12
1 Organic Semiconductor EE 4541.617A 2009. 1 st Semester 2009 5 2 M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004) Changhee Lee, SNU, Korea 1/30 Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. [email protected] 2009. 5. 2. Organic Semiconductor EE 4541.617A 2009. 1 st Semester Relaxation of Singlet & Triplet Excitons ) ( 2 1 2 1 ↓↑ ↑↓ = χ χ Singlet exciton S=0 ) ( 2 1 2 1 ↓↑ + ↑↓ = χ χ ↑↑ = 2 1 χ χ Triplet exciton S=1 + e-h pair Ground State S=0 S 0 Excited States Singlet exciton S=0 Spin-allowed transition fast, efficient Fluorescence Triplet exciton S=1 Spin-forbidden transition slow, inefficient Phosphorescence ↓↓ = 2 1 χ χ Changhee Lee, SNU, Korea 2/30 Ground State, S=0 Singlet exciton S0 Triplet exciton S1 Fluorescence : Radiation restricted to singlet excitons, η ~25% Phosphorescence : Radiation is from triplets η ~ 100%. M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004) If the excited state is formed from the combination of two uncorrelated electrons, then in a completely random formation process the relative degeneracies of the singlet and triplet states result in a 1: 3 singlet : triplet ratio, i.e. the fraction of singlet excitons is χ S = 0.25.

Relaxation of Singlet & Triplet Excitonsocw.snu.ac.kr/sites/default/files/NOTE/5464.pdf · 3 Organic Semiconductor EE 4541.617A 2009. 1 st Semester 0.20 0.15) N N Pt Phosphorescent

Embed Size (px)

Citation preview

1

Organic SemiconductorEE 4541.617A

2009. 1st Semester

2009 5 2

M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004)

Changhee Lee, SNU, Korea1/30

Changhee LeeSchool of Electrical Engineering and Computer Science

Seoul National Univ. [email protected]

2009. 5. 2.

Organic SemiconductorEE 4541.617A

2009. 1st SemesterRelaxation of Singlet & Triplet Excitons

)(2

121 ↓↑−↑↓=χχ

Singlet exciton S=0

)(2

121 ↓↑+↑↓=χχ

↑↑=21χχ

Triplet exciton S=1

+–

e-h pair

Ground State S=0

S0

Excited States

Singlet exciton S=0

Spin-allowed transitionfast, efficientFluorescence

Triplet exciton S=1

Spin-forbidden transitionslow, inefficient

Phosphorescence

↓↓=21χχ

Changhee Lee, SNU, Korea2/30

Ground State, S=0 Singlet exciton S 0 Triplet exciton S 1

Fluorescence : Radiation restricted to singlet excitons, η ~25%Phosphorescence : Radiation is from triplets η ~ 100%.

M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004)

If the excited state is formed from the combination of two uncorrelated electrons, then in a completely random formation process the relative degeneracies of the singlet and triplet states result in a 1: 3 singlet : triplet ratio, i.e. the fraction of singlet excitons is χS = 0.25.

2

Organic SemiconductorEE 4541.617A

2009. 1st SemesterQE of OLEDs and a brief history

Changhee Lee, SNU, Korea3/30

M. Baldo, IMID/IDMC '06 DIGEST, 645-674 (2006)

Organic SemiconductorEE 4541.617A

2009. 1st SemesterOrganic Phosphorescent Dyes

M

Ligand-centeredExciton (LC)

Metal-Ligand Charge TransferExciton (MLCT)

ICISC

1LC

3LC1MLCT MM

IC

3LC

3MLCT

Phosphorescence

Ground state Ir(ppy)3

NIr

3

N N

N NPt

M

Changhee Lee, SNU, Korea4/30

• The emissive state is a mixture of a LC exiton and a MLCT exciton• The MLCT state has stronger singlet - triplet mixing, due to the overlap with the heavy metal atom.• For strong spin-orbit coupling, the IC and ISC rates are very fast.

Ground state S0

Ir(ppy)3Triplet lifetime τ ~ 1 μs

3PtOEP

Triplet lifetime τ ~ 100 μs4

322

2

SO Z SL12

H ∝⋅=rcm

Ze

3

Organic SemiconductorEE 4541.617A

2009. 1st Semester

0.20

0.15

)

N NPt

Phosphorescent Dye OLED

0.10

0.05

EL (a

rb. u

nits

)

N NPt

PtOEP

Changhee Lee, SNU, Korea5/30

0.00800700600500

Wavelength (nm)

M. A. Baldo, et al, Nature 395, 151 (1998)

Efficient red EL emission from triplet excitons: ηext ~ 2.2% @ 100 cd/m2

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTriplet energy of R & G phosphors

Changhee Lee, SNU, Korea6/30

M. A. Baldo and S. R. Forrest, Phys. Rev. B 62, 10958–10966 (2000).

4

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Firpic = iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2']picolinate, Et=2.65 eV

Triplet energy of a blue phosphor and its hosts

Host4,4'-N,N'-dicarbazole-biphenyl (CBP), Et=2.56 eV, a maximum EQE= 5.7% C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 2082 (2001)

3,5'-N,N'-dicarbazole-benzene (mCP), Et=2.9 eV, EQE=7.5%R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M E Thompson Appl Phys Lett 82 2422 (2003)

Changhee Lee, SNU, Korea7/30

and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003).

4,4'-bis(9-dicarbazolyl)-2,2'-dimethyl-biphenyl (CDBP), Et=3.0 eV, EQE=10%S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Saito, Appl. Phys. Lett. 83, 569 (2003).

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003).

Organic SemiconductorEE 4541.617A

2009. 1st SemesterBlue phosphorescent OLED

C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 2082 (2001)

Changhee Lee, SNU, Korea8/30S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Saito, Appl. Phys. Lett. 83, 569 (2003).

5

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Blue Green Red

DopantFI i

Ir(ppy)3

Ir(ppy)2acac

Btp2Ir(acac)NIr

O

2

ON

F

F

IrN

O O

2

NIr

N

O O

CF3F3C

2N N

NIr

O

2

O

S

NIr

3

N

H3C

Host and Phosphorescent Dopant Materials

Host

CN-PPV

CBP

mCP

UGH2 TAZ

PVK

FIrpic(CF3ppy)2Ir(pic) Ir(mpp)3

PtOEP

n

O

CN

CHCH2 nN

N N

NN

N

N N

N NPt

2

Si CH3H3C

NIr

3

Changhee Lee, SNU, Korea9/30

Hole/ExcitonBlockingMaterials

BCP C60F42

mCP V

NNH3C CH3

FF

F

F

FF F

FFF F

FFF F

F F

FF

F

F

F

F

F FF

FF

F

F

FF

F

F

F

F

FF

FF

FF

Dr. H. N. Cho (InkTek)

NO

N

O AlO

BAlq

Organic SemiconductorEE 4541.617A

2009. 1st SemesterOrganic Electrophosphorescence devices

Princeton group

Changhee Lee, SNU, Korea10/30

6

Organic SemiconductorEE 4541.617A

2009. 1st SemesterEnergy transfer in blue phosphorescent OLEDs

• endothermic energy transfer• exothermic energy transfer• charge trapping

Changhee Lee, SNU, Korea11/30

Organic SemiconductorEE 4541.617A

2009. 1st SemesterExothermic and endothermic energy transfer

2.4 eV

2.56 eV

2.56 eV2.3 eV

Slow endothermic energy transfer from TPD to Ir(ppy)3

Changhee Lee, SNU, Korea12/30

M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004)

7

Organic SemiconductorEE 4541.617A

2009. 1st SemesterExothermic energy transfer from Alq3 to PtOEP and triplet exciton diffusion

Changhee Lee, SNU, Korea13/30

M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004) ; M. A. Baldo and S. R. Forrest, Phys. Rev. B 62, 10958–10966 (2000).

The delay in the PtOEP phosphorescence after an electrical excitation pulse is due to triplet diffusion through the Alq3 host. The delay is observed to decrease to zero as the exciton formation zone is moved closer to the PtOEP layer, confirming that excitons are formed initially in the Alq3 host. These experiments were used to estimate the triplet exciton lifetime in Alq3 to be (25 ± 15) μs.

Organic SemiconductorEE 4541.617A

2009. 1st SemesterCharge trapping

trapping

No trapping

pp g

trappingNo trapping

Changhee Lee, SNU, Korea14/30

M. A. Baldo and S. R. Forrest, Phys. Rev. B 62, 10958–10966 (2000).

8

Organic SemiconductorEE 4541.617A

2009. 1st SemesterQuantum Efficiency vs Current

Triplet – Triplet (T – T) Annihilation

Q.E. decay as current is increased is due to

T-T annihilation

Changhee Lee, SNU, Korea15/30

Ref. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000)

decrease the effects of T-T annihilation by:

• short triplet lifetime will decrease T-T annihilation

• decrease dopant aggregation in the thin film

Organic SemiconductorEE 4541.617A

2009. 1st SemesterReduced Efficiency Roll-off with Short Triplet Exciton Lifetime

Ir(ppy)3

triplet exciton τ: 500ns (doped in

Changhee Lee, SNU, Korea16/30

~500ns (doped in CBP)

9

Organic SemiconductorEE 4541.617A

2009. 1st Semester

Jndn TT 2

Rate equation for the triplet-triplet annihilation

Triplet – Triplet (T – T) Annihilation

qdJnkn

dtdn

TTTT +−−= 2

τ

1) transient 0)(,0 => tJt

τ)(nk TT

1 0 i) << τt

TT enn−

≈ )0(

)(nk TT10ii) >> 2

TTT nkdn

−≈

Changhee Lee, SNU, Korea17/30

τ)(nk TT 0 ii) >>

BAtnT +

≈1

TT nkdt

22 )()( BAtk

BAtA T

+−

≈+−

)0(1 ,

TT n

BkA ==∴

tknn

ntkBAt

nTT

T

TT

T )0(1)0(

)0(1

11+

=+

=+

≈∴

Organic SemiconductorEE 4541.617A

2009. 1st Semester

trial solution

BAetn tT

+=

τ

1)(22 )()(

1

)( BAe

k

BAeBAe

eA

tT

tt

t

+−

+−=

+

τττ

τ

ττ

Transient Solution

τTkB −=∴T

tt

kBAeeA−+−=− )(1 ττ

ττ

BAnt T +

==1)0( ; 0 τT

TT

kn

Bn

A +=−=∴)0(

1)0(

1

)0()( tT

Tntn =∴

Changhee Lee, SNU, Korea18/30

)0()]0(1[ TT

t

TT nkenk ττ τ −+

Light emission intensity

τττ τ KeK

LtntL tT

−+==

)1(

)0()()(

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62,10967 (2000)

))0( ( Knklet TT =

10

Organic SemiconductorEE 4541.617A

2009. 1st SemesterT – T Annihilation: Transient behavior

qdJnkn

dtdn

TTTT +−−= 2

τ

Rate equation for the T-T annihilation

Transient behavior: J=0

Changhee Lee, SNU, Korea19/30

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62,10967 (2000)

Organic SemiconductorEE 4541.617A

2009. 1st Semester

0=dt

dnT 02 =−+gdJnnk T

TT τ

(근의공식)

⎤⎡⎤⎡++− T

JJkqdJk

81414)1(1

22

τττ 2k

T – T Annihilation: Steady-state solution

⎥⎦

⎤⎢⎣

⎡++−=

⎥⎥⎦

⎢⎢⎣

⎡++−==

TT

T

TTT J

Jkqd

Jkkk

qdn 811

21411

21

2 ττ

τττ

)2

( 12

−= TT Jqd

k τQ

τTnL = QE :

τη

Jn

JL T==

nL

T1

0η : 0=Tk 인경우, 즉 , T-T annihilation이없는경우이므로 gdJnT =

τ

Light emission intensity

Changhee Lee, SNU, Korea20/30

qdJJL 1

0 ===∴ τη

⎥⎦

⎤⎢⎣

⎡++−=⎥

⎤⎢⎣

⎡++−=

T

T

TT JJ

JJ

JJ

Jkqd 811

4811

2 20 τηη

M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62,10967 (2000)

11

Organic SemiconductorEE 4541.617A

2009. 1st SemesterEfficiency Roll-off

Steady-State: d[3M]/dt=0

t d it i d t itcurrent density required to excite every phosphorescentmolecule (i.e., the onset of saturation)

Changhee Lee, SNU, Korea21/30

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTriplet-polaron annihilation

Assuming bulk limited transport, then [nt] is proportional to the applied potential V,

1+∝ lVJ

Changhee Lee, SNU, Korea22/30

12

Organic SemiconductorEE 4541.617A

2009. 1st SemesterTriplet-polaron annihilation

Changhee Lee, SNU, Korea23/30

S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007)