105
QUASICRYSTALS: an introduction M. de Boissieu SIMaP , GrenobleINP, CNRS, UJF St Martin d’Hères France.

QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

QUASICRYSTALS: an introduction

M. de Boissieu

SIMaP, Grenoble‐INP, CNRS, UJF

St Martin d’Hères France.

Page 2: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Disclaimer and copyright notice

Copyright 2010 Marc de Boissieu for this compilation.

This compilation is the collection of sheets of a presentation atthe “International School on Aperiodic Crystals,“ 26 September – 2 October 2010 in Carqueiranne, France. Reproduction or redistribution ofthis compilation or parts of it are not allowed.

This compilation may contain copyrighted material. The compilation may not contain complete references to sources of materialsused in it. It is the responsibility of the reader to provide proper citations, ifhe or she refers to material in this compilation.

Page 3: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

1. Quasicrystal : general introduction y g

2. The Fibonnacci chain

3 Generalised 1D quasicrystals3. Generalised 1D quasicrystals

4. Structure determination

5. Generalization to higher dimensions.

References can be found in the book:Janssen T Chapuis G and de Boissieu M : Aperiodic CrystalsJanssen T., Chapuis G. and de Boissieu M.: Aperiodic Crystals. From modulated phases to quasicrystals, Oxford University Press, Oxford 2007.

Page 4: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

What is a quasicrystal?q y

• Aperiodic  crystals: p y

Crystal: ‘Diffraction pattern is essentially discrete’

Aperiodic crystal: Bragg peaks and indexing withAperiodic crystal: Bragg peaks and indexing with more than 3 integers.

• Symmetry allowed by lattice translation:

1, 2, 3, 4 and 6.

Page 5: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Periodicity and allowed symmetryy y y

• Let us consider a periodic structure, with periodicity Tand a n‐fold rotation axis.

2π/n2π/n

T‐T

π/π/

T1T2

T1‐T2=nT is also a lattice translationThis implies that  2cos(2π/n)=integer

True only if n=1 , 2, 3, 4 and 6: ‘allowed’ symmetry with periodicity.

Page 6: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

QuasicrystalQ y

• Quasicrystal: diffraction pattern with sharp Bragg y p p ggpeaks  and a symmetry incompatible with lattice translation.

• Icosahedral symmetry and 5 fold rotation for• Icosahedral symmetry and 5‐fold rotation for instance.

Oth t i t• Other symmetry exists. 

Page 7: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal discoveryQ y y

• 1982: Shechtman observes the first icosahedral diffraction pattern in a rapidly quenched AlMn alloy.

Page 8: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

• Rapidly solidified Al‐Mn alloy

• Electron diffraction pattern : icosahedral symmetry

• Single grain diffracting.

Page 9: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal discoveryQ y y

• Icosahedral symmetry of the diffraction pattern

• 5‐fold axis (6), 3‐fold axis (20), 2‐fold axis (30)

Page 10: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

5‐fold5 fold

2‐fold

5‐fold3 f ld2 f ld3 f ld 5‐fold3‐fold2‐fold3‐fold

Page 11: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal discoveryQ y y

• Bragg peaks and ‘forbidden’ symmetry. 

• New long range order: quasicrystals

• Is it really a quasicrystal?

• Other explanations? Twinning?Other explanations? Twinning?

Page 12: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Apparent icosahedral symmetryis due to directed

lti l t i i f bi t l1

multiple twinning of cubic crystals

Linus Pauling2

3

Linus Pauling Institute of Science and Medicine,440PageMill Road, Palo Al to, California 94306, USA

4

Recently the announcement was made of the remarkablediscovery of intermetallic compounds with approximatecomposition MA16 (M = Cr, Mn, Fe) that formed crystals orpseudocrystals with icosahedral symmetry, as shown by the

5

pseudocrystals with icosahedral symmetry, as shown by theshape of the small nodules and by their electron diffractionpatterns1. I have found it hard to believe that any single crystalwith 5-fold axes could give reasonably sharp diffractionpatterns, resembling thosegivenby crystals,and I have not beenconvincedto the contrary by the theoretical discussions of thisconvincedto the contrary by the theoretical discussions of thispossibility that have been published2-7. I therefore set myselfthe task of predicting how a molten alloy of Mn (or Cr or Fe)and A1 might react to sudden cooling. I have discovered thatsuchan alloy on sudden cooling could form a metastable cubicLinus Pauling crystal with a large cube edge, about 26,7±, with the unit cubecontaining about 1,120atoms (possibly a few more), and thatthesecrystalswould show ordered multiple growth such that 20of them, roughly tetrahedral in shape, grow out from a centralseed in such a way as to produce an aggregate with

Linus Pauling

seed in such a way as to produce an aggregate withapproximately icosahedral symmetry.

Nature vol 317p 512(1985)Rapidly‐solidified Al‐Fe alloy From E. Abe

Page 13: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Electron microscope image of Al-Mn phase

NOT twin‐crystals !

A l f l dA novel type of long‐range order

From E. Abe

Page 14: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal symmetryQ y y y

• Icosahedral:  ‘3D’ quasicrystal.q y

• Decagonal quasicrystal:  2D QC + 1D periodic 

• Dodecagonal 2D QC + 1D periodic• Dodecagonal 2D QC + 1D periodic 

• Octagonal 2D QC + 1D periodic 

Page 15: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Symmetry of quasicrystalsy y q y

Courtesy A.P. Tsai

Page 16: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Which systems form quasicrystals?y q y

• Mainly metallic alloys.

• First rapidly quenched Al‐based alloy. 

• Small grains (~ 1 μm) 

• Defects broad Bragg peaks• Defects, broad Bragg peaks.

H.U. Nissen

Page 17: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Which systems form quasicrystals?y q y

• i‐AlLiCu: first large single grain quasicrystal. But g g g q yrather poor crystal quality (Dubost and Audier)

Diffraction pattern contains only a limited number of Bragg peaks.

ll d h f dBut allowed the first X‐ray and neutron study on a single crystal.

Page 18: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Stable quasicrystalsq y

• A.P. Tsai has discovered the first stable i‐AlCuFequasicrystal of very good quality.

• Can be obtained by slow cooling from the meltCan be obtained by slow cooling from the melt

• Form large single grain, large number of reflections.

Page 19: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Stable quasicrystalsq y

• Now a large number of examplesg p

• Stabilised by a Hume‐Rothery mechanism (e/a ratio)

List of stable icosahedral quasicrystals (from A Pquasicrystals (from A. P. Tsai)

Page 20: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

A few examples of stable quasicrystals

i‐Al69.8Pd21Mn9.2

ZnMgY, I.R Fisher et al.

DecagonalA.P. Tsai et al.Icosahedral

M. Boudard et al.

Page 21: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Stable quasicrystalsq y

i‐AlPdMn, growth d , g oof centimeter size single grains by Bridgman andBridgman and Czokralskimethods.

W. Steurer, i‐AlPdMn Laue

M. Boudard et al.

Page 22: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Stable quasicrystalsq y

• Quasicrystals were targeted has non‐indexable phases long ago! Example of the AlCuFe phase diagram. 

Page 23: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Soft condensed matter and QCQRecently, QC have been obtained in soft condensed matter: dodecagonal  quasicrystals

Page 24: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Liquid Quasicrystalq Q y

• Length scale: 8.1 nm , i.e 10 time metallic alloys

Page 25: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Polymeric quasicrystaly q y

Length scale:50 nm

Page 26: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Summary y

• Quasicrystal is really a new kind of long range order.y y g g

• Symmetry incompatible with translation and sharp Bragg peaksBragg peaks

• Found in intermetallic compounds but also in soft condensed mattercondensed matter.

Page 27: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction pattern of quasicrystalsp q y

• Some general characteristicsg

• How ‘good’ is the quasicrystal  ? True Bragg peak? 

Page 28: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction pattern of quasicrystalsp q y

• i‐AlCuFe

• Icosahedral symmetry

• τ inflation scalingτ3

• Self‐similarity(from A.P. Tsai) τ

τ2

τ

1

Page 29: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction pattern of quasicrystalsp q y

• X‐ray diffraction along 5‐fold axis. i‐AlPdMn. ESRF. (Log I scale)

• Only few very strong Bragg τ scaling of position (Fm35)• Only few very strong Bragg. τ scaling of position (Fm35).

109

1010

7/11 18/292/1 47/766 i t

107

108 3/42/1 47/766 integer

indices

N/M short

4

105

106

Inte

nsity

N/M short hand notation(Gratias et al.)

100

1000

104

100

0 0.5 1 1.5 2 2.5 3 3.5Qx (2π/a Unit)Q

par(

6D)

Page 30: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction pattern of quasicrystalsp q y

• The intensity di t ib ti

109

i ZnMgScdistribution depends on the atomic structure  105

107

ensi

ty

i-ZnMgSc

and structural quality

• 2‐fold scans of i‐ 10

1000

Inte

2 fold scans of iZnMgSc and i‐AlPdMn

• Very large

0.5 1 1.5 2 2.5 3 3.5 4 4.5Qpar (2pi/a unit)

109

i-AlPdMn• Very large 

number of reflexions in i‐Z M S

105

107

Inte

nsity

ZnMgSc(Ishimasa et al.) 

10

1000

0.5 1 1.5 2 2.5 3 3.5 4 4.5Qpar (2pi/a unit)

Page 31: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal perfection: Bragg peak 

• High resolution, 

i‐Al69.8Pd21Mn9.2   Single grain

coherent setup  (ID20, ESRF): one speckle

dQ=10‐4 Å‐1 ξ ~ 10μmdQ 10 Å ξ   10μm

• Rocking curve: 0.005° FWHM

U if h t i

0,0032

0,004

Uni

ts)

Unif phason strain:FWHM = b Qper

0,0008

0,0016

0,0024

,

WH

M (2π/

a pU

0

,

0 0,5 1 1,5 2 2,5

FW

Qper (2π/apUnits)A. Létoublon et al.

Page 32: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Dynamical diffraction: standing waves

• Measurement inC t l

i‐AlPdMn • Measurement in  backscattering (ID32)

• Al fluorescence

Crystal

• Modeling with a crude atomic model

T. Jachs et al, PRL, 82, 1999F. Schmithusen, Phd thesisF. Schmithusen, Phd thesisSee also J. Gastaldi, J. Hartwig, ID19, ESRF

Almost perfect quasiperiodic long range order

Page 33: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Summaryy

• The quasicrystal  diffraction pattern displays inflation q y p p yproperties (tau scaling in the icosahedral case)

• A few very strong Bragg peaks and a large number ofA few very strong Bragg peaks and a large number of weak Bragg peaks

• The long range order is as good as in the best• The long range order is as good as in the best intermetallic alloys: extremely sharp Bragg peaks.

Page 34: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Atomic structure of quasicrystalsq y

• Real space approach: tilings.p pp g

• High dimensional approach: atomic surfaces.

• Both methods have their advantage and drawback• Both methods have their advantage and drawback. The high dimensional approach is the most general oneone.

• Some characteristics in direct space: the Penrose tiling.

Page 35: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The Penrose tilingg

• 2 tiles. Diffraction: sharp Bragg 5‐p ggfold symmetry

Page 36: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Penrose tilingg

Same local environment found everywhere.Same local environment found everywhere.

Page 37: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Penrose tilingg

No true 5‐fold symmetry in direct space; but almost perfect superposition with a translation. (Courtesy R. Lifshitz).

Page 38: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Penrose tilingg

The Penrose tiling has a ghierarchical structure

Inflation‐deflation properties 

Page 39: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Penrose tilingg

Page 40: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Structure as tilingg

• Decorated tiling: example of decagonal AlNiCo (see H. Takakura and M. Mihalkovic lecture)

Page 41: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The Fibonnacci chain and 1D quasicrystals.q y

• 1D simple example p p

• Although there is no symmetry involved, this model has strong similarities with icosahedral quasicrystals.has strong similarities with icosahedral quasicrystals.

Page 42: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Fibonacci 

Form a series of numbers: 1, 1, 2, 3, 5, 8, 13….

Un=Un‐1+Un‐2n n 1 n 2

Un‐1/Un‐2 ‐> τ the golden mean.

τ=2cos(36)= (1+)/2=1.618…

Page 43: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The golden meang• τ = (1+√5)/2=1.618033….

• Related to pentagonal and icosahedral symetryRelated to pentagonal and icosahedral symetry. 

11τ

Coordinates of the 5‐fold axis of the icosahedron in an 

h l borthonormal basis:(1,τ,0)

• τ is the solution of x2=x+1;  τ2= τ+1

• The Fibonnacci series gives approximation to τ.     1, 1, 2, 3, 5, 8,13,21,34,55. For instance 3/2=1 5 55/34=1 6176instance 3/2=1.5  55/34=1.6176..

• The power of τ can be calculated with the Fibonnacci series:  τn= Unτ+Un‐1

For instance τ4= 3τ+2  (this can be generalised to negative power of τ)

Page 44: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The golden meang

• Found in phyllotaxy : number of left and right spirals are two following Fib i b R l d d ki ffi iFibonnacci number. Related to seed packing efficiency.

Page 45: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The golden meang

• Found in phyllotaxy : number of left and right spirals are two following Fib i b R l d d ki ffi iFibonnacci number. Related to seed packing efficiency.

Page 46: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The Fibonacci chain.

Two segments (‘tiles’) L and S, L/S=τ=1.618…g ( ) , /inflation construction S L  and L LS

• S L LS LSL LSLLS LSLLSLSL LSLLSLSLLSLLS• S,  L, LS, LSL, LSLLS, LSLLSLSL, LSLLSLSLLSLLS…

• If L/S= τ , aperiodically ordered structure.

• Fn=Fn‐1Fn‐1  Concatenation of two preceding ‘words’

• Number of L (S) tiles NL (NS):  NL/NS = τ

• Local order: no SS or LLL sequence for instance.

Page 47: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The Fibonacci chain.

• LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS …

• Self similarity and Inflation properties:

• If we multiply all vertices by τ one obtains the same• If we multiply all vertices by τ one obtains the sameFibonnacci chain. (True also for deflation by 1/τ )

• Quasiperiodic order: take any portion of the chainanother one is found nearby. True for any size.

• LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS….

• LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS• LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS….

Page 48: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

The Fibonacci chain.

• LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS …

• Diffraction pattern: from the general expression:

Position of the nth point is given by:Position of the n point is given by:

⎥⎥

⎢⎢+=nanaL ⎥

⎥⎢⎢n Is the Integer part

• This gives two length scale: 1 and τ⎥⎦⎢⎣

+=ττ

naLn ⎥⎦⎢⎣τIs the Integer part

a and    a+a/τ = a+a(τ‐1) = a τ

• This definition can be used to compute de diffraction pattern:  Bragg peaksand position defined by:

)'(11

2', hha

hh ττ

++

=k1a τ+

Page 49: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Fibonnacci chain diffraction patternp

)'(12' hhhh τ+=k

• Two irrational 

)(1 2,

ahh

τ+

length scale:

525701= 5257.0

1 2=

85060τ

b dd f

8506.01 2

=+τ

• 2‐D embedding of the diffraction pattern 

Page 50: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2D embedding of the diffraction patterng p

)'(11

2', hha

hh ττ

++

=k1a τ+

tgα = 1/τ α=31.7..°

Page 51: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D embedding of the Fibonacci chaing fE//

E┴

e2

α e1

Square lattice: basis (e1,e2)

Epar (or external space), Physical space , with irrational slope 1/τ

Eper (or internal space) per (or internal space)

Page 52: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D embeddingg

E// • (e1,e2) basis of the square l iE┴lattice, parameter a.

• Projection on Epar and Eper (Eintand E )

e2

and Eext).

• tgα = 1/τ α=31.7..°

( ) /√(2 ) 0 8506α e1

• cos(α) = τ/√(2+τ)=0.8506…• sin(α) = 1/√(2+τ)=0.5257…

d j l h• e1 and e2 projects on two length τasin(α) and asin(α) on the parallel space⎞⎛⎟

⎞⎜⎛

⎟⎞

⎜⎛ 1 naX τ parallel space.

⎟⎠

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−+=⎟⎟

⎞⎜⎜⎝

2

1

1

12 n

naXX

per

par

τ

ττ

Page 53: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D embedding of the Fibonacci chaing

Atomic surfaces along Eper decorate the square lattice

‘Atomicsurfaces’surfaces

Length of the atomic surface: projection of the square latticealong E : L = a(1+τ)/√(2+ τ)= a 1 376along Eper. : L   a(1+τ)/√(2+ τ)  a.1.376…

Page 54: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D Embeddingg

E┴E//

• 1D QC is obtained as a section of the 2D decorated QCQ Q

Page 55: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D Embedding: the ‘strip’ methodg p

E┴E//

Selection of lattice points in the strip then projectionSelection of lattice points in the strip, then projection.

Page 56: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D embedding of the Fibonacci chaing

1D L L L L L LS L S S S1D

Page 57: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D embedding of the Fibonacci chaing

Th 2 D U it llThe 2‐D Unit cellcontains all the information oninformation on local order.

B Point density = 

ALper/a2

Page 58: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Local environments

When do we E

E┴

find a point followed by another one at

E//

another one at a distance L on the right?the right?

Page 59: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Local environments

Point followed E

E┴by L on the right

E//

Displacement i 2D iin 2D is e1Projection is  L in parallelin parallel space and S in perp space

⎞⎛⎞⎛⎞⎛p p p

⎟⎠

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−+=⎟⎟

⎞⎜⎜⎝

2

1

1

12 n

naXX

per

par

τ

ττ

Page 60: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Local environments

X

e1

X1parX1per

• e1= (X1par , X1per)

• Existence domain of theExistence domain of the configuration L:

Intersection between the atomic⎞⎛⎞⎛⎞⎛

Intersection between the atomic surface and its copy translated by X1per .

⎟⎠

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−+=⎟⎟

⎞⎜⎜⎝

2

1

1

12 n

naXX

per

par

τ

ττ

1per 

Page 61: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Local environment.

• Existence domain: The size of the intersection is proportional to theintersection is proportional to the frequency of the configuration in the infinite structurethe infinite structure

• Case of theCase of the configuration S

e = (X X )e2= (X2par , X2per) The perp translation is 

now Xnow X2per

The existence domain is smaller of a factor τsmaller of a factor τ

Page 62: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Local environment of the Fibonacci chain• First distances either L or Seither L or S 

• Related to the ‘connection’ ofconnection  of atomic surfaces.

P ti f L• Proportion of L and S is relatedto respectiveto respective length of occupation domain here in the ration 1 and τ

Page 63: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Exercice• Demonstrate, using the 2D representation, that the sequence LLL does not exists in the Fibonacci chainsequence LLL does not exists in the Fibonacci chain.

Eper

Epar

Page 64: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Exercice• Demonstrate, using the 2D representation, that the sequence LLL does not exists in the Fibonacci chainsequence LLL does not exists in the Fibonacci chain.

Page 65: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Exercice• Compare the 2 generated QC

If i fi it t b i d b t th i• If infinity: cannot be superimposed, but there is a translation allowing to superimpose any patch

Eper

• Same diffraction (only a phase shift)

Epar

Page 66: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

General 1D quasiperiodic structure

1D L L L L L LS L S S S1D

Page 67: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

General 1D quasiperiodic structureLength (shape) of the AS.

1D1D

Page 68: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

General 1D quasiperiodic structureLength (shape) of the AS. Decoration of unit cell

1D

Page 69: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

General 1D quasiperiodic structureParallel component of the AS

Relaxation of local environment

Can be a continuous or discontinuous displacement.

Relaxation can be associatedwith local environments and used in the furtherrefinement..

Page 70: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Summaryy• The 1D quasicrystal is obtained by a section of a decorated square lattice.decorated square lattice.

• Decoration by atomic surfaces lying in the perpendicular spaceperpendicular space.

• 2D image of the 1D quasicrystal allows to understand it l l i t di t d f iits local environment: distances and frequencies

• Frequency given by the size of the existence domain obtained by geometric Xperp translation.

• QC characterized by: position and shape of the atomic surfaces. Their chemical decoration. Parallel component related to structure relaxation

Page 71: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction pattern of the 1D QCp Q

1‐ Diffraction pattern of the 2D decorated lattice:Th i i f (AS) i i Ri hi h dThere are  i atomic surfaces (AS) at positions Ri which decorate the 2D square lattice.

The electron or atomic density can be expressed as theThe electron or atomic density can be expressed as the convolution product between the lattice and the decoration. Gi(Rper) represents the shape function of the ASGi(Rper) represents the shape function of the AS

0.8

1

1.2

0 2

0.4

0.6

0.8

Gi

-0.2

0

0.2

-10 -5 0 5 10R

perp

Page 72: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction Pattern 

FT= FT(lattice).FT(decoration)

Reciprocal space: G(H ) is the FT of the atomic surface orReciprocal space: G(Hper) is the FT of the atomic surface or occupation domain.

FT(lattice) is a square lattice parameter 1/aReciprocal space also decomposes in two sunspaces: parallel and perpendicular space.

Page 73: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction Pattern: Fibonacci chain

)(1)()( 22,1 pernn Ga

F HΗKK −= δa

LQLQ

LHGper

perper π

π )sin()( = L is the length of the AS

0.8

1

Qper

0

0.2

0.4

0.6

G(Q

per)

-0.4

-0.2

0

0 0.5 1 1.5 2 2.5 3 3.5 4Qper

Page 74: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction Pattern: Fibonacci chain

0.6

0.8

1

Intensity is given by G(Qper)

0 2

0

0.2

0.4

G(Q

per) Strong intensity for small values of 

Qperpn1 n2 Fibonacci n mbers

-0.4

-0.2

0 0.5 1 1.5 2 2.5 3 3.5 4Qper

n1,n2 Fibonacci numbers 

Page 75: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction patternp

2‐ Projection of the diffraction pattern to 1D.

Page 76: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

2‐D Diffraction pattern Fibonacci Diffraction patternp p

Qpar• The 1D diffraction pattern is dense Infinite number of Braggsdense. Infinite number of Braggs• But above a certain threshold only a finite number of Bragg peaks  in a given Q range• τ scaling of the position and i t iti (1 1) (2 1) (3 2)intensities: (1, 1), (2,1), (3,2)…

Page 77: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Diffraction patternp

• Compare the parallel and• Compare the parallel and perpendicular component of (1 1) and (2 1)of (1,1) and (2,1)

• Par: τ+1 and 2τ+1= τ(τ+1)

Per: ‐1+τ and  ‐2+τ=‐(‐1+τ)/τ

τ scaling in par and ‐1/τ in perp

Inflation matrice ⎟⎞

⎜⎛ 11Inflation matrice  ⎟

⎠⎜⎝ 01

Page 78: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Fibonacci Diffraction pattern

Qpar

Decorated lattice

Interferencesbetween thedifferent FT

Q

different FT of the ASScaling different

Qpar

Page 79: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Summaryy

• 1D diffraction pattern is the projection of the 2D onep p j

• Indexing(n1,n2) and (Hpar, Hper). 

• FT contains two terms: FT of the AS + interferences• FT contains two terms: FT of the AS + interferences

• Large intensity for small Hper component

• The 1D diffraction pattern is densely filled by Bragg p y y ggpeaks, but only a finite number above a threshold.

• τ scalingτ scaling

Page 80: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Structure determination

• From diffraction data to a structural model. 1D example.

1‐ Indexing the diffraction pattern.1 Indexing the diffraction pattern.

How to chose the lattice parameter and indices ?

St B k h ld h ll H‐ Strong Bragg peaks should have a small Hpercomponent.

‐ List of indices to be compared to the diffraction pattern

‐ Problem of the τ scaling. 

Page 81: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Indexingg

• Lattice parameter pambiguity within tau

• Choice from localChoice from local order configuration (pseudo tile,(pseudo tile, distances …)

Page 82: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Fourier map

• 2‐ Phasing structure factors

• 2D Patterson analysis : gives the position and rough shape of the AS: first phasingp p g

• Phase reconstruction: maximum charge density (V. Elser), low density elimination (H. Takakura), chargeElser), low density elimination (H. Takakura), charge flipping (L. Palatinus). Allows to compute a densitymap, much easier to interpret than the Pattersonmap, much easier to interpret than the Patterson

Page 83: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Example of 1D QC 

a

2D Density

2D Patterson

Page 84: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Fourier Transform of phased Amplitudes: Densityp p y

‘Split positions’ due to Fourier truncation effect: twosites with partial occupancy and short distancep p y

Page 85: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Modelingg

• Modeling is necessaryg y

• Unlike modulated and composites phase there is no general procedure.general procedure.

• ‘Hand made’ building of the model

S l l• Some general rules:

‐ Chemistry, density and chemical composition

‐ Short distances and local environment

‐ Periodic approximant structurePeriodic approximant structure

Page 86: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal and approximant

• Rational tilt of Epar generates a periodicapproximant : slope 1/1, 2/1 3/2 instead of2/1, 3/2… instead of τ=1.618…

A i d QC• Approximant and QC share the same local envtor clustersor clusters

• Series of approximant with larger and larger unitwith larger and larger unit cells

CdYb t 1/1 d 2/1

1/1  LSLSLS    a1/1=τ+12/1 LSLLSL a2/1=2τ+1=? a1/1 • CdYb system: 1/1 and 2/1 

approximant

2/1  LSLLSL    a2/1 2τ+1 ? a1/1

Page 87: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Quasicrystal and approximant

• The correct formulation is actually a shear strain of the periodic lattice.

• Strain along the perpendicular space: h iphason strain

• τ is replaced by a Fibbonacci approximant: 1/1, 2/1, 3/2 

⎞⎛⎞⎛3/2 approximant ⎟

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−+=⎟⎟

⎞⎜⎜⎝

2

1

1

12 n

naXX

per

par

τ

ττ ⎠⎝⎠⎝⎠⎝ 2per

Page 88: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Similar diffraction patternp

Approximant1-1

Intensity(1/1)Intensity(Fibo)

0.8

1

0.6

0.8

y(1/

1)

0.4

nten

sity

0.2

In

00 1 2 3 4 5 6

Q (a2d=1)

Page 89: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Similar diffraction patternp

Approximant1-1

Intensity(1/1)Intensity(Fibo)

0 1

1Approximant1-1

0.01

0.1

(1/1

)

0.001

nten

sity

(

0.0001

In

10-5

0 1 2 3 4 5 6Q (a2d=1)Q ( )

Page 90: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Similar diffraction patternp

Approximant2-1

Intensity(2/1)Intensity(Fibo)

0 1

1Approximant2-1

0.01

0.1

(1/1

)

0.001

nten

sity

(

0.0001

In

10-5

0 1 2 3 4 5 6Q (a2d=1)Q ( )

Page 91: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Phason strain

Fibonacci planes

Rper=R0per + αYparper per par

Page 92: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Phason strain

0• Rper=R0per + αYpar

Hpar=Hxpar + ΔHyparp p p

+   ΔHypar = ‐ αHxper

S shift larger for large HS  shift larger for large Hxper

Page 93: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Closeness condition

• Phason degree of freedom

• Free energy is invariant under aFree energy is invariant under a rigid translation along Eper

• LS  SL 

Page 94: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Closeness condition

• Phason degree of freedom

• Free energy is invariant under aFree energy is invariant under a rigid translation along Eper

• LS  SL 

• Atomic surfaces are connected (no ‘creation or anhinilation of atom). 

• Constraint very difficult to fulfill in general cases.

Page 95: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Can quasiperiodic long range order propagatesCan quasiperiodic long range order propagates with local rules?

• Matching rules are not growing rules

Page 96: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Can quasiperiodic long range order propagatesCan quasiperiodic long range order propagates with local rules?

• But ‘local’ growth possible around a seed defect

Page 97: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Can quasiperiodic long range order propagatesCan quasiperiodic long range order propagates with local rules?

•Which atomic surfaces for matching rules?? Icosahedral bounded by 2Icosahedral bounded by 2‐fold planes (Katz and Gratias). Set of polyhedra to be usedto be used.

• Decagonal Cluster covering (Gummelt, Steinhardt) is a rephrasing of matching rules. Deca phase (Abe et al)phase (Abe et al)

Page 98: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Summaryy

• Structural solution:

• Indexing and space group

• Phasing (or Patterson analysis)Phasing  (or Patterson analysis)

• Fourier map: position and rough shape of the AS

M d li d fi• Modeling and refinement

Page 99: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Icosahedral symmetry

• Diffraction pattern indexed with a linear combination of 6 Vectors (5 fold axis of the icosahedron)of 6 Vectors (5‐fold axis of the icosahedron)• Periodicity in 6D space: 6D cube • Decomposed in two 3D spaces: paralell (or physical• Decomposed in two 3D spaces: paralell (or physical space) and perpendicular space

Page 100: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

3‐D Penrose tiling

• 3D tiling with icosahedral symmetry.

• 2 tiles, with edges // to a 5‐fold axis. 

Prolate Oblate

Page 101: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

3D Penrose tilingSection of a 6D cube decorated by aSection of a 6D cube decorated by a 

triacontahedron (Atomic surface) in perp space

2‐fold section of the 6D cube

Triacontahedron lying in Perpendicular spacep p

2‐fold trace of the Triaconta

Page 102: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

3D Penrose tilingSection of a 6D cube decorated by aSection of a 6D cube decorated by a triacontahedron (Atomic surface)

2‐fold section of the 6D cube

b

b

b

c

c

Prolate (physical space)(p y p )

Page 103: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

5‐fold section of the 6D cubef f

5-fold section of the 6D cube• 5-fold rational section

• Information on 5-fold axis.

• Allows to visualise three o s to sua se t eeWickoff position of the 6D cube, possible for the ME BC

decoration:

Origin: (000000)Body center: 0.5(111111)Mide edge: 0.5(100000)

Page 104: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Icosahedral space groupsp g p

• There are different space group, related to the p g p,icosahedral Bravais lattice

• This give extinction conditions.This give extinction conditions.

St t l ti i f ll i th• Structure solution is following the same process as the 1D example

• Complex shape of atomic surfaces but related to local environments

• Real space modeling is also complementary

Page 105: QUASICRYSTALS: an introductionsig3.ecanews.org/isac2010/lectures/05_deboissieu_qc_intro.pdf · 1. Quasicryy gstal : general introduction 2. The Fibonnacci chain 3. Generalised1D quasicrystals

Conclusion

• The high dimensional space description is a powerful g p p ptool for the structure analysis of QC

• No general algorithm, but strong connection between the high dim space and the localbetween the high dim space and the local environment

• Position, shape, chemical nature and local relaxation of the atomic surfaces : refinement is possible.