) + wmiwm4 = n.z4(I) + sumf

continue

print 5090,wm 1, wm2, sum3, wm4

format(4(f10.6,2 i))

Orig;nal paper ( I 972!

ml = suml * wm31sum2

v! . sum2 + sum4Aum2print 6000,m l,v1

formai(21,”Ml = ‘, f10.7.3x. -Vl =. f10.7)

Modified ver$ion (1974)

m2=suml +21(1)v2=wm2+z2 (l)prim 6005, m2. .2

format (2x, ‘M2= ‘, f10 7, 3x, ‘V2 = “,f10.7)

The Case of Only One Failure:

Tk=O.O

Do50i= I,ktk =tk + nf(, )

continuetk = tktfloat (k)

do60i= l,kn= nf(i)+ 1s(i) = (z(i) -z(l) )/(ik’. n)s(i) = z(i). s(i)

continue

do70i=l,kc(i) = nf(l). 1 + ((z(i)/(k”J(i)) )”.2)prim 601°,i, s(i), i, c(i)

FIGuRE 153. Proaram Iistinq for FORTRAN oroaram.

358

.,

Page 371: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MiL.1-iDBK-781

I

I

1.

li3i2 73!14c! 6IJ1O11Soc

116011701160!1901zoo

121012201230

1260

125012601270

129o 801295CC

:308 S020131OC132o1330

1332cc

1334 60251340C1350C

ccmtimi2

formal (2r, ‘J[”,i3, -) = ‘. f10.5.2x. -c(”,i3,” = ‘, f10,5)

suml =0.0sum2 = 0.0wm2=0. O

5s!!!4 = C!,owm5. O.O

do80i=l,kn = nf(i).1

suml = w’s(i) + wm icwn2 = e.j(~i)”~i)) * SL,!?!~

sum3 = wcm3r(c(i)f(s(i) ”z(i)”z(i)))wm4 = wm4 + (c(i)l(($(i)””2 )”(z(i)””2)))

wmS = sum5 + (c(i)llz(i)””2))

continueprifii 6020, 5iJtil,Wfi2, $U=3, W~4, Zti-5

!ormat !2z,S(f 10.7.31))

m3=suml .wm3/wm5W3. wm2. wmusum5print 6i125, m3, v3

format [~z,-M3 = -,f IO.3,21.-V3 = ‘,flo 7)

Calculation of bounds

FIGURE 153. %w-rarn !istin~ for FORTRAN oroaram - Continued.

359

Page 372: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

MIL-HDBK-781

1360(1370 50G1375

13801390 6030140014101420 6035

14301432143414351436 6032

1437143S 603614391436 6037!44C<

1445C14SOC14601465

:47014751480<1485C

1490C14951500 60401510

1520 60501510

1520 6050

1530153215401545 6060

1550 105

romnueprint 6037

print 6030format (2., ” Enter confidence Ie.e) percentile.-)

read (5.6060)p

pring 6035format (2x,-Enter mission time.-)

read [5.6060)imprint 6037print 6037print 6032. cm

formal (2 E,-Mission Time: -. f10.5)print 6036,P

format (6x.. Percentile:-, f10.5)print 6037

format (3X)

ca!l resu!t. {ml,vl,tm p,r)print 6000,m I,vlprim 6040, ~

call rewlt (m2. v2. tm, p,r)print 6005, m2, V2prini SOSO,rprfint 6037

call result (m3. v3,tm, p,r)prom 6025, m3,v3

print 6040,rprint 6037

formal (2x,-Reliability Bound ,$: ‘,f 10.6)print 6050

format (2... Reliability Bound is:., f 10.6)

print 6050

format (2x, ‘If another confidence level or mission time, give l.-)

read (5,6060) 1print 6037

if (1. eq.l)g0t0500format (v)

continue

FIGURE 1S4. Prwramlistina for FORTR4Noroaram.

360

,- ,>,

Page 373: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

I

1s6015701590C

1s%)! 600161OC

162016301640!~~o

165516601670

stop

●nd

r = p“(sqdv])K3.O”m)r = 1.0-(v/(9.0”m” m)) + rr=r””?

r=tm”m”rr = exp(r)

return●nd

,

FIGuRE 15A. Prooram Iistina for FORTRAN woaram - Continued.

361/362

Page 374: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

.

I ‘“

I

DEPARTMENT OF THE NAVY

Ill“ iii

●vAc K Amo NAVAL w.mvA. r SVSTSMS

Comw..oIII

. . . . .

r?*ss+” OTe-. O.c. Eeses.n,oe

OFFICIAL BUSIMEYS

●ema LTv ●on ●mwart WE mm .L‘B~JSiNESS REPLY iviAiL I‘,”s, C,ass *Emwl?No !2s03 WASI.ONG.ON o c

POST.GE WOLL BE *AID @Y THE OEP.RTklEPIT OF T“E MA””

COMMANDERSPACE AND NAVKL UARFARE SYSTEMS C13FiNANilATTN : S?AMR 083-121g~~~I~~?~~, DC F!D363-5:W

.

Page 375: Reliability Test Methods, Plans, and Environments for ...web.cortland.edu/matresearch/MilHdbk781D.pdf · Reliability Tesl Methods Plan% And Environments For Engineering Oevelopmenl,

sIANDAFIDIZATION 00CUMENT IMPROVEMENT PR~Lwl~-u-sdr)

XUttlr “Wnm 1.00cuMlm7 TlruRELXABILITi TSST IWI’WDS, PLANS, AND HWIRONKL~S

●hm O* Suaulrr*Mo am-mturtm a ?Vn 0P OmGAml?.AvmM (MA -,

u WMM”

o n9”

-s- V-L am. ●-.. =* c~J

...-0

Wmwac?lmmm

rJ O,lgn (e,,

Pa08u M Lmuu

. ●.Tam ❑.- d -

.

*

h — *.*1-,:

c. -/n, !luul* t- n-.m”-”o=mon

ma MAWS

f:

.

NAU# 0, 8“#”#1TEM k,, P-t Ml, . Om,,~d b. WOMK VCLSPUON1 WUU,tn (1”,1”- AMCcd I - Octw

UILIW AOom Lzss (sm..,, C,*. #m*. z!? cm, - OD,w ● OATC OF SU8UlE#0U fVVUSDD,

.- .— -.. . ---

I

“\