1
Relatedness and Differentiation in Arbitrary Population Structures Alejandro Ochoa 1,2 and John D. Storey 1,2 1 Lewis-Sigler Institute for Integrative Genomics, and 2 Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA Abstract Several important biomedical applications, including genome-wide association studies and heritability estimation for complex traits, require accurate model- ing of the covariance structure of genetic variants. This dependence structure between individuals is parametrized by kinship coefficients, which are defined as the probability that random alleles are “identical by descent” (IBD). The fix- ation index F ST is also an IBD probability that measures the overall population structure. My work is focused on extending current models and estimation ap- proaches for kinship and F ST to arbitrary population structures, where individu- als are not assumed to belong to subpopulations that are disjoint, homogeneous, and statistically independent, such as African-Americans and Hispanics. Here I show how my approach improves upon previous approaches in real human datasets containing world-wide samples and in simulations where the true pa- rameters are known. My work led to a novel kinship and F ST estimation frame- work with greatly improved accuracy, implemented in the R package popkin available on CRAN. These results have direct implications in the estimation of heritability, association studies, and other analyses where population structure is a confounder. Tesearch supported in part by NIH grant R01 HG006448. Model x ij ∈{0, 1, 2}: genotype of ind. j , biallelic SNP i, counting ref alelles. p i : ancestral allele frequency. ϕ jk : kinship coefficient. f j =2ϕ jj - 1: inbreeding coefficient. Genotype moments: E[ x ij ]=2p i , Cov(x ij ,x ik )=4p i (1 - p i )ϕ jk . Generalized F ST for locally-outbred individuals [1]: F ST = n X j =1 w j f j . Standard kinship estimator Biased when there is population structure [2, 3]. ˆ ϕ std jk = 1 m m X i=1 (x ij - p i )(x ik - p i ) p i (1 - ˆ p i ) , ˆ p i = 1 2n n X j =1 x ij . New kinship estimator: popkin Derived for arbitrary population structures [2]. A jk = 1 m m X i=1 (x ij - 1)(x ik - 1) - 1, A min = min u=v 1 |S u ||S v | X j S u X k S v A jk , ˆ ϕ jk =1 - A jk A min . DrAlexOchoa viiia.org/research/ [email protected] Simulations Real Human Data Ind. Subpops. Truth A Admixture B Human Origins C TGP Hispanics D New Estimator Existing Estimator -0.1 0 0.1 0.2 0.3 0.4 Kinship WC New 0.00 0.05 0.10 F ST WC New 0.00 0.05 0.10 WC New 0.0 0.1 0.2 WC New 0.00 0.10 0.20 F ST estimator Individuals Figure 1: New and existing kinship and F ST estimates in simula- tions and real human data. Rows: (1) true kinship matrix, (2) new kinship estimates, (3) standard kinship estimates, and (4) comparison of Weir-Cockerham to our new F ST estimates and true F ST (red dashed lines). Kinship matrix colors are ϕ jk values between individual pairs j, k , and f j along diagonal. Columns are datasets: A. Independent subpopulations simulation (assumed by existing F ST esti- mators). B. Spatial admixture simulation (demonstrates biases in existing methods and superior performance of our new approach). C. Human Origins dataset (global native populations). D. Hispanic subset of 1000 Genomes Project. Results and Conclusions Our theory and simulations [1, 2] and real data analysis show that existing kinship and F ST estimation approaches are biased in arbi- trary population structures, and our new approach overcomes these limitations (Fig. 1). We estimate a complex population structure in native Human samples (Fig. 2) and a pattern of differentiation consis- tent with the Out-of-Africa model (Fig. 3). Our approach estimates a higher F ST 26% than existing approaches (10% or less) which assume independent subpopulations (Fig. 4). References [1] Alejandro Ochoa and John D. Storey. “F ST and kinship for arbitrary population structures I: Generalized defi- nitions”. Submitted, preprint at http://biorxiv.org/content/early/2016/10/27/083915. 2016. [2] Alejandro Ochoa and John D. Storey. “F ST and kinship for arbitrary population structures II: Method of moments estimators”. Submitted, preprint at http://biorxiv.org/content/early/2016/10/27/083923. 2016. [3] Bruce S. Weir and Jérôme Goudet. “A Unified Characterization of Population Structure and Relatedness”. Genetics (2017), genetics.116.198424. Ju_hoan_South Ju_hoan_North Taa_West Taa_East Taa_North Naro Gui Hoan Xuun Gana Tshwa Khomani Nama Haiom Kgalagadi Shua Khwe Mbuti Biaka BantuSA Tswana Damara Himba Wambo Yoruba Esan Mende BantuKenya Luhya Mandenka Gambian Luo Dinka Kikuyu Hadza Sandawe Masai Datog Somali Oromo Jew_Ethiopian Saharawi Moroccan Mozabite Algerian Tunisian Libyan Egyptian Yemeni Jew_Libyan Jew_Tunisian Jew_Moroccan Jew_Yemenite Saudi BedouinB BedouinA Palestinian Jordanian Syrian Lebanese_Muslim Lebanese_Christian Jew_Turkish Assyrian Druze Lebanese Jew_iraqi Iranian_Bandari Iranian Jew_Iranian Turkish Jew_Ashkenazi Cypriot Maltese Canary_Islander Italian_South Sicilian Romanian FrenchN SpanishSW Greek Italian_North SpanishNE FrenchS Sardinian Basque Orcadian English Icelandic Norwegian Irish Irish_Ulster Scottish Shetlandic German Sorb Polish Czech Croatian Hungarian Albanian Bulgarian Mordovian Finnish Russian Estonian Ukrainian Belarusian Lithuanian Armenian Jew_Georgian Georgian Abkhasian Adygei North_Ossetian Chechen Lezgin Kumyk Balkar Nogai Makrani Brahui Balochi Jew_Cochin Tajik Kalash Pathan Sindhi Burusho Brahmin_Tiwari Gujarati Punjabi Vishwabrahmin Lodhi Mala Bengali Kharia Onge Chuvash Turkmen Uzbek Hazara Uygur Tubalar Mansi Selkup Kyrgyz Altaian Tuvinian Nganasan Dolgan Yakut Xibo Hezhen Oroqen Ulchi Even Yukagir Itelmen Koryak Chukchi Eskimo Kusunda Kalmyk Burmese Cambodian Thai Tu Mongola Daur Kinh Vietnamese Dai Lahu Naxi Yi Tujia Han Miao She Japanese Korean Ami Atayal Kankanaey Murut Dusun Ilocano Tagalog Visayan Bajo Malay Lebbo Chipewyan Pima Mixe Mixtec Zapotec Mayan Kaqchikel Cabecar Piapoco Karitiana Surui Bolivian Aymara Quechua Guarani Mussau Saposa Buka Teop Tigak Australian Kove Melamela Nakanai_Bileki Mangseng Manus Nasoi Nailik Notsi SW_Bougainville Kuot_Kabil Kuot_Lamalaua Lavongai Madak Tolai Mengen Mamusi Mamusi_Paleabu Nakanai_Loso Ata Sulka Kol_New_Britain Baining_Malasait Baining_Marabu Papuan Ju_hoan_South Ju_hoan_North Taa_West Taa_East Taa_North Naro Gui Hoan Xuun Gana Tshwa Khomani Nama Haiom Kgalagadi Shua Khwe Mbuti Biaka BantuSA Tswana Damara Himba Wambo Yoruba Esan Mende BantuKenya Luhya Mandenka Gambian Luo Dinka Kikuyu Hadza Sandawe Masai Datog Somali Oromo Jew_Ethiopian Saharawi Moroccan Mozabite Algerian Tunisian Libyan Egyptian Yemeni Jew_Libyan Jew_Tunisian Jew_Moroccan Jew_Yemenite Saudi BedouinB BedouinA Palestinian Jordanian Syrian Lebanese_Muslim Lebanese_Christian Jew_Turkish Assyrian Druze Lebanese Jew_iraqi Iranian_Bandari Iranian Jew_Iranian Turkish Jew_Ashkenazi Cypriot Maltese Canary_Islander Italian_South Sicilian Romanian FrenchN SpanishSW Greek Italian_North SpanishNE FrenchS Sardinian Basque Orcadian English Icelandic Norwegian Irish Irish_Ulster Scottish Shetlandic German Sorb Polish Czech Croatian Hungarian Albanian Bulgarian Mordovian Finnish Russian Estonian Ukrainian Belarusian Lithuanian Armenian Jew_Georgian Georgian Abkhasian Adygei North_Ossetian Chechen Lezgin Kumyk Balkar Nogai Makrani Brahui Balochi Jew_Cochin Tajik Kalash Pathan Sindhi Burusho Brahmin_Tiwari Gujarati Punjabi Vishwabrahmin Lodhi Mala Bengali Kharia Onge Chuvash Turkmen Uzbek Hazara Uygur Tubalar Mansi Selkup Kyrgyz Altaian Tuvinian Nganasan Dolgan Yakut Xibo Hezhen Oroqen Ulchi Even Yukagir Itelmen Koryak Chukchi Eskimo Kusunda Kalmyk Burmese Cambodian Thai Tu Mongola Daur Kinh Vietnamese Dai Lahu Naxi Yi Tujia Han Miao She Japanese Korean Ami Atayal Kankanaey Murut Dusun Ilocano Tagalog Visayan Bajo Malay Lebbo Chipewyan Pima Mixe Mixtec Zapotec Mayan Kaqchikel Cabecar Piapoco Karitiana Surui Bolivian Aymara Quechua Guarani Mussau Saposa Buka Teop Tigak Australian Kove Melamela Nakanai_Bileki Mangseng Manus Nasoi Nailik Notsi SW_Bougainville Kuot_Kabil Kuot_Lamalaua Lavongai Madak Tolai Mengen Mamusi Mamusi_Paleabu Nakanai_Loso Ata Sulka Kol_New_Britain Baining_Malasait Baining_Marabu Papuan SAfrica MAfrica NAfrica MiddleEast Europe Caucasus SAsia NAsia EAsia Americas Oceania SAfrica MAfrica NAfrica MiddleEast Europe Caucasus SAsia NAsia EAsia Americas Oceania 0 0.1 0.2 0.3 Kinship Individuals Figure 2: Population-wide kinship estimates in Human Origins. Our new estimates reveal substantial kinship between subpopulations and hetero- geneity within subpopulations. 0.2 0.3 0.4 Inbreeding coeff. Figure 3: Geography of population-level inbreeding. Mean f j in- creases with distance from Africa, as expected under the Out-of-Africa serial founder model. 0.0 0.1 0.2 0.3 0.4 0.5 0 20 40 Inbreeding Coefficient Density SAfrica MAfrica NAfrica MiddleEast Europe Caucasus SAsia NAsia EAsia Americas Oceania Subpopulations SAfrica MAfrica NAfrica MiddleEast Europe Caucasus SAsia NAsia EAsia Americas Oceania F ST estimates Weir-Cockerham HudsonK New Figure 4: Inbreeding and F ST estimates in Human Origins. Weir- Cockerham and HudsonK assumed the K = 11 subpopulations are independent, which causes downward bias.

Relatedness and Differentiation in Arbitrary Population ... · 5/15/2018  · Alejandro Ochoa1,2 and John D. Storey1,2 ... [2,3]. ϕˆstd jk = 1 m Xm i=1 (x ... Murut Dusun Ilocano

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Relatedness and Differentiation in Arbitrary Population ... · 5/15/2018  · Alejandro Ochoa1,2 and John D. Storey1,2 ... [2,3]. ϕˆstd jk = 1 m Xm i=1 (x ... Murut Dusun Ilocano

Relatedness and Differentiation in Arbitrary Population StructuresAlejandro Ochoa1,2 and John D. Storey1,2

1Lewis-Sigler Institute for Integrative Genomics, and 2Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA

AbstractSeveral important biomedical applications, including genome-wide associationstudies and heritability estimation for complex traits, require accurate model-ing of the covariance structure of genetic variants. This dependence structurebetween individuals is parametrized by kinship coefficients, which are definedas the probability that random alleles are “identical by descent” (IBD). The fix-ation index FST is also an IBD probability that measures the overall populationstructure. My work is focused on extending current models and estimation ap-proaches for kinship and FST to arbitrary population structures, where individu-als are not assumed to belong to subpopulations that are disjoint, homogeneous,and statistically independent, such as African-Americans and Hispanics. HereI show how my approach improves upon previous approaches in real humandatasets containing world-wide samples and in simulations where the true pa-rameters are known. My work led to a novel kinship and FST estimation frame-work with greatly improved accuracy, implemented in the R package popkinavailable on CRAN. These results have direct implications in the estimation ofheritability, association studies, and other analyses where population structureis a confounder. Tesearch supported in part by NIH grant R01 HG006448.

Model

xij ∈ {0, 1, 2}: genotype of ind. j, biallelic SNP i, counting ref alelles.pi: ancestral allele frequency. ϕjk: kinship coefficient. fj = 2ϕjj− 1:inbreeding coefficient. Genotype moments:

E[xij] = 2pi, Cov(xij, xik) = 4pi(1− pi)ϕjk.

Generalized FST for locally-outbred individuals [1]:

FST =n∑

j=1wjfj.

Standard kinship estimator

Biased when there is population structure [2, 3].

ϕ̂stdjk = 1

m

m∑i=1

(xij − 2p̂i) (xik − 2p̂i)4p̂i (1− p̂i)

, p̂i = 12n

n∑j=1

xij.

New kinship estimator: popkin

Derived for arbitrary population structures [2].

Ajk = 1m

m∑i=1

(xij − 1)(xik − 1)− 1,

Amin = minu 6=v

1|Su||Sv|

∑j∈Su

∑k∈Sv

Ajk, ϕ̂jk = 1− Ajk

Amin.

7 DrAlexOchoa� viiia.org/research/R [email protected]

Index

NA Simulations

Index

NA Real Human Data

Ind. Subpops.

Trut

h

A AdmixtureB Human OriginsC TGP HispanicsD

New

Est

imat

orE

xist

ing

Est

imat

or

−0.1

00.

10.

20.

30.

4

Kin

ship

WC New0.00

0.05

0.10

FS

T

WC New0.00

0.05

0.10

WC New

0.0

0.1

0.2

WC New0.00

0.10

0.20

FST estimator

Individuals

Figure 1: New and existing kinship and FST estimates in simula-tions and real human data. Rows: (1) true kinship matrix, (2) new kinshipestimates, (3) standard kinship estimates, and (4) comparison of Weir-Cockerhamto our new FST estimates and true FST (red dashed lines). Kinship matrix colorsare ϕjk values between individual pairs j, k, and fj along diagonal. Columns aredatasets: A. Independent subpopulations simulation (assumed by existing FST esti-mators). B. Spatial admixture simulation (demonstrates biases in existing methodsand superior performance of our new approach). C. Human Origins dataset (globalnative populations). D. Hispanic subset of 1000 Genomes Project.

Results and Conclusions

Our theory and simulations [1, 2] and real data analysis show thatexisting kinship and FST estimation approaches are biased in arbi-trary population structures, and our new approach overcomes theselimitations (Fig. 1). We estimate a complex population structure innative Human samples (Fig. 2) and a pattern of differentiation consis-tent with the Out-of-Africa model (Fig. 3). Our approach estimatesa higher FST ≈ 26% than existing approaches (≈ 10% or less) whichassume independent subpopulations (Fig. 4).

References

[1] Alejandro Ochoa and John D. Storey. “FST and kinship for arbitrary population structures I: Generalized defi-nitions”. Submitted, preprint at http://biorxiv.org/content/early/2016/10/27/083915. 2016.

[2] Alejandro Ochoa and John D. Storey. “FST and kinship for arbitrary population structures II: Method of momentsestimators”. Submitted, preprint at http://biorxiv.org/content/early/2016/10/27/083923. 2016.

[3] Bruce S. Weir and Jérôme Goudet. “A Unified Characterization of Population Structure and Relatedness”.Genetics (2017), genetics.116.198424.

Ju_h

oan_

Sou

thJu

_hoa

n_N

orth

Taa_

Wes

tTa

a_E

ast

Taa_

Nor

thN

aro

Gui

Hoa

nX

uun

Gan

aT

shw

aK

hom

ani

Nam

aH

aiom

Kga

laga

diS

hua

Khw

eM

buti

Bia

kaB

antu

SA

Tsw

ana

Dam

ara

Him

baW

ambo

Yoru

baE

san

Men

deB

antu

Ken

yaLu

hya

Man

denk

aG

ambi

an Luo

Din

kaK

ikuy

uH

adza

San

daw

eM

asai

Dat

ogS

omal

iO

rom

oJe

w_E

thio

pian

Sah

araw

iM

oroc

can

Moz

abite

Alg

eria

nTu

nisi

anLi

byan

Egy

ptia

nYe

men

iJe

w_L

ibya

nJe

w_T

unis

ian

Jew

_Mor

occa

nJe

w_Y

emen

iteS

audi

Bed

ouin

BB

edou

inA

Pal

estin

ian

Jord

ania

nS

yria

nLe

bane

se_M

uslim

Leba

nese

_Chr

istia

nJe

w_T

urki

shA

ssyr

ian

Dru

zeLe

bane

seJe

w_i

raqi

Iran

ian_

Ban

dari

Iran

ian

Jew

_Ira

nian

Turk

ish

Jew

_Ash

kena

ziC

yprio

tM

alte

seC

anar

y_Is

land

erIta

lian_

Sou

thS

icili

anR

oman

ian

Fre

nchN

Spa

nish

SW

Gre

ekIta

lian_

Nor

thS

pani

shN

EF

renc

hSS

ardi

nian

Bas

que

Orc

adia

nE

nglis

hIc

elan

dic

Nor

weg

ian

Iris

hIr

ish_

Uls

ter

Sco

ttish

She

tland

icG

erm

anS

orb

Pol

ish

Cze

chC

roat

ian

Hun

garia

nA

lban

ian

Bul

garia

nM

ordo

vian

Fin

nish

Rus

sian

Est

onia

nU

krai

nian

Bel

arus

ian

Lith

uani

anA

rmen

ian

Jew

_Geo

rgia

nG

eorg

ian

Abk

hasi

anA

dyge

iN

orth

_Oss

etia

nC

hech

enLe

zgin

Kum

ykB

alka

rN

ogai

Mak

rani

Bra

hui

Bal

ochi

Jew

_Coc

hin

Tajik

Kal

ash

Pat

han

Sin

dhi

Bur

usho

Bra

hmin

_Tiw

ari

Guj

arat

iP

unja

biV

ishw

abra

hmin

Lodh

iM

ala

Ben

gali

Kha

riaO

nge

Chu

vash

Turk

men

Uzb

ekH

azar

aU

ygur

Tuba

lar

Man

siS

elku

pK

yrgy

zA

ltaia

nTu

vini

anN

gana

san

Dol

gan

Yaku

tX

ibo

Hez

hen

Oro

qen

Ulc

hiE

ven

Yuka

gir

Itelm

enK

orya

kC

hukc

hiE

skim

oK

usun

daK

alm

ykB

urm

ese

Cam

bodi

anT

hai

TuM

ongo

laD

aur

Kin

hV

ietn

ames

eD

aiLa

huN

axi

Yi

Tujia

Han

Mia

oS

heJa

pane

seK

orea

nA

mi

Ata

yal

Kan

kana

eyM

urut

Dus

unIlo

cano

Taga

log

Vis

ayan

Baj

oM

alay

Lebb

oC

hipe

wya

nP

ima

Mix

eM

ixte

cZ

apot

ecM

ayan

Kaq

chik

elC

abec

arP

iapo

coK

ariti

ana

Sur

uiB

oliv

ian

Aym

ara

Que

chua

Gua

rani

Mus

sau

Sap

osa

Buk

aTe

opT

igak

Aus

tral

ian

Kov

eM

elam

ela

Nak

anai

_Bile

kiM

angs

eng

Man

usN

asoi

Nai

likN

otsi

SW

_Bou

gain

ville

Kuo

t_K

abil

Kuo

t_La

mal

aua

Lavo

ngai

Mad

akTo

lai

Men

gen

Mam

usi

Mam

usi_

Pal

eabu

Nak

anai

_Los

oA

taS

ulka

Kol

_New

_Brit

ain

Bai

ning

_Mal

asai

tB

aini

ng_M

arab

uP

apua

n

Ju_hoan_SouthJu_hoan_North

Taa_WestTaa_East

Taa_NorthNaro

GuiHoanXuunGana

TshwaKhomani

NamaHaiom

KgalagadiShuaKhweMbutiBiaka

BantuSATswanaDamara

HimbaWamboYoruba

EsanMende

BantuKenyaLuhya

MandenkaGambian

LuoDinka

KikuyuHadza

SandaweMasaiDatog

SomaliOromo

Jew_EthiopianSaharawi

MoroccanMozabiteAlgerianTunisian

LibyanEgyptian

YemeniJew_Libyan

Jew_TunisianJew_MoroccanJew_Yemenite

SaudiBedouinBBedouinA

PalestinianJordanian

SyrianLebanese_Muslim

Lebanese_ChristianJew_Turkish

AssyrianDruze

LebaneseJew_iraqi

Iranian_BandariIranian

Jew_IranianTurkish

Jew_AshkenaziCypriotMaltese

Canary_IslanderItalian_South

SicilianRomanian

FrenchNSpanishSW

GreekItalian_North

SpanishNEFrenchS

SardinianBasque

OrcadianEnglish

IcelandicNorwegian

IrishIrish_Ulster

ScottishShetlandic

GermanSorb

PolishCzech

CroatianHungarian

AlbanianBulgarian

MordovianFinnish

RussianEstonian

UkrainianBelarusianLithuanianArmenian

Jew_GeorgianGeorgian

AbkhasianAdygei

North_OssetianChechen

LezginKumykBalkarNogai

MakraniBrahui

BalochiJew_Cochin

TajikKalashPathanSindhi

BurushoBrahmin_Tiwari

GujaratiPunjabi

VishwabrahminLodhiMala

BengaliKhariaOnge

ChuvashTurkmen

UzbekHazaraUygur

TubalarMansi

SelkupKyrgyzAltaian

TuvinianNganasan

DolganYakutXibo

HezhenOroqen

UlchiEven

YukagirItelmenKoryak

ChukchiEskimo

KusundaKalmyk

BurmeseCambodian

ThaiTu

MongolaDaurKinh

VietnameseDai

LahuNaxi

YiTujiaHan

MiaoShe

JapaneseKorean

AmiAtayal

KankanaeyMurut

DusunIlocanoTagalogVisayan

BajoMalayLebbo

ChipewyanPimaMixe

MixtecZapotec

MayanKaqchikel

CabecarPiapoco

KaritianaSurui

BolivianAymara

QuechuaGuaraniMussauSaposa

BukaTeop

TigakAustralian

KoveMelamela

Nakanai_BilekiMangseng

ManusNasoiNailikNotsi

SW_BougainvilleKuot_Kabil

Kuot_LamalauaLavongai

MadakTolai

MengenMamusi

Mamusi_PaleabuNakanai_Loso

AtaSulka

Kol_New_BritainBaining_MalasaitBaining_Marabu

Papuan

SAfrica MAfrica NAfrica MiddleEast Europe Caucasus SAsia NAsia EAsia Americas Oceania

SA

fric

aM

Afr

ica

NA

fric

aM

iddl

eEas

tE

urop

eC

auca

sus

SA

sia

NA

sia

EA

sia

Am

eric

asO

cean

ia

00.

10.

20.

3

Kin

ship

Indi

vidu

als

Figure 2: Population-wide kinship estimates in Human Origins.Our new estimates reveal substantial kinship between subpopulations and hetero-geneity within subpopulations.

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●● ●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

● ●

● ● ●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●

●● ●

●●

● ●

0.2

0.3

0.4

Inbr

eedi

ng c

oeff.

Figure 3: Geography of population-level inbreeding. Mean fj in-creases with distance from Africa, as expected under the Out-of-Africa serial foundermodel.

0.0 0.1 0.2 0.3 0.4 0.5

020

40

Inbreeding Coefficient

Den

sity

SAfricaMAfricaNAfricaMiddleEastEuropeCaucasusSAsiaNAsiaEAsiaAmericasOceania

Subpopulations

SAfricaMAfricaNAfricaMiddleEastEuropeCaucasusSAsiaNAsiaEAsiaAmericasOceania

FST estimates

Weir−CockerhamHudsonKNew

Figure 4: Inbreeding and FST estimates in Human Origins. Weir-Cockerham and HudsonK assumed the K = 11 subpopulations are independent,which causes downward bias.