27
157 REFERENCES 1. Abrahart, EN (2 nd Ed.) 1997, Dyes and their intermediates, Chemical Publishing Company, New York. 2. Ahmad, AA, Hameed, BH & Ahmad, Removal of disperse dye from aqueous solution using waste-derived activated carbon: , Journal of Hazardous Materials, vol.170, pp.612- 619. 3. Akpan UG & photocatalytic degradation of dyes using TiO 2 - review, Journal of Hazardous Materials, vol. 170, pp. 520-529. 4. Aksu, Z 2005, Application of biosorption for the removal of organic pollutants: A review Process Biochemistry, vol. 40, pp. 997-1026. 5. of dyes from aqueous solutions by adsorption on mixturesof fly ash The International Journal, vol. 2, No. 3, pp. 237-244. 6. Alenor, S, Ca Journal of Hazardous Material, vol.165 no.1-3, pp. 1029-1039. 7. Allen, Pollution, vol.56, pp. 39-50. 8. Al-Qaradawi, S & Salman, SP 2002, Photocatalytic degradation of Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 161. 9. Al-Sayyed, G, - sensitized photodegradation of 4-chlorophenol in wat Photochemistry and Photobiology A Chemistry, vol. 58, pp.99. 10. American Journal of Environmental Science, Vol. 5, no. 3, pp. 197-208.

REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

157

REFERENCES

1. Abrahart, EN (2nd Ed.) 1997, Dyes and their intermediates, Chemical Publishing Company, New York.

2. Ahmad, AA, Hameed, BH & Ahmad, Removal of disperse dye from aqueous solution using waste-derived activated carbon:

, Journal of Hazardous Materials, vol.170, pp.612-619.

3. Akpan UG & photocatalytic degradation of dyes using TiO2-review, Journal of Hazardous Materials, vol. 170, pp. 520-529.

4. Aksu, Z 2005, Application of biosorption for the removal of organic pollutants: A review Process Biochemistry, vol. 40, pp. 997-1026.

5. of dyes from aqueous solutions by adsorption on mixturesof fly ash

The International Journal, vol. 2, No. 3, pp. 237-244.

6. Alenor, S, Ca

Journal of Hazardous Material, vol.165 no.1-3, pp. 1029-1039.

7. Allen,

Pollution, vol.56, pp. 39-50.

8. Al-Qaradawi, S & Salman, SP 2002, Photocatalytic degradation of Journal of Photochemistry and

Photobiology A: Chemistry, vol. 148, pp. 161.

9. Al-Sayyed, G, -sensitized photodegradation of 4-chlorophenol in watPhotochemistry and Photobiology A Chemistry, vol. 58, pp.99.

10. American Journal of Environmental Science, Vol. 5, no. 3,

pp. 197-208.

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate
Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate
Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate
Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

161

41. Chen, Z, Jin, XY, Megharaj, M & Naidu, R orange from aqueous solution using bentonite-supported nanoscale zero-pp. 601-607.

42. capacities of aTechnology, vol.100, pp.1143-1148.

43.

Society of America Journal, vol.44, pp. 265-268.

44. Clasen, TF, Thao, DH, Boisson, S & Shipin, O 2008,

vol. 42, pp. 4255-4260.

45. Colmenares, J.C, Luque, R,

applications in the photocatalytic transformation of lignocellulosic Materials, vol.2, pp. 2228-2258.

46. -conventional low-cost adsorbents for dye -1085.

47. Cui, D & Biotechnology Progress, vol.19, pp. 683.

48. Elements of X- Edison-Wesley Publishing Company Inc, USA.

49. Dahl, JA, Maddux, BLS & Hutchison, JE 2007, greenerNanosynthesis, Chemical Review, vol. 107, pp.2228-2269.

50. Daneshvar, N, Ayazloo, M, Khatae, AR & Pourhassan, M 2007, solution containing malachite green

by microalgae Cosmarium sp pp. 1-7.

51. Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2 Journal of Photochemistryand Photobiology A: Chemistry, Vol. 162, pp. 317-322.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

162

52. Daniel Mc & Astruc D 2004, supramolecular chemistry, and applications toward biology, quantum size related properties, catalysis and nanotechnolog Chemical Society Reviews, vol.104, pp.293-346.

53. Darcy-

Journal of Food Science & Nutrition, vol.44, pp.523-535.

54. Demirbas, A 2008-3,

pp. 220-229.

55. of adsorption of reactive Blue 21 by fly ash and sepioliteDesalination, vol.243, pp.8-21.

56. Demirbas, E, Kobya, M & Sulak, MT 2008, Adsorption kinetics of a

Bioresource Technology, vol.99, pp.5368-5373.

57. Dickson, DPE 1999, Journal of Magnetism and Magnetic Material. vol.203, pp.46-49.

58. oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: A

International Journal of Chemical Engineering and Applications, Vol. 1, pp. 2010-2021.

59. wastes contaminated with Congo red dyes by electrochemical

ous Materials, vol.168, pp.1163- 1169.

60. -273.

61. of silver nanoparticles and arrvol.6, pp.1221.

62. Philosophical Transactions of the Royal Society., London,

vol.147, pp.145 181.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

163

63. Feynman, RP 1959, , Engineering and Science, pp.22-36.

64. Heterogeneous PChemical Reviews, vol.93, pp. 341-57.

65. Frilis, N & Myers-lead by StreptomyceslongwoodensisBioengineering, vol.28, pp.21.

66. Red from an aqueous solution by fungus Aspergillus niger e Environmental Research., vol.7, pp. 239-247.

67. Fuchs, V, Mendez, L, Blanco, M, & Pizzio, L 2009, Mesoporous titania directly modified with tungstophosphoric acid: synthesis,

Journal of Applied Catalysis A: General, vol. 358, pp. 73-78.

68. Fujishima, TN, Rao, D & Tryk, A 2000, Journal of Photochemical Photobiology C:

Photochemistry Reviews, vol. 1, pp. 1-21.

69. degradation of organic contaminants over titanium dioxide: A review

Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 9, pp. 1-12.

70. Ghaedi, M, Khajesharifi, H, Yadkuri, AH, Roosta, M, Sahraei, R &

Spectroscopy, vol. 86, pp. 62- 68.

71. Ghaedi, M, Biyareh, MN, Kokhdan, SN, Shamsaldini, S, Sahraei, R,

palladium and silver nanoparticles loaded on activated carbon and zinc oxide nanorods loaded on activated carbon as new adsorbents for removal of Congo red from aqueous solution: Kinetic and isotherm

-734

72. Ghaedi, M, Zamani Amirabad, S, Marahel, F, Nasiri Kokhdan, S,

Cadmium selenide nanoparticles loaded on activated carbon and its

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

164

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 83, pp. 46-51.

73. Ghaedi, M, Shokrollahi, A, Tavallali,H, Shojaiepoor,F, Keshavarz,B, Hossainian,H, Soylak,M & Purkait, Activated carbon and multiwalled carbon nanotubes as efficient adsorbents for removal of

Toxicology Environmental Chemistry, vol.93,pp.438-449.

74. Gh

Environmental Science and Technology, vol.5, pp. 495-500.

75. Gilaki, M 2010, Biosynthesis of Silver nanoparticles using plant Journal of Biological Sciences, vol. 10, no. 5, pp. 465-467 .

76. Gopinath, KP, Murugesan, S, Abraham, J & Muthukumar, K 2009, Bacillus sp. mutant for improved biodegradation of Congo red:

pp. 6295-6300.

77. Goudarzi, A, Motedayen Aval, G, Park, SS, Choi, MC, Sahraei, R, -temperature growth

of nanocrystalline Mn-doped ZnS thin films prepared by chemical bath

pp.2375-2385.

78. Gouvea, CAK, Wypych, F, Moraes, SG, Duran, N & Zamora,PP 2000, Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag- Chemosphere, vol. 40, pp.427-432.

79. Govindaraju, K, Kiruthiga, V, Ganesh Kumar, V & Singaravelu, G Extracellular synthesis of silver nanoparticles by a marine alga,

Sargassum wightii Grevilli and their Journal of. Nanoscience & Nanotechnology, vol. 9, pp. 5497-5501.

80. Grieken, RV, Aguado, J, lopez-Munoz, M & Marugan, J 2002, -controlled Silica-supported TiO2

Journal of photochemistry and photobiology A: Chemistry, vol. 148, pp. 315-322.

81. Grzechulska, J & Morawski, AW 2002, Photocatalytic decomposition of azo-Applied Catalysis B: Environment, vol. 36, pp. 45-51.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

165

82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for

Journal of Photochemistry and Photobiology A: Chemistry, vol.195, pp.47-53.

83. Nanostructured Materials, vol.9, pp.3.

84. Hameed, BH & El-mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2 , Journal of Hazardous Materials, vol.157 pp.344-351.

85. -

Journal of Hazardous Materials, vol.161, pp.753-759.

86. dye from aqueous solution by pamelo (Citrus grandis) peel in batch

vol.316, pp.78-84.

87. Hameed, BH, empty fruit bunch-based activated carbon for removal of 2,4,6-

Journal of Hazardous Materials, vol.164, pp.1316-1324.

88. Han, R, of rice husk for adsorption of Congo red from aqueous solution in

-2946.

89. degradation of malachite green by Aspergillus flavus and Alternaria

, African journal of Biotechnology, Vol. 8, pp. 1574-1576.

90. solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-Chemistry, vol.97, pp. 5457-5471.

91. Herrera, F, Lopez, A & Kiwi, J 2000, Photochemically activateddegradation of reactivedyes:statistical modelling ofthereactorperform ofPhotochemistry andPhotobiology A: Chemistry, vol.135, pp. 45-51.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

166

92. Herrmann, J, Disdier, J & Pichat, P Photoassisted platinum deposition on TiO2 Journal of Physical Chemistry, vol. 90, pp.6028-6034.

93. Herrmann,JM1999, Heterogeneousphotocatalysis:fundamentalsandapplications to the remCatalysis Today, vol.53, pp. 115-129.

94. Hoffmann, MR, Martin, ST,Choi, W &Bahnemann, DW1995, Environmental applications of semiconductor pho

Chemical Reviews, vol. 95, pp. 69-96.

95. the growth of a nitrogen fixing cyanobacterium Anabaena spBioresource Technology, vol.77, pp. 93-95.

96. Huang, CP, Juang, CP, Morehart, K & Allen, L 1990, ofcopper (II) from dilute aqueous solutions by Saccharromyces cerevisiae

97. nanoparticles utilizing marine sponge Acanthella elongates (Dendy,

639.

98. Inel,Y & Okte, A 1996, Photocatalytic degradation of malonic acid in aqueous suspensions of TiO2: an initial kinetic investigation of CO2phot Journal of Photochemistry and Photobiology, vol. 96, pp.175-180.

99. samples of genus Sargassum composition and potential uses. Food

International, vol.5, pp.101-144.

100. Iwata, T, Ishikawa, M, Ichino, R & Okido, M 2003, Reduction of Cr (VI) on TiO2 Journal of Surface and Coatings Technology, vol. 169, pp. 703-706.

101. Jain, PK, Huang, X, El Sayed, LH & some interesting Surface Plasmon Resonance- enhanced properties of

Plasmonics vol.2, pp.107- 118.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

167

102. Congo Red

pp. 942-948.

103. Ji-Chuan, X, Yan-Li, S, Ji-Er, H, Wang, B & Hu-Lin L 2004, Doping metal ions only onto the catalyst surface Journal of Molecular Catalysis A: Chemical, vol. 219, pp. 351-355.

104. Jing Yang, Haizan Bai, Qing Jiang & Jianshe Lian 2008, -light photocatalysis in nitrogen carbon-doped TiO2 films obtained by heating TiO2 gel film in an ionized N2 Journal of Thin Solid Films, vol. 516, pp. 1736.

105. -level airborne 2-propanol and trichloroethylene over titania irradiated with bulb-type light- Materials,vol.6, pp.265-278.

106. hazardous organic and inorganic compounds through aqueous-phase

Indian Engineering Chemical Research,vol.43, pp.7683-7696.

107. Kadirvelu, K, Kavipriya, M, Karthika, C, Radhika, M, Vennilamani, N

activated carbon preparation and application for the removal of dyes

vol.87, pp.129-132.

108. Kalishwaralal, K, Deepak, V, Ramkumarpandian, S & Nellaiah Sangiliyandi, Gnanoparticles by the culture supernatant of Bacillus licheniformisMaterials letters, vol.62, pp.4411-4413.

109. Kamat,PV1993, Photochemistryonnon-reactiveandreactive(semi-mical Reviews, vol.93, pp. 267-300.

110.

Bioresources Technology, vol.98, pp.14-21.

111. Kavitha, R, Meghani, S & Jayaram, V 2007, by combustion flame spray pyrolysis technique and its characterization

Journal of Materials Science and Engineering B, vol. 139, pp. 134-140.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

168

112. Khadhraoui, M, Trabelsi, H, Ksibi, M, Bouguerra, S & Elleuch, B

Hazardous Materials, vol.161, pp. 974-981.

113. Khan, SUM, Al- ient photochemical water splitting by a chemically modified n-TiO2Science, vol.297, pp. 2243-2245.

114. immobilized TiO2 , Environmental Technology, vol. 30, no. 11, pp. 1155-1168.

115. Kiriakidou, F Kondarides, DI & Verykios XE 1999, The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo- Catalysis Today, vol. 54, pp.119-130.

116. Kismir, Y & Araguz, AZ 2011, Adsorption characteristics of the Chemical

Engineering Journal, vol. 172, pp. 199-206.

117. Klaus, T, Joerger, R, Olsson, E & Granqvist, CG 1999 - Based Crystalline Nanoparticles, Microbial Proceedings of National Academy of Sciences, USA, vol. 96, pp.13611-13614.

118. Kondo, M & Jardim, W 1991, Photodegradation of Chloroform and Urea Using Ag- Water Research,vol.25, pp.823-827.

119. Konstantinou, IK & Albanis, TA 2004 2-assisted Photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic

, pp. 1-14.

120. Kormann, C, Bahnemann, DW& Hoffmann, MR 1988, Preparation and characterization of quantum size titanium dioxide (TiO2 Journal of Physical Chemistry, vol.92, pp. 5196-5201.

121. blood- Pharmaceutical Research, vol. 20, pp. 1772.

122. Krishnaraj, EG, Jagan, S, Rajasekar, P, Selvakumar, PT, Kalaichelvan, N & Mohan 2010, Acalypha indica leaf extracts and its Antibacterial activity against Waterborne patho Colloids Surface B: Biointerfaces, vol.76, pp.50-56.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

169

123. Dual Effect of Photocatalysis and Adsorption in Degradation of Azorubine Dye Using Nano-sized TiO2International Journal of Chemical Technology Research, vol.2, no.3, pp.1537-1543

124. Kuroda, M, Yuzawa, M, Sakakibara, Y & Okamura, M 1988,

vol22, pp.653-656.

125. undamental properties of s American Chemical Society, vol.38, pp.2221-2295.

126. phenol in water solution by TiO2 photocatalysis in a helicaGlobal NEST Journal, vol. 10, pp. 404- 418.

127. Lee, YH, Matthews, RD & Pavlostathis, SG 2005, AnaerobicBiodecolorization of Textile Reactive Anthraquinone and

Phthalocyanine Dyebaths under Hypersaline Water Science Technology, vol.52, pp.377-383.

128. Legrini, O, Oliveros, E & Braun, AM 1993, Photochemical Processes Chemical Reviews, vol. 93, pp. 671.

129. production and dye decolorization by Trametes trogii: application of the Plackett Burman experimental design to evaluate nutritional

-1387.

130. Bioresource Technology; Evaluation of Argentinean white rot fungi for their ability to produce lignin-vol. 94, pp. 169-176.

131. pp.589-590.

132. Limbach, LK, Wick, P, Manser, P, Grass, RN, Bruinink, & Stark, WJ Environmental Science

Technology, vol. 41, pp. 4158.

133. Linsebigler, L, Lu, GQ & Yates, JT 1995, Photocatalysis on TiO2 surfaces Review, vol.95, pp.735-758.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

170

134. Transition metal ions -114.

135. Liu, Y, Liu, C, Rong & Zhang, Z 2003, Characteristics of the silver-doped TiO2 Applied Surface Science, vol. 220, pp.7-11.

136. LiuWei, Chen Shifu, ZhaoWei & Zhang Sujuan 2009, Titanium dioxide Mediated Photocatalytic Degradation of Methamidophos in Aqueous phase Journal of Hazardous Materials vol.164, pp.154-160.

137. Lovley, DR, Stolz, JF & magnetite by a dissimilatory iron- , vol. 330, pp. 252-254.

138. Chemical Reviews, vol. 60, pp. 267-312.

139. Madhavan, J, Maruthamuthu, P, Murugesan, S & Anandan, S 2008, -assisted degradation of acid red 88 in

presence of metal-Environmental, vol. 83, pp. 8-14.

140. Mall, ID, Srivastava, VC, Agarwaof Congo red from aqueous solution by bagasse fly ash and activated

Chemosphere, vol.61, pp. 492-501.

141. Matos, J, Laine, J & Herrmann, JM 1999, Different origins with Titania in the Photocatalytic Purification of

Carbon vol.37, pp.1870-1877.

142. Photocatalysis in water purification: Possibilities, Ollis DF & Al-Ekabi H (Eds).

, Elsevier Science Publishers, New York, pp. 121-139.

143. Matthews, RW 1988, Kineticsofphotocatalyticoxidation of organic solutes over ournal of Catalysis, vol. 111, pp.264-272.

144. McHugh, DJ 2003, Technical Paper 441, Rome: Food and Agricultural Organisation of the United Nations, no.441, pp.105.

145. photocatalytic degradation in a TiO2 slurry system: Distinguishing

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

171

Engineering Chemistry Research, vol. 42, pp. 2273-2281.

146. Milligan Aj & Morel Fmm 2002, A proton buffering role for silica in Science, vol.297, pp.1848-1850.

147. , Journal of Photochemistry and Photobiology A: Chemistry, vol.108, pp.1-35.

148. sensitized by TiO2 chemistry and Photobiology A: Chemistry, vol. 127, pp. 123-134.

149. Mirkhani, V, Tangestaninejad, S, Moghadam, M, Habibi, MH & Rostami-Vartooni., A 2009, Photocatalytic Degradation of Azo Dyes Catalyzed by Ag Doped TiO2 Journal ofIranian Chemical Society, vol.3, pp.578-587.

150. and mineralization of C.I. Acid Yellow 23 by Fenton and photo-Fenton

-310.

151. Mohanty, K, Jha, M, Meikap, BC & characterization of activated carbons from terminalia arjuna nut with

Indian EngineeringChemical Research, vol.44, no.11, pp.4128-4138.

152. Mondal, S, Roy, N, Laskar, RA, Sk, I, Basu, S & Mandal, D 2011,

nanoparticles using aqueous extract of Mahogany (Swietenia mahogani JACQ) leaves Colloids Surfaces B Biointerfaces, vol.82, No.2, pp.497-504.

153. Moonsiri, M, Rangsunvigit, P, Chavadej, S & Gulari, E 2004, of Pt and Ag on the Photocatalytic degradation of 4-Chlorophenoland its by- Chemical Engineering Journal, vol. 97, pp. 241-248.

154. Moore, MN cological risks for International,

vol.32, no.8, pp. 967-976.

155. Mukherjee, P, Ahmad, A, Manda, ID, Senapati, S, Sainkar, SR, Khan, MI, Parishcha, R, Ajaykumar, PV, Alam, M, Kumar, R & Sastry, M

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

172

2001, us-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to

Nano Letters, vol.1, no.10, pp.515-519.

156. Munoz, J, Rieradevall, F, Torrades, J, Peral & Domenech, X 2005,

Energy, vol. 79, pp. 369.

157. characterization of monodisperse nanocrystals and close-packed nanocrystal assemblpp, 545.

158. -Ag particles doped TiO2 for efficient photodegradation of Direct azo

-132.

159. Nair, T & Pradeep 2002, of Submicron Crystallites Assisted by Lactobacillus Crystal Growth Design, vol.2, pp. 293.

160. Nakata, K & Fujishima, A 2012 2 photocatalysis: design and Journal of Photochemical Photobioogy, vol.13,

pp. 169-189.

161.

Waste Management, vol.14, pp.643-648.

162. Namasivayam, C, Muniasamy, N, Gayatri, K, Rani, M &Ranganathan,

-43.

163. mosphere, vol.34,

pp.401-417.

164. water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste , vol. 54, no.1, pp.47-58.

165. Neeta, L, Ramakrishnan, R, Li, B, Subramanian, S, Barhate, RS, Liu, Y & Seeram, R 2007,

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

173

functionality used as Filters: Protection against Bacterial Biotechnology & Bioengineering, vol.97,

pp.1357-1365.

166. Neppolian, B, Sakthivel, S, Banumathi, A, Palanichamy, M & Murugesan, V 2001, ZnO-photoassisted Degradation of Textile dye

Indian Journal of Chemical Technology, vol.8, pp.36-40.

167. Neppolian, S, Sakthivel, M, Palanichamy, B, Arabindoo, & Murugesan 1999, Environmental Science and Technology, Bulletin of Catalysis Society of India, vol. 81, pp. 164-171.

168. Microbial process for the decolourization oftextile effluent containing azo, diazo

Process Biochemistry,vol.31, pp.435-442.

169. using Pleurotus sajor caju of nanomaterials and biostructures, vol.4, pp. 623-629.

170. Noor-ul-Amin, K, Ali & Shah, Mbaggase ash incementitious system and its impact on strength

Journal of the Chemical Society of Pakistan, vol.31, pp.357.

171. Oberdorster, G, Sharp, Z, Atudorei, V, Elder, A, Gelein, R & Kreyling, ,

Inhalation Toxicology. vol. 16, pp. 437-440.

172. Ohko, Y, Ando, I, Niwa, C, Tatsuma, T, Yamamura, T, Nakashima, T, Kubota, Y & Fujishima, A 2001, 'Degradation of is phenol A in water by TiO2 photo catalyst', Environmental Science Technology, vol.35, pp.2365 2368.

173. Okamoto, K, Yamamoto, Y, Tanaka, H & Itaya, A 1985, Heterogenous Photocatalytic Decomposition of Phenol over Anatase TiO2 Bulletin of the Chemical Society of Japan, vol.58, pp.2023-2028.

174. Okamoto, K, Yamamoto, Y, Tanaka, H Hanaka M & Itaya, A 1985, 2

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

174

Bulletin of the Chemical Society of Japan, vol.58, pp.2015-2022.

175. Ollis, DF & Al-

pp.121 139.

176. Ollis,DF, Pelizzetti, E &Serpone, N 1989, Heterogeneous photocatalysisintheenvironment: Application towaterpurification in photocatalysis:Fundamentalsand WileyInterscience, NewYork, pp. 603-637.

177. Ollis,DF, Pelizzetti, E &Serpone, N 1991, Destruction ofwater , Environmental Science and Technology, vol.25, pp. 1523-1529.

178. Oremland, RS, Herbel, MJ, Blum, JS, Langley, S, Beveridge, TJ,

nanospheres producedby se- pp. 52-60.

179. Pal, S, Tak, YK, Joardar, J, Kim, W, Lee, JE Han, MS & Song, JM

from hydrosol: antibacterial mechanism under prolonged incubation Nanoscience and Nanotechnology, vol.9,

pp. 2092-2103.

180. decolourisation by the fungus Pleurotus ostreatusand its oxidative

, vol. 36, pp. 17-27.

181. Pandurangan, A, Kamala, P, Uma, S, Palanichamy, M & Murugesan, Degradation of basic yellow auramine O-A textile dye by

semi mical Technology, vol. 8, no.6, pp. 496-499.

182. Patakfalvi, R & Dekany, I 2010, Preparation of silver nanoparticles in Colloid & Polymer Science, vol. 280,

no. 5,pp. 461-470.

183. Pavan, FA, Mazzocato, AC & methylene blue dye from aqueous solution by adsorption using yellow

no. 8, pp. 3162-3165.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

175

184. Deposition of thin TiO2 layers on platinum by means of cyclic voltammetry of

Electrochemical Acta-Journal, vol. 54, pp. 4045-4055.

185. Periro, M, Vigil, A, Peral, E & Domingo, C. 2002, Titanium (IV) oxide thin films obtained by a two-step soft- Journal of Thin solid films,vol. 411, pp. 185-191.

186. Perry, NB, Blunt, JW & Munro, MH A cytotoxic and antifungal 1, 4-naphthoquinone and related compounds from a New Zealand brown algae.. , Journal ofNatural Products, vol. 54, no. 4, pp. 978-985.

187. Journal of

Chemical Technology and Biotechnology, vol. 74, pp. 349-357.

188. Pu The application of bacterial S-layer in Trends in Biotechnology, vol.17, pp.8-12.

189. Rauf MA &

Chemical Engineering Journal, vol.151, pp. 10-18.

190. Rengifo-Herrera, JA, Mielczarski, E, Mielczarski, J & Castillo, NC 2008, Escherichia coli inactivation by N, S co-doped commercial TiO2 Journal of Applied Catalysis B: Environmental, vol. 84, pp. 448-456.

191. Rodriguez-Sanchez, L, Blanco, MC & Lopez-Quintela, MA 2000, Journal of Physical

Chemistry, vol.104, pp. 9683-9688.

192. Saad, SA, Daud, SS, Kasim, FH & Saleh, MN 2007, Metylene blue removal from simulated wastewater by adsorption using treated oil

Journal of Environmental engineering and Ecological science, vol.2, pp.293-296.

193. Sadowski, Z, Maliszewska, IH, Grochowalska, B, Polowczyk, I & ,

-Poland, vol. 26, no. 2. pp. 419-424.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

176

194. Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2 Dyes Pigments, vol. 66, pp. 189-196.

195. Sakthivel, S, Neppolian, B, Palanichamy, M, Arabindoo, B & Murugesan, V 1999,

Indian Journal of Chemical Technology, vol.6, pp.161-165.

196. photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, AuandPd deposited onTiO2 Water Research, vol. 38,pp. 3001-3008.

197. Samari Jahromi, H, Taghdisian , H, Afshar, S & Tasharrofi, S 2009, Effects of pH and polyethylene glycol on surface morphology of

TiO2 Journal Surface & Coatings Technology, vol. 203, pp. 1991-1996.

198. San, N, Hatipoglu, A, Kocturk, G & Cinar, Z 2001, primary intermediates and photodegradation kinetics of 3-aminiphenol in aqueous TiO2 suspensions. Journal of Photochemistry and

-232.

199. Sanchez Martin, J, Gonzatez Velasco, M, Beltran Heredia, J, Gragera

adsorbent in removing cationic dye (Methylene blue) from aqueous

Materials, vol.174, no.1-3, pp.9-16.

200. Green 25 and CI Acid Red 88 in aqueous suspensions of titanium

201. Sastry, M, Ahmad, A, Khan, MI & Kumar, R 2004, Microbial nanoparticle production In: Niemeyer C. M & Mirkin, C. A. (eds) Nanobiotechnology, Wiley-VCH, Weinheim, Germany, pp. 126-135.

202. Changes in the Optical Properties of Carboxylic Acid Derivatized

-228.

203. ent changes in the optical properties of carboxylic acid derivatized silver

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

177

Colloids andSurfaces A, Physicochemical and Engineering Aspects, vol.127, pp 221.

204. Sastry, M, Patil, V & Sainkar, SR 1998, Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in

B, vol.102, pp.1404-1410.

205. Sauer, T, Cesconeto Neto G, José HJ & Moreira RFPM 2002, ion of reactive dyes in a TiO2 slurry

vol. 149, pp. 147-154.

206. Savic, R, Luo, L, Eisenberg, A & Maysinger, D 2003, Micellar Science

300 (5619), pp. 615.

207. -sensitized photodegradation of 4-Photochemical Photobiology A: Chemistry, vol. 58, pp. 99.

208. Schrank,SG,José, HJ &Moreira, RFPM2002, Simultaneousphoto-catalyticCr (VI)reductionanddyeoxidationinaTiO2slurryreac Journal ofPhotochemistry and Photobiology A, vol. 147, pp.71-76.

209. Selvi, K., Pattabhi, S & Kadirvelu, K 2001, Removal of Cr (VI) from aqueous solution by adsorption onto activBioresource Technology, vol.80, pp.87-89.

210. Serpone, N, Borgarello, E, Barbeni, M, Pelizzetti, E, Pichat, P, Photochemical reduction of gold

(III) on semiconductor dispersions of TiO2 in the presence of cyanide

Journal of Photochemistry Photobiology, vol. A36, pp. 373-388.

211. Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem ( Journal of ColloidInterface Science, vol. 275, pp. 496-502.

212. Shi, ZM & Ji, GJ 2008, A method to improve mechanical properties of glass plates by surface-coating Titania nanofilms with sol-gel technique Journal of Surface & Coatings Technology, vol. 202, pp. 1350.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

178

213. photochemical degradation of mono-, di- and tri-azo dyes in aqueous

,Journal of Photochemistry Photobiology A: Chemistry. vol. 181, pp. 314-324.

214. degradation of azo dye Metanil Yellow: Optimization and kinetic

, Applied Catalysis B: Environmental, vol. 77, pp. 1-11.

215. , Journal of Chemistry and Food

science, vol.58, pp.531.

216. Smit, AJ 2004, -262.

217. So, CM, Cheng Degradation of azo dye Procion Red MX- Chemosphere, vol.46, pp.905-912.

218. -Ag particles doped TiO2 for efficient photodegradation of Direct azo

Journal of Molecular Catalysis, vol. A258, pp. 124-132.

219. Sobczynski, A, Duczmal, L & Zmudzinski, W destruction by photocatalysis onTiO2: an attempt to solve the reaction

pp. 225-230.

220. Sokmen, M, Allen, DW, Akkas, F, Kartal, N & Acar, F 2001, ing Ag-

Water Air Soil Pollution, vol.132, pp. 153-163.

221. Sondi, B & Salopek-Sondi J 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-

,Colloid Interface Science, vol.275, pp. 177-182.

222. Song, JY & Kim, BS 2008, Biological synthesis of bimetallic Au/Ag Korean

Journal of Chemical Engineering. vol. 25,no. 4, pp. 808-811.

223. Soil Physical Chemistry , (CRC Press, Boca Raton, Florida), pp.83-145.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

179

224. Stock, N, Peller, J, Vinodgopal, K & Kamat, PV 2000, Combinative Sonolysis and Photocatalysis for Textile Dye

Environmental Science & Technology, vol. 34, pp. 1747-1750.

225. species on TiO2 for the photocatalytic degradation of dyes and dye

Photochemistry and Photobiology A: Chemistry, vol.154, pp.189-193.

226. Subramanian, V, Wolf, E &Kamat, 2001, -metal Composite Nanostructures to what extent do Metal Nanoparticles improve the Photocatalytic activity of TiO2 Journal of Physical Chemistry, vol.B105, pp.11439-11446.

227. Suffet, IH & McGurie, MJ -2.

228. -carrier property of albumin microspheres in chemotherapy.I. Tissue distribution of microsphere-entrapped 5-Chemicalandpharmaceuticalbulletin, vol.25, pp. 3433-3434.

229. Sun, J, Wang, X, Sun, J, Sun, R, Sun, S & Qiao, L 2006, -sized

Sn(IV)/TiO2 Journal of Molecular Catalysis. A: Chemicals, vol. 260, pp. 241-246.

230. Nanoparticles Via Rapid Expansion of Water in Carbon Dioxide Microemulsion into Reductant 7, pp.5707-5710.

231. Taleb, C, Petit & Pileni, MP 1998, -Journal of

Physical Chemistry B vol. 102, no. 12, pp. 2214-2220.

232. f basic dye on high-surface area activated carbon prepared from coconut husk:

Materials, vol. 154, pp. 337-346.

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

180

233. preparation conditions for activated carbons from coconut husk using

vol.137, pp.462-470.

234. Tezcanli-

Sonochemistry, vol.10, pp.235-240.

235.

Hazardous Materials, vol.138, pp.409-415.

236. Tripathi, RM, Saxena, A, Gupta, N, Kapoor, H & Singh, RP 2010, E.coli MTCC 1302, S.typhimurium MTCC 1254, B.subtilis MTCC 1133 and P.aeruginosa MTCC 2295 Digest Journal of Nanomaterials and Biostructures,vol. 5, no. 2, pp. 323-330.

237. Tryba, B. Morawski, AW 2-

Applied Catalysis B vol.41, pp.427-433.

238. Venkata Mohan, S, Chandrasekhar Rao, N & Karthikeyan, J 2002 phase onto coal

Materials, vol.90, pp.189-204.

239. Vighneshwaan, N, Kathe, AA, Vardadarajan, PV, Bachane, RP & Balasubramanian, RH 2007, Silver-protein (core-shell) nanoparticle productio Longmuir, vol. 23, pp. 7113-7117.

240. Vigneshwaran, N, Ashtaputre, NM, Varadarajan, PV, Nachane, R, Paralikar, Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus ,Material Letter, vol.61, pp. 1413-1418.

241. Wahi, RK, Yu, WW, Liu, Y, Mejia, ML, Falkner, JC, Nolte, W &

nanosized TiO2vol.242, pp.48-56.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

181

242. Wallace, T.H

thesis of Virginia Polytechnic Institute and State University, USA.

243. Wang,GS, Hsieh, ST & Hong, CS 2000, Destruction of humic acid in water by UV light-catalysed Water Resources, vol.34, pp. 3882-3887.

244. Wang, L, Chang, L, Zhao, B, Yuan, Z, Shao, G & Zheng, W 2008,

photocatalytic and photoluminescent properties of ZnO nanostructures Inorganic Chemistry, vol. 47, no. 5,

pp. 1443-1452.

245. -phase system for the

Letter, vol.62, pp.4366-4368.

246. Wan-Kuen Jo & Jong-Tae Kim 2009, Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds Journal of Hazardous Materials, vol. 164, pp.360-366.

247. of Santi. Engineering Division ASCE, vol.89,

pp.31-59.

248. Wei, L, Shifu, C, Wei, Z & Sujuan, Z 2009, Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous

Journal of Hazardous Materials, vol. 164, pp. 154-160.

249. -containing textile effluent by the agaric white-rot fungus Clitocybula

, Biotechnology Letters, vol. 24, pp. 989-993.

250. -induced silver nano- particles on titanium oxide for photocatalytic degradation

vol. 10, pp. 4707-4718.

251. Willner, R, Baron, B & Willner 2006, Growing Metal Nanoparticles Advanced Materials, vol.18, pp. 1109.

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

182

252. influence of selected parameters on the photocatalytic degradation of azo-dyes in the presence of TiO2 Chemical Engineering Journal, vol.145, pp.242 248.

253.

Chemosphere, vol. 57, pp. 601-608.

254. Wu, T, Liu, G, Zhao Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions Journal of Physical Chemistry, vol. B102, pp. 5845-5851.

255. Xi, T, Kovochich, M, Brant, J, Hotze, M, Sempf, J & Oberley, T 2006, Comparison of the abilities of ambient and manufactured

nanoparticles to induce cellular toxicity according to an oxidative , Nano Letter, vol. 6, pp. 1794-1807.

256. Xiao, Q & Ouyang, L 2009, Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of

Chemical Engineering Journal, vol. 148, pp. 248-253.

257. Xiwang Z, Jia Hong Pan & Alan, J. Du 2009, of TiO2 Journal of Materials Research Bulletin, vol. 44, pp. 1070.

258. Xu, G, Tazawa, M, Jin, P, Nakao, S & Yoshimura, K 2003,

pp. 3811-3813.

259. Xu, XH, Zhao, -chlorophenol oxidation kinetic by photo- Journal of Environmental Sciences, vol. 15, no. 4, pp. 475-481.

260. gel derived hydroxyapatite/titania biocoatings on Letters, vol. 60, no. 13-14, pp. 1575-1578.

261. Yali, Li & Ishingaki, T 2002, Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt Journal of Crystal Growth, vol.242, pp. 511-516.

Page 27: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/48966/11/11_reference.p… · 165 82. Guosheng, Wu & Aicheng Chen 2008, Direct growth of F-doped TiO 2 particulate

183

262. Yamazaki, S, Matsunaga, degradation of trichloroethylene in water using TiO2 Research, vol. 35, pp. 1022-1028.

263. using H2O2 Textile chemist colourist,vol.30, pp. 27-35.

264. Yang,TCK, Wang, SF, Tsai, SHY &Lin, SY2001, Intrinsic photo-catalytic oxidationof the dyeadsorbedonTiO2photocatalystsbydiffusereflectanceinfrared fourier transfor -301.

265. Ying Yang, Xin-jun Li, Jun-tao Chen, Liang-yan & Wang 2004, Effect of doping mode on the photocatalytic activities of Mo/TiO2

Journal of Photochemistry and Photobiology A: Chemistry vol.163, pp.517-522.

266. Zhang, H, Duan L & Zhang, D2006, Decolorization of methyl orange by ozonation in combination with ultrasonic irradiaHazardous Materials, vol.138, no. 2, pp. 53-59.

267. antimicrobial behavior of suspension of ZnO nanoparticles (ZnO

-489.

268. Zhao, H, Xu, SH, Zhongphoto-catalytic degradation of pyridine in TiO2 Catalysis Today, vol. 93-95, pp.857-861.

269. Zhiyong, Y, Keppner, H, Laub, D, Mielczarski, E, Mielczarski, J, Kiwi-discoloration of Methyl Orange on innovative parylene TiO2 flexible

Environment, vol.79, pp. 63-71.

270. Carbon,

vol. 39, pp. 877-886.

271.

Weinheim, VHC, Kondo, M & Jardim, W water Resources, vol. 25, pp. 823.