18
HAL Id: hal-00546919 https://hal.archives-ouvertes.fr/hal-00546919v1 Submitted on 15 Dec 2010 (v1), last revised 4 Mar 2014 (v2) HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Random sampling remap for compressible two-phase flows Mathieu Bachmann, Philippe Helluy, Jonathan Jung, Hélène Mathis, Siegfried Müller To cite this version: Mathieu Bachmann, Philippe Helluy, Jonathan Jung, Hélène Mathis, Siegfried Müller. Random sam- pling remap for compressible two-phase flows. Computers and Fluids, Elsevier, 2013, 86, pp.275-283. <10.1016/j.compfluid.2013.07.010>. <hal-00546919v1>

RANDOM SAMPLING REMAP FOR COMPRESSIBLE

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

HAL Id: hal-00546919https://hal.archives-ouvertes.fr/hal-00546919v1

Submitted on 15 Dec 2010 (v1), last revised 4 Mar 2014 (v2)

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Random sampling remap for compressible two-phaseflows

Mathieu Bachmann, Philippe Helluy, Jonathan Jung, Hélène Mathis, SiegfriedMüller

To cite this version:Mathieu Bachmann, Philippe Helluy, Jonathan Jung, Hélène Mathis, Siegfried Müller. Random sam-pling remap for compressible two-phase flows. Computers and Fluids, Elsevier, 2013, 86, pp.275-283.<10.1016/j.compfluid.2013.07.010>. <hal-00546919v1>

P P P

❲P ❲

P ❯❨ Ü

strt ♥ ts ♣♣r rss t ♣r♦♠ ♦ s♦♥ rt② sq ♦♠♣rss ♦s t♦t ♣rssr ♦st♦♥s t t sq ♥tr ❲ ♥tr♦ ♥ r♥♣r♦t♦♥ s♠ s ♦♥ r♥♦♠s♠♣♥ t♥q ♥tr♦ ② ♦♥s ♥ ♦t♥ ♥ ❬❪ ❲ ♦♠♣rt t♦ ♦st ♣♣r♦ ♥tr♦ ♥ ❬❲❪ ♥ ❬❪ s♣tt ♥♦♥♦♥srt tr ♦ t s♠s ♦sr t ♥♠r ♦♥r♥ t♦rs t r♥t s♦t♦♥ ♦r s♦♦♥tt ♥trt♦♥ tstss ♥② ♣♣② t ♥ s♠ t♦ t ♦♠♣tt♦♥ ♦ t ♦st♦♥s♦ s♣r r ♥s tr

♥tr♦t♦♥

♣rs♦♥ ♦ ♦♥srt ♦♥♦ s♠s ♣♣ t♦ t♦ ♦ss st tt s ♥ st ♥♦ ♦r ♠♦r t♥ t♥t② ②rs s ❬r ❪ ♥ ♥ rr♥s s ♣rs♦♥♠♣s ♣rtrt♦♥s ♦♥ t ♣rssr ♣r♦s tt r ♦t♥ t ♣rssr♦st♦♥s ♣♥♦♠♥♦♥

♦r t ♠♦♠♥t t s ♥♦t ♥ ♣♦ss t♦ s♥ s♠♣ ♦♥srt s♠tt ♣rsrs t ♦♥st♥t ♦t②♣rssr stts s ♣r♦♣rt② ♠♦♥tst♦ ♣rsr♥ t ♦♥tt s♦♥t♥ts ♥ ♦♥♠♥s♦♥ ♦s s♠s t♦ ♠♥t♦r② ♦r ♦t♥♥ r s♠s s ♠♥② t♦rs ♣r♦♣♦s♠♦ ♦♥♦ s♠s ♥ ♦rr t♦ ts ♣r♦♣rt② r♥ ♥ ❬r❪♣r♦♣♦ss t♦ s♦ t ♣rssr ♦t♦♥ qt♦♥ ♥st ♦ t ♠ss rt♦♥ ♦t♦♥ qt♦♥ t t ♥tr r ♥ r ❬ ❪ ♣r♦♣♦s t♦s♦ t ♠ss rt♦♥ qt♦♥ ♥ ♥♦♥♦♥srt ② ♥ ♦rr t♦ r♦r t♣rsrt♦♥ ♦ ♦♥st♥t ♦t②♣rssr stts ♣♣r♦ ♥ ♦♦rt♦rs ❬❪ ♥tr♦ t ♦st ♠t♦ t t ♥trt② ♣r♦♣♦s t♦ ♥tr♦ t♦ rt s ♥ ♦rr t♦ ♦♥strt s♠ tt♦♥② rqrs ♦♥ ♠♥♥ s♦r ♠t♦ s ♥ ♠♣r♦ ♥♠♥② ♦rs ❲ ♦♥♥trt r ♥ ♦♥ r♥t t ♦st t♦ ❬❲ ❪ t s ♥♦t ♣♦ss t♦ ♦♠♣r♥s sr②♦ ts t ♠♥② ♦tr tt♠♣ts ♥ ♣r♦♣♦s ♥♥ t t♦♠♦ t♦ ♠♦r ♥r ♦♥ ❬ ❲ ❪ s♥ r♥♥ ♣♣r♦t t ♥tr ❬❪ t

♦♠♠♦♥ tr ♦ t ♦♠♥t♦♥ ♣♣r♦s s tt t s♠s r♥r② ♥♦♥♦♥srt t s ♣♦ss t♦ ♦♥strt r② ①♦t s♠s tt r♦♥srt t t② r t♥ r② ♦♠♣t ♥ ♥ s ♦♥② ♦r ♠tst ss ❬❪ ♥tr qst♦♥ rss s tr ts s♠s

② ♦rs ♥ ♣rss ♥t ♦♠ ♦♥♦ s♠ ♦st ♠t♦ r♥♣r♦t♦♥ ♠♠ s♠ s ♦st♦♥s

P P P ❲P ❲

♦♥r ♦r ♥♦t t♦rs t r♥t s♦t♦♥ ♦ t ♥t t♦ ♠♦s ♥ ♥r② ♥♦♥♦♥srt s♠s ♦♥r t♦rs r♦♥ s♦t♦♥s t s ♣r② ♥♦♥♥r ♦r ❬❪ s st ♥♦t ②t ♥rst♦♦ s ♥♦♥♦♥srt ①❲♥r♦ t♦r② ♦s ♥♦t ①st ♦r r♥t ♦r ♦♥ ts s♣t s ❬❪ r t stt♦♥ s rtr st s t ♥♦♥♦♥srt♦♥♦ t s♠s s ♥r② ♦t t t ♦♥tt s♦♥t♥t② s ♥r②♥rt ❲♥ t s♦♥t♥♦s s s♦s ♥ ♦♥tts r s♣rt t s ts ♥♦t ♣r♦① t♦ ♦sr ♦♥r♥ t♦rs t ♦♦ s♦t♦♥ ♦r ♥ s ♦ ♦♠♣t ♥♦♥♥r ♥trt♦♥s ♥ t sr ♠① t s t t♦ ♥rst♥ ② t ♥♦♥♦♥srt ♣♣r♦ s t♦ ♦♥r♥ s♠s ♦r ♦♥♠♥s♦♥ ♣r♦♠s ♠①♥ ♦r ♥ r②s♠♣ stt♦♥s t t ♥t t♠ ♦ ♠♥♥ ♣r♦♠ ♦r ♥st♥ ♦r ♥ s♦ s s♥t ♦r ♠♦♥ ♥tr

r rst ♦t ♥ ts ♣♣r s t♦ ♣r♦ ♥ ♥♦♥♦♥srt s♠♦r s♦♥ t♦ ♦s r ♣♣r♦ s ♥ ♣tt♦♥ ♦ ♣r♦s ♦rs ♦♦t♥ ♦♥s ♥ ♦q ❬ ❪ ♦♥ r♥♣r♦t♦♥ s♠s s t♦ s ♣r♦t♦♥ st♣ s ♦♥ r♥♦♠ s♠♣♥ t♥qs r② s♠rt♦ t ♠♠ s♠ ♠t♦ ss ♠♠ s♠ ❬❪ ♠♣s ♥ ①t ♠♥♥ s♦r r s t r♥♦♠ s♠♣♥ s ♦♥② ♣r♦r♠ ♥ t♣r♦t♦♥ st♣ t s ♣♦ss t♦ r② ♦♥ ♣♣r♦①♠t ♠♥♥ s♦rs ♥ t r♥ st♣ ❲ s tt ♥ ♣rs♥ ♦ str♦♥ s♦s ♦r ♣♣r♦ s t♦ ♣t ♥ ♦rr t♦ ♦ ♦st♦♥s ♥ ♥♦♥♦♥r♥ s♠♣② ♣r♦♣♦s t♦♣r♦r♠ t r♥♦♠ s♠♣♥ strt② ♦♥② t t t♦ s ♥tr s ♦r ♦trs♠s ♦r r♥♦♠ s♠♣♥ ♣r♦t♦♥ s♠ s ♥♦t ♦♥srt t s rtt t ♠♠ s♠ s ♥♦t ♦♥srt t♦♦ t ♣♦sssss sttst② ♦♥srt♦♥ ♣r♦♣rts ❬❪ ❲ ♦♣ tt s ♣r♦♣rts st ♦ ♦r ♦r s♠♣♥♣r♦t♦♥ s♠

r s♦♥ ♦t s t♦ ♣r♦r♠ ♥♠r ♦♥r♥ st② ♦r srss ♥♦♥♦♥srt s♠s ♦r t♦ ♦s ♥ ♦♠♣r t♠ t♦ ♦r ♥s♠ ❲ ♦sr sr♣rs♥② tt t ♥♠r s♦t♦♥s s♠ t♦ ♦♥rt♦rs t ♦♦ s♦t♦♥s ♦r♥ t♦ ♦r ♣r♦s ♦♥srt♦♥s ts♦r s s♦t② ♥♦t ♦♦s ♥② ♦♠♣r ♦r ♥ s♠ t♦ t ♥ ♠♦r ♦♠♣① ♦♥rt♦♥ ❲ ♣rs♥t r tst s ♦♥sst♥ ♥♦♠♣t♥ t ♦st♦♥s ♦ s♣r s ♥ ♦♠♣rss q ❲♣rs♥t t rsts ♦t♥ t t ♥ t r♥♦♠ ♣r♦t♦♥ s♠

t♦ ♠♦

♥ ts ♣♣r ♥stt t ♥♠r rs♦t♦♥ ♦ t r s②st♠ ♦r ♦♠♣rss t♦ ♠①tr ♥st② ♦ t ♠①tr s ρ t ♦t② s u ♥t ♥tr♥ ♥r② s e ❲ ♥♦t ② E t t♦t ♥r② ♥ ② E = e+u2/2 ♣rssr s ♥♦t p ♦r s♠♣t② t t♦t ♦ss ♥rt② ♦♥②♦♥sr ♦♥♠♥s♦♥ ♦s ♥♥♦♥s ♣♥ ♦♥ t s♣t ♣♦st♦♥ x♥ ♦ t t♠ t P s②st♠ s ♠ ♦ ♠ss ♠♦♠♥t♠ ♥ ♥r②♦♥srt♦♥ s

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0.

P P P ❲P ❲

♥ t s ♦ ♦♥ ♦ t ♣rssr ♦ ♥t♦♥ ♦ t ♥st②♥ t ♥tr♥ ♥r②

p = p(ρ, e).

s ♦♥sr t♦ ♦s ♦r ♣rssr s ♥t♦♥ ♦ t ♥st② ♥t ♥tr♥ ♥r② t s♦ ♦ s♣♣♠♥tr② ♥♥♦♥ ϕ t ♦♦r ♥t♦♥

p = p(ρ, e, ϕ).

♦♦r ♥t♦♥ s tr♥s♣♦rt t t ♦

∂tϕ+ u∂xϕ = 0.

♦♠♥♥ ts tr♥s♣♦rt qt♦♥ t t ♠ss ♦♥srt♦♥ s ♦♥srt ♦r♠ ♦ t ♦♦r ♥t♦♥ qt♦♥

∂t(ρϕ) + ∂x(ρϕu) = 0.

♥② ♥♥ t ♦♥srt rs t♦r

W = (ρ, ρu, ρE, ρϕ)T ,

♥ t ① t♦r

F (W ) = (ρu, ρu2 + p, (ρE + p)u, ρϕu)T ,

t s②st♠ ♥ rtt♥

∂tW + ∂xF (W ) = 0.

♦r ♣rt ♦♠♣tt♦♥s s t ♣rssr ♦ ♠①tr st♥s ❲ ♦♥sr s ♥ q sts②♥ st♥ s s

p = (γi − 1)ρe− γiπi,

t i = 1 ♦r t s ♥ i = 2 ♦r t q ♣r♠trs γi > 1 ♥ πi r♦t♥ r♦♠ ♣②s ♠sr♠♥ts ♠①tr ♣rssr s ♥ ②

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)π(ϕ).

♠①tr ♣r♠trs r ♥ ②

1

γ(ϕ)− 1= ϕ

1

γ2 − 1+ (1− ϕ)

1

γ1 − 1,

γ(ϕ)π(ϕ)

γ(ϕ)− 1= ϕ

γ2π2γ2 − 1

+ (1− ϕ)γ1π1γ1 − 1

,

♥ s ② tt ϕ = 1 ♥ t ♣r q ♣s ♥ ϕ = 0 ♥ t ♣r s ♣ss s②st♠ s ♥ ♠t♠t ♣r♦♣rts t s ②♣r♦ ♥ t ♠♥♥♣r♦♠ s ♥q s♦t♦♥ ♥ t r t ❬❪

♥ t ♥♠r s t stt♦♥ s ♠♦r ♦♠♣t ♦r ♥st♥ t s ♥♦♥♦♥ tt st♥r ♦♥srt ♥t ♦♠ s♠s ♣♦♦r ♣rs♦♥♥ ♣♣ t♦ ts ♥ ♦ ♦ ♥ ♦rs ♥ s♦♠ ♦♥rt♦♥s ♦ qs♦s t ①♣t ♦♥♦ ♥♥♦t s s t s t♦ ♥t ♥sts

P P P ❲P ❲

r♥♣r♦t♦♥ ♣♣r♦

♦r t ♥t ♦♠ ♣♣r♦①♠t♦♥ ♦♥sr sq♥ ♦ t♠s tn n ∈ Ns tt t0 = 0 ♥ τn = tn+1 − tn > 0 ❲ s♦ ♦♥sr ♠s ♣♦♥ts xni+1/2 t

t♠ n Cni s t ♥tr ]xni−1/2, x

ni+1/2[ ❲ ♥♦t ② xni t ♥tr ♦

Cni

xni =xni−1/2 + xni+1/2

2.

♥t ♦ Cni s ♥♦t hni = xni+1/2 − x

ni−1/2 ♦r♥ t♦ t ♥♦tt♦♥s

t ♠s s ♠♦♥ t t s♦♠ t♠ st♣ ♦ t♦ t ♥t ♠s tn = 0 ❲ ♥♦t

xi = x0i , Ci = C0i , hi = h0i , etc.

❲ r ♦♦♥ ♦r ♥ ♣♣r♦①♠t♦♥ ♦ W ♥ t Cni

Wni ≃W (x, t), x ∈ Cn

i , t ∈]tn, tn+1[.

♦r t ♥♠r rs♦t♦♥ ♥ ♥ ①t ♦r ♣♣r♦①♠t ♠♥♥ s♦r ①t ♦r ♣♣r♦①♠t s♦t♦♥ ♦ t ♠♥♥ ♣r♦♠

∂tV + ∂xF (V ) = 0,

V (x, 0) =

WL x < 0,WR x > 0,

s ♥♦t

R(x

t,WL,WR) = V (x, t).

t♠ st♣ ♦ t r♥♣r♦t♦♥ s♠ s ♠ ♦ t♦ sts ♥ trst st ♣♣r♦①♠t t s♦t♦♥ t r♥ s♠

hn+1/2i W

n+1/2i − hni W

ni + τn

(Fni+1/2 − F

ni−1/2

)= 0.

r♥ ① s ♥ ②

Fni+1/2 = F (Wn

i+1/2)− uni+1/2W

ni+1/2,

Wni+1/2 = R(uni+1/2,W

ni ,W

ni+1),

r t ♦♥r② xni+1/2 ♠♦s t t ♦t② uni+1/2 ♦ t ♦♥tt s♦♥t

♥t② ♥ t rs♦t♦♥ ♦ t ♠♥♥ ♣r♦♠ t♥WL =Wni ♥WR =Wn

i+1

xn+1/2i+1/2 = xni+1/2 + τnu

ni+1/2.

♥ ♣rtr ts ♥s t ♥ s③ ♦ Cni

hn+1/2i = x

n+1/2i+1/2 − x

n+1/2i−1/2 = hni + τn(u

ni+1/2 − u

ni−1/2).

s ♦r♠ s ♠♣♦rt♥t s t ♥ ♥r③ t♦ r ♠♥s♦♥s t♣r♠ts t♦ ♦ t t ♦♠♣tt♦♥ ♦ t ♠♦ ♠s

tr t r♥ st t♦ ♦ t♦ t ♥t r ♠s s ♥ ♦♥ t sr ♠t♦s

P P P ❲P ❲

r♥ ♣r♦t♦♥ ♥ ts ♣♣r♦ r ♦♥ t rr t s♠♣ L2 ♣r♦t♦♥

Wn+1

i =τnhi

max(uni−1/2, 0)Wn+1/2i−1

−τnhi

min(uni+1/2, 0)Wn+1/2i+1

+

(1−

τnhi

max(uni−1/2, 0) +τnhi

min(uni+1/2, 0)

)W

n+1/2i .

♥ ♦ t♦ t ♥t r r

Cn+1

i = Ci, hn+1

i = hni .

t ♥ s♦ rtt♥

Wn+1

i =Wn+1/2i −

τnhi

(max(uni−1/2, 0)(W

n+1/2i −W

n+1/2i−1

)+

min(un+1/2i+1/2 , 0)(W

n+1/2i+1

−Wn+1/2i )

).

♥ ts ② t s r tt t ♣r♦t♦♥ st♣ s ♥ ♣♥ ♣♣r♦①♠t♦♥ ♦

∂tW + u∂xW = 0.

s ♠t♦ s ② ♦♥srt ♥ ts s ♣rs♦♥ ♦r ♠t ♣r♦♠s ❬❪ t s ♣♦ss t♦ ♠♣r♦ t ♣rs♦♥ ② t rr ♣♣r♦ t ♦♥ssts ♥ ♣r♦r♠♥ ♥♦♥♦♥srt ♣r♦t♦♥ ♦♥ t ♦♦r ♥t♦♥ ♥st ♦ ♣r♦t♥ ρϕ s ♥ ♣r♦t rt② ϕ s

ϕn+1

i = ϕn+1/2i −

τnhi

(max(uni−1/2, 0)(ϕ

n+1/2i − ϕ

n+1/2i−1

)+

min(un+1/2i+1/2 , 0)(ϕ

n+1/2i+1

− ϕn+1/2i )

).

s ♣♣r♦ rsts ♥ ♦② ♥♦♥♦♥srt s♠ t ♥s ♥♠r♠ss tr♥sr t♥ t t♦ ♣ss ♥ t s ♦ t st♥ s ♣rssr t ♥ ♣r♦ tt t rst♥ s♠ ♣rsrs ♦♥st♥t (u, p) stts

♠♠ ♣r♦t♦♥ ♥ ts ♣♣r♦ ♦♥strt sq♥ ♦ r♥♦♠ ♦r ♣s♦r♥♦♠ ♥♠rs ωn ∈ [0, 1]. ♦r♥ t♦ ts ♥♠r t

Wn+1

i =Wn+1/2i−1

ωn <τnhi

max(uni−1/2, 0),

Wn+1

i =Wn+1/2i+1

ωn > 1 +τnhi

min(uni+1/2, 0),

Wni =W

n+1/2i

τnhi

max(uni−1/2, 0) ≤ ωn ≤ 1 +τnhi

min(uni+1/2, 0).

♥ ♦ t♦ t ♥t r r

hn+1

i = hni .

s ♠t♦ s ♦♥② sttst② ♦♥srt ❬❪ t ♣rsrs ①t② ♦♥st♥t♦t②♣rssr stts ♦♥tts r s♦ ♥ ♦♥ ♣♦♥t r stt t s♦t♦♥ ♠② ♥♦s② ♥ ♣rtr ♦r str♦♥ s♦s t ♦ ♠t♦♦s ♥♦t ♦♥r t♦rs t ♦rrt ♥tr♦♣② s♦t♦♥

♦♦ ♦ ♦r t ♣s♦r♥♦♠ sq♥ ωn s t (k1, k2) ♥ r ♦r♣tsq♥ ♦♠♣t ② t ♦♦♥ ♦rt♠

P P P ❲P ❲

r t ♦ t ♦♠♣tt♦♥ ♦ t r ♥ ♦st stts r♦♠ t ♥tr stts uI pI ♥ ρIL ρIR tr♠♥② s♦♥ t♦♣s ♠♥♥ ♣r♦♠ ♦r t stts uL ♥ uR

♦t ♦r♣t♥t ♥♥t ♥t ④

♦t ♦r♣t

♦t s

♥④

s

♦r♣t♥s

rtr♥ ♦r♣t

♥ ts ♦rt♠ k1 ♥ k2 r t♦ rt② ♣r♠ ♥♠rs ♥ k1 > k2 > 0 ♦r♠♦r ts rr t♦ ❬♦r❪ ♥ ♣rt ♦♥sr t (5, 3) ♥ r ♦r♣tsq♥

① ♣r♦t♦♥ ♥ ♦rr t♦ ♠♣r♦ t ♦♥r♥ ♦ t ♠♠ ♣♣r♦ t s ♣♦ss t♦ ♦♦ t ♦♦♥ ♠① ♣r♦t♦♥ st♣ Ci ♥ts t♦ ♥♦rs r ♥ t s♠

(ϕni−1 −

1

2)(ϕn

i −1

2) > 0 ♥ (ϕn

i −1

2)(ϕn

i+1 −1

2) > 0,

t♥ ♦♦ t ♣r♦t♦♥ ♥ ② ♥ t ♦tr ss ♦♦ t♠♠ ♣r♦t♦♥ s ♣♣r♦ ♦s ttr ♣rs♦♥ t t ♥trs t s rs♦ ♥ ♦♥② ♦♥ ♣♦♥t

♠♦ ♦st ♣♣r♦

r ♦st ♠t♦ ♦♣ ② ❲♥ ♥ ♦♦ ♥ ❬❲❪ s ♥ ♣tt♦♥ ♦ t ♦r♥ ♦st ♠t♦ ♦

♥ ts ♠t♦ t ♥tr t♥ t q ♥ t s s ♦t ② ♥t♦♥ ψ ♥ t q ψ > 0 ♥ ♥ t s ψ < 0 ♥ ts

P P P ❲P ❲

t ♥tr ♦rrs♣♦♥s t♦ t st ψ = 0 s ♥ t ♣r♦s ♠t♦ tst ♥t♦♥ ψ s tr♥s♣♦rt ♥ t ♦

∂tψ + u∂xψ = 0.

♥ st r♦♠ t ♣rssr ♦ t q t♦ t ♣rssr ♦ ts ♦r♥ t♦ t s♥ ♦ ψ t s r tt t r♥s t♥ t ♦♦r♥t♦♥ ♠♦ ♥ t st ♠♦ r ♦♥② ♦r♠ ♦r t ♥♠r♠♣♠♥tt♦♥s r rtr r♥t

st ♥t♦♥ ψ s ♣♣r♦①♠t ♥ Ci t t♠ tn ② ψni s♦t♦♥

s ♣♣r♦①♠t ② ♦♥♦ s♠

Wn+1

i =Wni −

τnhi

(Fn,−i+1/2 − F

n,+i−1/2

),

t ♣♦ss ♥♦♥♦♥srt ① Fn,−i+1/2 6= Fn,+

i+1/2 t t♦ s Ci ♥ Ci+1

r t t s♠ ♣s s tr

ψni · ψ

ni+1 > 0.

♥ t t ss ♦♥srt ♦♥♦ ①

Fn,−i+1/2 = Fn,+

i+1/2 = Fni+1/2 = F (R(0,Wn

i ,Wni+1)).

t ♣s ♦♥r② s ②♥ t♥ i ♥ i+1 r i ♦rrs♣♦♥st♦ A ♥ i+ 1 t♦ B t♥ t ♠♥s tt

ψni · ψ

ni+1 < 0.

t♥ t t ♥ rt stt r t♥ r♦♠ s i − 1 ♥ i + 2 rs♣t② t♦♥sr ss t♦ stts ♦ t ♣r ♣ss

WL =Wni−1, WR =Wn

i+2.

❲ s♦ t ♠♥♥ ♣r♦♠ t♥WL ♥WR t uI t ♦♥tt ♦t②♥ ts ①t s♦t♦♥ ❲ ♥ ♥ ♥tr stts t♦ t t ♥ t♦ t rt♦ t ♦♥tt ②

WIL = limξ→u−

I

R(ξ,WL,WR), WIR = limξ→u+

I

R(ξ,WL,WR).

❲ ts ss t♦ ♥tr stts ♦r ♥sts ρIL ρIR ♣rssr pI ♥♦t② uI t ♥ rt t♦ t ♣s ♦♥r② ♦r A t stt (ρIL, uI , pI)r♣s t stts ♦ t ♥ ♥s t ♦st stts ①s r ts

F−

i+1/2 = F (R(0,WIL,WIL)), F+

i+1/2 = F (R(0,WIR,WIR)).

♦t♦♥ qt♦♥ s s♦ st② ♠♦ ②

Wn+1

i =WIL −τnhi

(Fn,−i+1/2 − F

n,+i−1/2

),

Wn+1

i+1=WIR −

τnhi+1

(Fn,−i+3/2 − F

n,+i+1/2

),

s ♣r♦r s st ♥ s ♦♥sq♥ ♦♥② s♥♣s ♠♥♥♣r♦♠s r s♦ ♦r ♥tr ♦ A t♦ ♣r♦ t ♥♠r ①st t ♦st s s ♦♥r② ♦♥t♦♥s t t ♣s ♦♥r② ♥ t s♠♣r♦r s s ♦r B

s ♥r t ♣s ♦♥r② t♦ ①s Fn,±

i+ 12

♦♥ ♦r r ♥

② r♦♠ t ♣s ♦♥r② r ♦♥② ♦♥ ♥♠r ① s ♦♠♣t t

P P P ❲P ❲

♥tr t s♣t ♦rr s ♠♣r♦ ② s♥ s♦♥♦rr r♦♥strt♦♥♦ t ♣r♠t rs ρ u p s♦t♦♥ s ♥ t♦ t ♥①t t♠ st♣② t ♥t ♦♠ s♠

♥ t ♦tr ♥ t st ♥t♦♥ s s♦ t♦ ♥ s s ♦♥rst ② s♦♥ ♥♠r② t st♥r ♣♥ ♥♦♥♦♥srt ♥t♦♠ s♠

ψn+1,−i = ψn

i −τnhi

(max(uni−1/2, 0)(ψ

ni − ψ

ni−1) + min(uni+1/2, 0)(ψ

ni+1 − ψ

ni ))

Pr♦② t st ♥t♦♥ ♣♣r♦①♠t♦♥ s r♥t③ ♥ s ②tt t r♠♥s s♥ st♥ t♦ t ♥tr s s ♦r♠② ♦t♥ tr♦t ♥♠r rs♦t♦♥ ♦ ♥ ♠t♦♥♦ qt♦♥

∂τ ψ(x, τ) + a(ψ)∂xψ = S(ψ),

a(ψ) = S(ψ)∂xψ∣∣∣∂xψ

∣∣∣,

S(ψ) =

−1 ψ < 0,

0 ψ = 0,

1 ψ > 0,

ψ(x, τ = 0) = ψn+1,−i , x ∈ Ci.

st ♥t♦♥ s r♣ ② t r♥t③ st ♥t♦♥ t

ψn+1

i = ψ(x, τ =∞), x ∈ Ci.

s ♣r♦r s sr ♥ ♠♦r ts ♥ ❬❪♥② r♥ t ♣t ♦ t st ♥t♦♥ ♠② st r♦♠ ♦♥

t♦ t ♦tr s stt♦♥ ♦rrs♣♦♥s t♦ ♥ ♦ t s♥ t♥ t♠st♣n ♥ t♠ n + 1 ♥ ψn

i · ψn+1

i < 0 ♥ ts s t s ♥ssr② t♦

s♦ ♣t Wn+1

i ♦♥ t ♦rrs♣♦♥♥ rs r rts♥ t qt♦♥ ♦ stt ♦ t ♥ ♥ r② ♦s t♦ t ♣s♦♥r② t ♦ts ♥ t ♣rssr r ♦♥st♥t ♦r ♦t s t t♣s ♦♥r② r ♣rsr s ♠♦t♦♥ s sst ② rr♦♥❬❪♥ t♦♥ t♦ ts ♣♣r♦ ♣r♦♣♦s t ♠♦t♦♥ ♦ t ♥st② s ♥♦①t ♦r t ♥st② s ♥♦♥ t ♥st② s r♣ ② t ♥st② ♦ t♦rrs♣♦♥♥ ♦st ♦r ♣rs② ψn

i · ψn+1

i < 0 ♥ ψni · ψ

ni+1 < 0

t♥ ♦r ♦♠♣t♥ t ♥①t t♠st♣ ssttt t ♥st② ②

ρn+1

i ← ρIR

♥ t ♥r② en+1

i s s♦ ♠♦ ♥ s ② tt

pn+1

i = p(ρn+1

i , en+1

i , ψn+1

i )

s ♥♦t ♥ s ♦♥strt♦♥ ♠♣s tt t ♦ rst♥ s♠ ♣rsr ♦♥st♥t (u, p) stts ♥ t ♦tr ♥ t s s♦ r tt t s♠s ♥♦t ♦♥srt ♦r ♥st♥ t st ♣t ♠♣s ♠ss ♥ ♥ ♥r②tr♥sr t♥ t t♦ s

P P P ❲P ❲

r ♦♥r♥ st② ♠♠ ♣r♦t♦♥ rss r♥ ♣r♦t♦♥ ♠ t♦♥

♠r rsts

♠ t♦♥ rst tst ♦♥ssts ♥ t♦ s♦ t st♥ s ♣r♠tr r

γ2 = 2, π2 = 1,

γ1 = 1.4, π1 = 0.

❲ t ♦r t t ♥ rt ♥t t

(ρL, uL, pL, ϕL) = (2, 1/2, 2, 1),

(ρR, uR, pR, ϕR) = (1, 1/2, 1, 0).

♦r t r♥♣r♦t♦♥ ♣♣r♦ t ♥♦♥♦♥srt ♣r♦t♦♥ ♥ t♠♠ ♣r♦t♦♥ r ♦♠♣r ❲ ♦sr ♥♠r ♦♥r♥ ♥ t L1

♥♦r♠ ♦r t t♦ ♠t♦s ♥ tt t ♠♠ ♣r♦t♦♥ s ♠♦r ♣rs t♥ tr♥ ♣r♦t♦♥ r ♦♥r♥ rt ♦r t t♦ ♠t♦s s♣♣r♦①♠t② 0.6

♠ s♦♥tr ♥trt♦♥ ♥ ♥tr t♥ t♦ ss ♦t t♠ t = 0 t ♣♦st♦♥ x = 1 t♦ s r ♠♦♥ t♦ t tt t ♦t② v = −1 s ♦♥ t t t s ♦♥ trt s♦ s rr♥ r♦♠ t t t ♦t② σ = 4 ♥t ♣♦st♦♥ ♦

P P P ❲P ❲

r ♠♠ ♣♣r♦ ♥st② ♣♦t ❱ ①♣♦s♦♥ t♦t♥ t ♣r♦♣t♦♥

t ♦♥tt ♥ t s♦ r ♦s♥ ♥ s ② tt t② ♠t t♦tr tt sss x = 0 t t♠ t = 1 ♣r♠trs r t ♦♦♥

γ1 = 1.4 π1 = 0,

γ2 = 2 π2 = 7.

♥t t r x < −4

(ρL, uL, pL, ϕL) = (3.4884, 1.1333, 23.333, 1),

x > 1

(ρR, uR, pR, ϕR) = (1,−1, 2, 0),

♥ −4 ≤ x ≤ 1

(ρM , uM , pM , ϕM ) = (2,−1, 2, 1).

tr tt t s♦ ♥ t ♦♥tt s ♠t t t♠ t = 1 t s♦t♦♥ ss♠♣② ♥ ② t rs♦t♦♥ ♦ t♦ ♠♥♥ ♣r♦♠ t♥ stts (L)♥ (R) s♦t♦♥s s st ♥ r ♥♠r t r r♥

r♥ ♣s ♣r♦t♦♥ s♠s ♥ ts s ♦sr tt t ♠♠♣♣r♦ ♦s ♥♦t ♦♥r s ♦r ♣♥s ♦♥ t str♥t ♦ t s♦ t②♣ ♣♦t s ♥ ♦♥ r r ♦♠♣r t ①t ♥ t♣♣r♦①♠t ♥sts t t♠ t = 1.5

♥ ts s ts ♦♠♣r t r♥ ♣r♦t♦♥ ♣♣r♦ t t ♠①♣r♦t♦♥ ♣♣r♦ ❲ ♦t♥ t rsts ♦ r ♠① ♣r♦t♦♥s ttr ♣rs♦♥ t♥ t r♥ ♣r♦t♦♥

❲ s♦ ♣r♦ ♦♥ r ♦♠♣rs♦♥ ♦ t ♠① ♥ r♥ ♣r♦t♦♥s♠s ♦r t ♥sts ♦r ♠s ♦ s ♦ t ♥tr [−5; 2]

P P P ❲P ❲

r ♠ s♦♥tr ♥trt♦♥ ♦♥r♥st② ① ♣r♦t♦♥ ♥ r♥ ♣r♦t♦♥

♥♠r s ① t♦ 0.7 t s ♥trst♥ t♦ ♦sr tt t ♥tr ♣♦st♦♥ sr② rs♦ ♥ ♦♥② ♦♥ ♠s ♣♦♥t ② t ♠① ♣r♦t♦♥ s♠ ♥tt ts ♦♦ rs♦t♦♥ ♦ t ♦♥tt s♦ ♠♣s ♥ ♠♣r♦♠♥t ♦ t♣rs♦♥ ♥ t t rrt♦♥

♦ ♦st ♣♣r♦ ♥ ♦rr t♦ ♦♠♣r t ♥♦♥♦♥srt♠t♦s ♦ rr ♥ t sr ♥♠r s♦t♦♥s r ♦♠♣r t t ①t s♦t♦♥ ♥ ♦♥r♥ st② s ♣r♦r♠ ♦rssrt③t♦♥ ♦♥ssts ♦ s ♦♥ t ♠tss tr♥s♦r♠t♦♥ s♣♣ ❬❪ ♦♥r♥ st② s ♣r♦r♠ ♦r rs ♥ r♦♠ t♦ r♥♠♥t s L t ♥♦r♠ r ♦♥ t ♥st ♦♥ssts ♦ 2L ∗100s trs♦ ♥ t r ♣tt♦♥ s ♦s♥ s ε = 10−5 s s♠ s ♦s♥ ♥ s ② tt t r♦♥s ♦♥t♥♥ t ♥st r s rr ♥♦ t♦ ♦ t♦♥ rr♦r r♦♠ rr s rr♦rs ♦t♥ tt ♠ts r ♣tt♦♥ r ts ♦♠♣r t t♦s ♦t♥ t ♥♦r♠ r sts r ♣r♦r♠ t ♥♠r ♦ 0.9 ♠♠r②Ω❬❪♠t ∈❬❪s N0 = 100 5 ≤ L ≤ 13 ǫL

♥ rs ♥ r s♦♥ t ♦♠♣rs♦♥ ♦ t ♥st② ♦r t t♦ ♣♣r♦s t t ①t s♦t♦♥ t s ♥ t t = 1.5 ♠s rst r♦rrs♣♦♥s t♦ r t s♥ r♥♠♥t s ♥ t s♦♥ ♦♥ t♦ r② ♥r t t r♥♠♥t s ♦ rst s ♣tr ♥ t ♠ ♥

P P P ❲P ❲

r ♥st② ♦♠♣rs♦♥ ♦ t ♠① ♥ r♥♣r♦t♦♥ s♠s

r ♥t③t♦♥ ♦ t rr s♦♦♥tt ♥trt♦♥

UW UWS UW∗ UA∗ UA

ρ ❬♠3❪ v ❬♠s❪ p ❬P❪ rr s♦♦♥tt ♥trt♦♥

③♦♦♠ ♦ t s♦ ♣♦st♦♥ ♦♥ t ♦tt♦♠ t ③♦♦♠ ♦ t ♣t t♥t rrt♦♥ ♥ t ♦♥tt ♦♥ t t♦♣ t ♥ ③♦♦♠ r② ♦s t♦ t♦♥tt ♣♦st♦♥ ♦♥ t rt ♥ t st ♦♥ ♥trs r ♠r ② ♠♦♥s♦r t ♥♠r rsts

rr ♣♣r♦ ♥rts ♦st♦♥s t t ♦tt♦♠ ♦ t rrt♦♥ t♦ t ♥trt♦♥ t♥ t s♦ ♥ t ♦♥tt s s ♥♦tt s ♦r t tt ♦♥s qt t t ①t s♦t♦♥ ❲t ♠♦r r r♥♠♥t s s♦♥ ♥ ♣tr t ♠♣t ♦ t ♦st♦♥sr② r

t t ♦♥tt tr s s♠r♥ ♦ t ♥st② ♦r t rr ♣♣r♦s s s② t♦ s ♥ t ③♦♦♠ ♦♥ t rt ♥ t ♥st② ♦r ts ♣♣r♦rss s♦② ♥st ♦ ♣rs♥t♥ ♠♣ t t ♠t♦ t♦ t

P P P ❲P ❲

r sts ♦ t s♦♦♥tt ♥trt♦♥ ♦r r♥♠♥t s t t ♠s

♦♥strt♦♥ ♦ t ♦st ♠t♦ ♦t♥ t sr ♠♣ t t ♦♥ttt ts ♠♣ s tt t st ♦♠♣r t t ①t s♦t♦♥ s t ♥trs r r♣rs♥t ② ♠♦♥s ♦♥ t ♣trs ♦r r♥♠♥t s ♥ s st ♥ t ♣♦st♦♥ ♦ t ♦♥tt ♦ s ♥ ♥ t ♦♠♣tt♦♥ tt s ♦ r♥♠♥t t st s ♦t s s s s♠♠r③ ♥

♦♥r♥♥ t ♣♦st♦♥ ♦ t s♦ s ♦♥② s ♥ t ③♦♦♠ s♦ t ♠♣ ♦ ♥st② r♠r tt ts ♣♦st♦♥ s ♣rt t t ♠t♦ ♦r ♦t ♦♠♣tt♦♥s t s ♥♦t r② t s ♦r t rr ♣♣r♦ ❯♥r r r♥♠♥t t st rs s ♠ s t s♠r♥r♦♥ t t ♦♥tt

♦♥r♥♥ t rr ♣♣r♦ t ♦st♦♥s ♥ t rr♦r ♥ t♣♦st♦♥ ♦ t s♦ s ♦♥② t♦ t ♣r♦s s♦♦♥tt ♥trt♦♥ ❲♥♦♥② t ♠♥♥ ♣r♦♠ s ♦♠♣t ♥ t ♦♠♣tt♦♥ strts t t = 0.5♠s ♦t♥ t rsts ♦ r ♥ ts s♠♣ stt♦♥ t rsts r ♥♦♦ r♠♥t r②r t t ①t s♦t♦♥ ♦♠♣rs♦♥ s♦♦♥tt♥trt♦♥ ♥ rt rs♦t♦♥ ♦ t ♠♥♥ ♣r♦♠ s s♦♥ ♥ r

L1 rr♦r ♦ t ♥st② r ♥ ♥ ♦rr ♦ ♦♥r♥ ♦rt rr ♣♣r♦ s ♣♣r♦①♠t② 0.5 ♦♥r♥♥ t t rr♦rs♠s t♦ t♥ t♦ t s♠ ♦rr ♥r r r♥♠♥t

rtr tst s ♦r t ♣r♦♣♦s ♥ t♦♥ tst s♦♥sst♥ ♥ s♦ ♦ ♥♠r 0.67 t t ♣♦st♦♥ x = −3 ♠ r♥♥♥♥ t q tt ♥trts t t r t t = 0.5♠s t t ♣♦st♦♥ x = 0 ♠ tr ♦ t s♦ ♥ t r r ♠♦♥ t♦rs t s♦ t t ♦t②♦ 100 m/s ♦♠♣tt♦♥ ♦♠♥ s [−4; 2]♠ tst s st ♥ r

P P P ❲P ❲

r sts ♦ t s♦♦♥tt ♦r r♥♠♥t st t ♠s

r sts ♦r r♥♠♥t s t t ♠s

♥ t r♥t stts r ♥ ♥ ♠tr ♣r♠trs ♦r ts r st ♥

P P P ❲P ❲

rr s L1 rr♦r rr L1 rr♦r rr5 7 8 9 10 11 12 13

❲trr ♦ L1 rr♦r

rr s hL ❬♠❪ rr♦r rr rr♦r rr

❲trr rr♦r ♥ t ♥tr ♣♦st♦♥ r hL s tr s③ ♦r L r♥♠♥t s

UW UWS UW∗ UA∗ UA

ρ ❬♠3❪ v ❬♠s❪ p ❬P❪

❲trr s♦♦♥tt ♥trt♦♥

γ ❬❪ π ❬P❪❲tr r

tr ♣r♠trs ♦r tr ♥ r

s ♦st♦♥s

♥ ts st♦♥ ♣♣② t r♥♦♠ ♣r♦t♦♥ s♠ t♦ ♦st♦♥s tst s sr ♥❬ ❪ s♣t t qs ♦♥♠♥s♦♥ r♠♦r t tst s ♠♣s r② ♦♥ ♦♠♣tt♦♥s ♥ r② ♥♠ss ❲ ♦♠♣r t t rsts ♦t♥ t t ♦♥ rtrr② r♥rs

P P P ❲P ❲

r ♥t③t♦♥ ♦ t trr s♦♦♥tt ♥trt♦♥

♦♥s♦♥

♥ ts ♣♣r ♣r♦♣♦s ♥ s♠ ♦r ♦♠♣t♥ t♦ ♦s ♣rssr ♦st♦♥s t t ♥tr r ♦ t♥s t♦ r♥ ♥♣r♦t♦♥ ♣♣r♦ ♥ t r♥ st♣ t ♦♥tt s r ♣rt② rs♦♥ t ♥tr s ♥♦t s♠r ♥ t ♣r♦t♦♥ st♣ ♠♣♦② r♥♦♠s♠♣♥ strt② rst♥ s♠ ♣rsrs t ♦♥st♥t ♦t②♣rssrstts ♥ t ♥tr s s♦ t♥ ♦♥ r ♣♦♥t

♦ ♣♣r♦ ♣r♦r♠s ♦r s♦s t ♥ ♣rs♥ ♦ str♦♥s♦s t ♣♣rs t♦ ♦st♥ r♦r t♦ ♣t t ♣r♦t♦♥ st♣♥ ♦♥② ♣♣② t t t t♦ ♥tr s ♦t t♥s t♦ t ♠♣s♦ t ♦♦r ♥t♦♥ ❲ ♣r♦♣♦s t♥ ♥♠r rsts tt ♠♦♥strt t♦♦ ♦♥r♥ ♦ t s♠ s♣t tt t s ♥♦t ♦♥srt ❲ sr♣rs♥②♦sr ts ♦♥r♥ ♣r♦♣rt② ♦r ♦tr ♥♦♥♦♥srt s♠s ♦r t♦♦s

♥② ♣♣② ♦r s♠ t♦ ♠♦r ♥♥ ♣r♦♠ ♦♥ssts ♥t s♠t♦♥ ♦ t ♦st♦♥s ♦ s ♥ ♦♠♣rss q r s♠♣s♠ s ♦♦ rsts ♥ ts ♣rs♦♥ s ss t♥ t ♠♦r s♦♣stt ♦♣ t rtrr② ♠s r♥♠♥t

r ♣r♦s♣ts r ♥ sr rt♦♥s

• rst ♦ t♦ ♠♣r♦ t ♣rs♦♥ ♦ t r♥♦♠ ♣r♦t♦♥ s♠ rst ♦♦s ② t♦ ♦ t s t♦ ♦♣ t t s♦♥ ♦rr ❯①t♥s♦♥ s ①t♥s♦♥ s t♦ tt t t ♥tr ♥ ♦rrt♦ ♦ ♦st♦♥s ♦r t s♣r ♦♠♣tt♦♥s ♥♦tr ②t♦ ♠♣r♦ t ♣rs♦♥ s t♦ ♠♦② t s♠ ♥ ♦rr tt t ♦♠s♥ s ♥ ♦♥ ② ♣t♥ t ♠t♦ sr ♥❬❪

• ♥♥ ①t♥s♦♥ ♦ ♦♥sst ♥ ①t♥♥ t r♥♦♠ ♣r♦t♦♥s♠ t♦ t♦ ♦r tr♠♥s♦♥ ♦♠♣tt♦♥s s ♦ tr ♦r①♠♣ ② s♠♣ rt♦♥ s♣tt♥ ♦rt♠ s t ♦t♦ ♦rt♦♠♥ ♦r

r♥s

❬❪ r ♥rst♦♥ ♦ t r♦ s♠ ♦r t ♦♠♣tt♦♥ ♦ ♠①tr ♦ ♣rtss r ér♦s♣t

❬❪ é♠ r ♠r r♥ ♦♠♠♥t ♦♥ t ♦♠♣tt♦♥ ♦ ♥♦♥♦♥srt ♣r♦ts ♦r♥ ♦ ♦♠♣tt♦♥ P②ss

❬❪ rr♦♥ P ② ♥ ♦② Prt ♦♠♣tt♦♥ ♦ ①s②♠♠tr ♠t♦s ♥tr♥t♦♥ ♦r♥ ♦ ♥t ❱♦♠s

❬❪ ♦♥s ♦q ♣tr♥ ♥♥t② sr♣ srt s♦ ♣r♦s t t ♦♥♦ s♠ ②♣r♦ ♣r♦♠s t♦r② ♥♠rs ♣♣t♦♥s ♣r♥rr♥

P P P ❲P ❲

❬❪ ♦♥s rst♦♣ ♦t♥ P♦ r♥s♣♦rtqr♠ s♠s ♦r ♦♠♣t♥ ♦♥tt s♦♥t♥ts ♥ tr ♦ ♠♦♥ ♦♠♠♥ t ♥♦

❬❪ ♦♥ P s♠ rq rr♠♥ rr② sr t♥② ♥♦♥♦st♦r②r♥ ♣♣r♦ t♦ ♥trs ♥ ♠t♠tr ♦s t ♦st ♠t♦ ♦♠♣t P②s ♥♦

❬❪ ♠♠ ♠s ♦t♦♥s ♥ t r ♦r ♥♦♥♥r ②♣r♦ s②st♠s ♦ qt♦♥s♦♠♠ Pr ♣♣ t

❬❪ P ② rr ts ♥ ♣♣r♦①♠t ♠♥♥ s♦r ♦r rr♦ssst♦♥ ♦♠♣rss ♦s Pr♦ ♥

❬❪ ② P♣♣ ts éè♥ ür r ♥ r♥ ♣♣r♦ ♦r t♦♠♣t♥ ♦ ♦st♦♥s ♥t ♦♠s ♦r ♦♠♣① ♣♣t♦♥s ❱ ♦♥♦♥

❬❪ ♦ ♦♠s ❨ ♦ P♣♣ ❲② ♥♦♥♦♥srt s♠s ♦♥r t♦ r♦♥s♦t♦♥s rr♦r ♥②ss t ♦♠♣ ♥♦

❬r❪ r♥ ♠r t♦♠♣♦♥♥t ♦ t♦♥s ② ♦♥sst♥t ♣r♠t ♦rt♠ ♦♠♣t P②s ♥♦

❬❪ ♦ ♦tèr ♥ ♥ts ♥♠r s♠ ♦r t s♠t♦♥ ♦ ♥trs t♥ ♦♠♣rss s ② ♠♥s ♦ qt♦♥ ♠♦ ♦♠♣t P②s ♥♦

❬❪ ts t té♦rq t ♥♠érq s é♦♠♥ts tr♥st♦♥ ♣sP tss ❯♥rsté trs♦r tt♣trs♦rtsrtr

❬❪ ür ♠♥♥ rö♥♥r r③ P ② ♦♠♣rs♦♥ ♥ t♦♥ ♦ ♦♠♣rss ♦ s♠t♦♥s ♦ sr♥ tt♦♥ s ♦♠♣trs s

❬❪ r r r é♠ s♠♣ ♠t♦ ♦r ♦♠♣rss ♠t ♦s ♦♠♣t ♥♦

❬❪ r r r é♠ ♠t♣s ♦♥♦ ♠t♦ ♦r ♦♠♣rss ♠t ♥ ♠t♣s ♦s ♦♠♣t P②s ♥♦

❬♦r❪ ♦r♦ tr♦ ♠♥♥ s♦rs ♥ ♥♠r ♠t♦s ♦r ②♥♠s ♣rt ♥tr♦t♦♥ ♦♥ t♦♥ ♣r♥r❱r r♥

❬❲❪ ❲rs r♦♥ ♦r♥ rr② ② ♦♥srt ♠♦ ♦r ♦♠♣rss t♦♦ t ♦♥r♥ ♦♥ ♠r t♦s ♦r ②♥♠s Prt ♥tr♥t ♠r t♦s s ♥♦

❬❲❪ ❲♥ ❲ ♦♦ r ♦st ♠t♦ ♦r t s♠t♦♥ ♦♠t♠♠ ♦♠♣rss ♦ ♦♠♣t ♥♦

❲ ♥ ♥ ❯♥rsté trs♦r

♠ rss ②♠t♥strr