40
SI-T/Müller-Lohmeier Rapid Prototyping und Direct Manufacturing: 2 Facetten der Generativen Technologien aus Industriesicht Klaus Müller-Lohmeier Festo AG&Co. KG Esslingen, Deutschland Symposium „Virtuelle Produktentwicklung“, Rapperswil (CH), 19. April 2012 1

Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Rapid Prototyping und Direct Manufacturing:

2 Facetten der Generativen Technologien aus Industriesicht

Klaus Müller-Lohmeier

Festo AG&Co. KG

Esslingen, Deutschland

Symposium „Virtuelle Produktentwicklung“, Rapperswil (CH), 19. April 2012

1

Page 2: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Vorbemerkung

2

Page 3: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Think global, act local

„ Automation and Didactic „ Factory and Process Automation „ 300,000 customers „ 30,000 catalogue products

3

People: our no. 1 success factor

„ Turnover (Group): EUR 2,1 billion (2011) „ 15,500 employees in 176 countries „ 2,900 patents world-wide „ R&D budget 8,5 % of sales

Page 4: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Begreifen – durch begreifen !

4

Oft muss man Dinge einfach

mal anfassen, fühlen, anschauen,

sich veranschaulichen …

bevor man weitere Schritte unternimmt

(Bild-Quelle: Sonntag Aktuell, 31.01.2010)

Page 5: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Hier kommt das „Additive Manufacturing“ ins Spiel !

5

Behauptung: Sie alle hier haben eigene praktische Erfahrungen mit dieser Technologie ! ? Top, die Wette gilt !

Wer von Ihnen hat noch nicht mit Lego gebaut ?

Page 6: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

What is Additive Manufacturing ?

6

How generative or layerwise technologies work

Layerwise material deposition following the specific slice information

3D-CAD model as necessary origin

Postprocessing with (virtual) slicing

The technological path (Bild- + Video-Quellen: Lego; EOS

Matthes: Grundlagen der Fertigungstechnik)

LS(1‘)

Page 7: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

The right way: Additive Manufacturing

„ Definition according ASTM F2792-10 (F42), 2009:

"process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies”

rapid prototyping, rapid manufacturing, additive fabrication, additive processes, additive techniques, additive layer manufacturing, layer manufacturing, freeform fabrication

• Synonyms:

• similiar definition: VDI 3404:2009-12

Page 8: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Nomenclature of generative techniques

„ Rapid Tooling (RT) / Direct Tooling:

layer-wise, non-cutting (non-eroding) fabrication of

injection molding or diecasting tools

„ Rapid Manufacturing (RM) / Direct Manufacturing (DM) :

toolless manufacturing of (small-lot) series of end-use parts

in layers direct from CAD data

VDI: Rapid Manufacturing (RM) Generative Herstellung von Endprodukten (häufig auch als Serienteile bezeichnet). Eigenschaften: Weist alle Merkmale des Endprodukts auf oder wird vom Kunden für den „Serieneinsatz“ akzeptiert. Material ist identisch mit dem des Endprodukts.

„ Rapid Prototyping (RP):

toolless fabrication of (single) prototype parts in layers

direct from CAD data

VDI: Rapid Prototyping (RP) Generative Herstellung von Bauteilen mit eingeschränkter Funktionalität (Prototypen, Versuchsteile). Eigenschaften: ausgewählte Merkmale, z.B. Geometrie, Haptik. Material kann, muss aber nicht Serienmaterial sein. Konstruktion kann, muss aber nicht fertigungsgerecht im Sinne der Serienfertigung sein.

Page 9: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Additive Manufacturing is part of the digital solution process !

9

CAD model -> slice model

(first) design / CAD

FEM simulation / virtual reality

assembly final AM parts

virtual part placement in

build envelope of AM machine

layerwise part build-up in AM machine

finishing of AM parts

reverse engineering

shipment

Page 10: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

In USA auf der "Autofact"-Messe erstmals Vorstellung einer Stereolithografie-Maschine durch die Fa. 3D-Systems (Hull, Patent US4575330, 1986)

1987

Vom „Spielzeug computerverliebter Ingenieure“…

Historisches

… zum „Standard“-Werkzeug moderner Produktentwicklung

Kumuliert wurden weltweit ca. 40.000 generative RP-Anlagen installiert (Quellen: Wohlers Report, 3D-Schilling, Objet)

Mitte 2011

Page 11: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Generative (or additive) techniques at Festo: history and status

„ practical own experience in RP techniques since 1995 (8 years after birth of the new technology)

„ using nearly all generative techniques available

„ network of in-house facilities (4x FDM, 3x SLS, 1x SLA, 2x SLM) -> Festo Fast Factory

„ in 2011 some 18.000 parts are realized within more than 1.100 orders

„ contact to well-known research instituts

„ involved in a couple of research projects

„ active member in several AM associations

Page 12: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Festo Fast Factory

Definition

Die Festo Fast Factory (FFF) bildet die technologische Basis für die

Umsetzung von virtuellen Lösungen in physisch-reale Körper.

Sowohl für Kunden als auch für Festo ergeben sich mit dieser effizienten

Prototypen-Herstellung in der individuellen Produktentwicklung enorme

Einsparungspotenziale, die das Time-to-market deutlich reduziert.

In beiden Fällen geht es um die schnelle und werkzeuglose physische Realisierung von Ideen/ Lösungsansätzen/-alternativen als Basis für weitere Schritte / Entscheidungsprozesse

Erst-Verfügbarkeit von neu entwickelten Einzelteilen, Baugruppen oder Lösungskonzepten in Stunden und Tagen anstatt Monaten oder Quartalen

Page 13: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Mission 1: Support Festo customers

Market requirements

Realisation of customer specific solutions within shortest possible time

Partnership

Engineering together with customers by continous interaction (from 3D-models over simulation to rapid prototypes)

Speed is a competitive advantage !

13

Fast realisation of adequate customer solutions

Page 14: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Mission 2: Accelerate Festo R&D

Decrease time to market for catalog products

Especially tool based parts show often long delivery times

Usage of alternative manufacturing technologies allows to cut lead times for specific parts

Fast availabilty of functional prototypes yields to earlier realiabilty in the design process

R&D advantage through speed improvement

in technical conversion of a solution !

14

Fast supply of design and functional prototypes for R&D

Page 15: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Short run production of customer specific parts

15

Customized holding fixtures for gripper elements (FDM, ABS)

Customer orientation

Continous request from sales department / market

On-demand toolless production of customer specific polymer grippers

Average time for completion of small series < 1 day; average delivery time < 3 days

Page 16: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Customer problem solution

Customer specific cylinder (SLS, PA 12)

16

Short-time delivery (< 3 days) of alternative cylinder body geometries

External: quick delivery to customer for implementation studies

Internal: fast available prototypes for internal pressure creep test yielding for safety in providing alternative solutions (more than 3 months at 10 bar and 80°C)

Quick customer support

Page 17: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Customer specific development

Pilot valve for valve control unit

17

Fast supply of customer specific concept models

concept model for customer development discussion

toolless production of a series of 5 units within 2 days

avoiding tool costs in case of wrong development direction

Page 18: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Direct / Rapid Manufacturing

Fastener for flexible tube (Tripod project) Coil body for Didactic project

18

Economic short run production of accessories and basic parts for new concepts

typical annual demand: 300 / 800 pieces

toolless production by plastic laser sintering (SLS) within < 2 weeks

costs less than € 3 / piece

Page 19: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Serial production of polymer parts

Snap-fit for serial supply of a major customer (SLS, PA 12)

19

Additive fabrication of 12.000 snap-fit (alternative technology !)

Complete process chain (with 4 build chamber fillings) realized within 37 hours

Plastic injection molding vs. toolless additive fabrication:

time 2 months vs. 2 weeks, costs 1 : 0,66

Top speed for customer satisfaction

Page 20: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Laser melted steel parts

Drive part prototyping for R&D

20

25% reduction of development time

Stop parts for a new generation of rodless drives with steel powder based SLM

Stainless steel with density of 99,5%, part size up to 45 x 25 x 20 mm³ (1,8“ x 1“ x 0,8“)

Complete process chain for a set of 6 pieces : 1 week (compared to serial MIM process > 4 months)

Early reliabilty in product concept: endurance test with 30 million load cycles

Left stop

Right stop

Page 21: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: New product development

Piston for redesign of rodless pneumatic cylinder

21

Reduction of development time and costs

toolless production of a series of 3 units by metal laser melting (SLM) within 3 days

early reliabilty in product concept through immediate testing

avoiding tool costs in case of wrong development direction

Page 22: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: laser melted aluminium parts

Valve part prototyping for R&D

22

Valve housing: design study with SLS parts, functional parts with SLM in aluminium

Aluminium parts (AlSi10Mg) with material density of 99,5% / part size up to 145 x 65 x 50 mm³

Complete process chain for 1 piece : 3 days (vs. 8 months by die casting)

But: costs of generative Al part 270 times higher as die casted serial part

High speed support for product development

Page 23: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Paradigm shift in design and manufacturing

23

Design-driven

manufacturing

Manufacturing-

driven design

• Function integration

• Part number and assembly effort reduction

• New design solutions

Additive manufacturing eventually means the liberation of design from manufacturing

Page 24: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Biomechatronic footprint

Übertrag von der Natur

in die Industrieapplikation

Page 25: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Case study: Support of Bionic Learning Network

FinGripper 2009/ Handling Assistant 2010/ Lightweight Roboter 2010 / Robotino XT 2011

25

Physical realisation of new handling concepts

function integration

part number reduction

toolless part fabrication

less or without assembly

no alternative technology

2010 award winner RobotinoXT (2‘)

BHA (2‘)

Page 26: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Adaptive Gripper: A universe of possibilities

26

The new gripper picks

autoadaptive and form-locking

and moves nearly every object

safe and gentle

Application: Picking and sorting of pepper

Application: Chicory

Application: Cookies

Fin Ray Effect® is a trademark of EvoLogics, Berlin

AG (1‘)

Page 27: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Heat exchanging device for customer specific test bench

Case study: laser melted aluminium part

27

Device with internal conformal cooling channels (Al powder-based SLM process)

Part size 244 x 208 x 59 mm³, net weight about 2,5 kg

Non-stop additive manufacturing time : 5 days (complete process chain: 14 days)

Cooling capacity about 8 KW

One of the biggest Al parts in the world done by additive manufacturing

Page 28: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Heat exchanging device for customer specific test bench

Case study: laser melted aluminium part

28

Page 29: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Typische AM-Baujobs

29

Virtuelle Platzierung von Bauteilen in Baukammern für den Kunststoff-Lasersinterprozess -> optimale Bauraumausnutzung -> werkzeuglose Herstellung geometrisch komplexer Bauteile in größerer Stückzahl

Page 30: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

„Fazit“

Wir haben das Tor zu der

„Welt von morgen“ durchschritten !

30

Sind wir wirklich schon mit dem

Rapid bzw. Direct Manufacturing

„im Paradies von morgen“

angekommen ?

Wintersemester 2010/2011 Sommersemester 2011

Page 31: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Rapid or Direct Manufacturing

Product operating or service time / customer expectations

Human implants 5-15 years ?

Automation components 6-10 years

Automotive 10-12 years

Aviation 30-40 years

There is a huge difference between Rapid Prototyping and Rapid / Direct Manufacturing !

-> Direct Manufacturing has to face demands from

long-term

„ product liability

„ end-user customer satisfaction and

„ profitability

Page 32: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Praxisorientierte Untersuchungen an SLS-Teilen

Wechselbiegung

32

Druckproben/Berstversuche

2,5 mm Wandstärke: 80 bar Berstdruck ≥ 5 Millionen Biegewechsel

Page 33: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Grundlagenorientierte Untersuchungen an SLS-Proben und -Material

Zugprüfung und

Wechselbiegung an

genormten Prüfkörpern

33

Analyse der Korngrößen-

verteilung und Form der

Pulverkörner

… ?

… ?

Basis für begleitende Qualtätssicherung beim Kunststofflasersintern

Restmonomergehalt

und DSC-Analyse

Page 34: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Bauteilversuche mit generativ erzeugten Ventilkörpern aus Aluminium

Pneumatischer Langzeit-Funktionstest

Prüfkörper: je 2 Ventile mit SLM-Gehäusen in Bauweise H/C bzw. C/H, mechanisch endbearbeitet

Testparameter: ∆p=6 bar, f=3 Hz, Raumtemperatur, Luft nicht geölt

Dauerlaufstart: 06.10.2008 Eingangsprüfung: Schaltdrücke: ok Leckage: ok

Quelle: Festo, BMBF-Förderprojekt AluGenerativ

34

Stand 04.01.2012: 240 Mio. Schaltspiele Zwischenprüfung: Schaltdrücke: ok Leckage: ok

Page 35: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Status quo: process (un)reliability !?

35

Different views of 3D X-ray inspection

Example 1:

Internal crack formation

due to residual stresses ?

Example 2:

Crack formation between support

and part or build plate due to

thermal stresses

Page 36: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Abhilfe „SimuSint“

-> Simulationssystem zur Berechnung von fertigungsbedingten Temperaturen, Verformungen und

Eigenspannungen von generativ gefertigten Metallteilen

-> Grundlage für Optimierung von Bauparametern (Bauraumorientierung, Stützenausprägung)

-> Reduzierung der Ausfallwahrscheinlichkeit eines Baujobs (Beispiel „5-Tage-Bauteil“ !)

-> Vermeidung von unnötiger Mehrarbeit und Zusatzkosten

-> somit nicht nur gesteigerte Bauteilqualität, sondern auch erhöhte Methodensicherheit durch

Vorab-Simulation des thermomechanischen Wechselspiels

Serien- und generativ erzeugte Ventilbauteile

Thermomechanische Simulation

Globalmodell Von Mises-Vergleichsspannung Verformungen

Quelle: BMBF-Verbundprojekt SimuSint, 2010

Page 37: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Kosten-Aspekte bei Kunststoffteilen (PA)

37

0,10 €

1,00 €

10,00 €

100,00 €

1.000,00 €

20

0

40

0

50

0

60

0

70

0

80

0

90

0

10

00

11

00

12

00

13

00

14

00

15

00

17

00

19

00

21

00

23

00

25

00

27

00

29

00

35

00

45

00

10

00

0

Stückzahl

Fangdüse

Kosten RP pro Teil

Kosten Spritzguss pro Teil

0,00 €

2,00 €

4,00 €

6,00 €

8,00 €

10,00 €

12,00 €

10

00

1

05

0

11

00

1

15

0

12

00

1

25

0

13

00

1

35

0

14

00

1

45

0

15

00

1

60

0

17

00

1

80

0

19

00

2

00

0

21

00

2

20

0

23

00

2

40

0

25

00

2

60

0

27

00

2

80

0

29

00

3

00

0

35

00

4

00

0

45

00

5

00

0

10

00

0

Stückzahl

Mitnehmer

Kosten RP pro Teil

Kosten Spritzguss pro Teil

Kosten Spanend pro Teil

RM-Benefit bei geometrisch komplexeren Teilen mittlerer Stückzahl (Funktionalität !)

Wintersemester 2010/2011 Sommersemester 2011

Page 38: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Kosten- und Zeit-Aspekte bei Metallteilen (Aluminium)

38

1,00 €

10,00 €

100,00 €

1.000,00 €

10.000,00 €

100.000,00 €

1

8

30

60

90

20

0

45

0

60

0

75

0

90

0

10

50

12

00

13

50

15

00

18

00

21

50

24

00

27

00

30

00

45

00

Stückzahl

Gehäuse

Kosten Rp pro Teil

Kosten Druckguss pro Teil

Zeiten:

Sehr lange generative

Fertigungszeiten pro Teil:

rund 24 h Bauzeit (Baurate !)

+ 5-7 h kostenintensive Nacharbeit

-> 250 Teile -> rund 1 Jahr !

Zum Vergleich

-> Werkzeugzeit: 8-10 Monate !

-> ähnliche Kosten bei deutlich

höherer Ausbringung

RM-Benefit nur bei kleinsten Stückzahlen („Einzelstückfertigung“) oder „kleinen“ Teilen

Wintersemester 2010/2011 Sommersemester 2011

Page 39: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Zusammenfassung

39

• Im Gegensatz zum Rapid Prototyping entspricht

der aktuelle Stand des Rapid Manufacturing

aber durchaus noch einer Baustelle !

RM

• Es gibt bereits viele beeindruckende Ergebnisse und Erfolge

im RP- und teilweise AM/RM-Bereich !

• Aber: Den Optimisten gehört die Zukunft !

Page 40: Rapid Prototyping und Direct Manufacturing: 2 Facetten der ... · "process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive

SI-T/Müller-Lohmeier

Festo Fast Factory … with high expertise and motivation !

… always in top gear ! 40

From idea to solution …

Herzlichen Dank für Ihr Interesse

und

Ihre Aufmerksamkeit