36
QCD phase transitions with functional methods Christian S. Fischer JLU Giessen Feb. 2011 C.F., A. Maas and J. A. Mueller, EPJ C68 (2010) 165-181. J. A. Mueller, C.F. and D. Nickel, EPJ C70 (2010) 1037 J. Luecker, C.F., J. A. Mueller, in preparation Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 1 / 34

QCD phase transitions with functional methods · 2017. 2. 27. · J. A. Mueller, C.F. and D. Nickel, EPJ C70 (2010) 1037 J. Luecker, C.F., J. A. Mueller, in preparation Christian

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • QCD phase transitions with functional methods

    Christian S. Fischer

    JLU Giessen

    Feb. 2011

    C.F., A. Maas and J. A. Mueller, EPJ C68 (2010) 165-181.

    J. A. Mueller, C.F. and D. Nickel, EPJ C70 (2010) 1037

    J. Luecker, C.F., J. A. Mueller, in preparation

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 1 / 34

  • Content

    1 Introduction

    2 Properties of SU(N) Yang-Mills theoryT = 0T 6= 0

    3 Chiral and deconfinement transitions in QCD

    4 Quark spectral functions

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 2 / 34

  • Content

    1 Introduction

    2 Properties of SU(N) Yang-Mills theoryT = 0T 6= 0

    3 Chiral and deconfinement transitions in QCD

    4 Quark spectral functions

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 3 / 34

  • FAIR: CBM and PANDA

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 4 / 34

  • QCD phase transitions

    Existence and locationof CEP

    Propagation of gluons inQGP

    Properties of quarks inQGP

    Chiral limit (Mweak → 0): order parameter chiral condensate

    〈ψ̄ψ〉 = Z2NcTrD

    ∫d4p(2π)4

    S(p)

    Static quarks (Mweak → ∞): order parameter Polyakov-loop

    Φ ∼ e−Fq/T

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 5 / 34

  • Why we need Functional Methods like the RG

    Quark-meson model:

    B.-J. Schaefer, J. Wambach PRD 75 (2007) 085015

    determine size of critical region from quark number susceptibility

    χq(T , µ) = ∂n(T , µ)/∂µ

    RG: dramatic decrease in size !→ relevant for CBM

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 6 / 34

  • QCD in covariant gauge

    quarks, gluons and ghosts:

    ZQCD =

    ∫D[Ψ,A, c] exp

    {−

    ∫d4x

    (Ψ(iD/ − m)Ψ

    −14

    (F aµν)2

    +(∂A)2

    2ξ+ c̄(−∂D)c

    )}

    SQCD =∫

    d4x(

    −1+ +

    −1+ +

    −1+ +

    )

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 7 / 34

  • QCD in covariant gauge

    ZQCD =

    ∫D[Ψ,A, c] exp

    {−

    ∫ 1/T

    0dt∫

    d3x(Ψ̄ (iD/ − m)Ψ

    −14

    (F aµν)2

    +(∂A)2

    2ξ+ c̄(−∂D)c

    )}

    Landau gauge (ξ = 0) propagators in momentum space, q = (~q, ωq):

    DGluonµν (q) =ZT (q)

    q2PTµν(q) +

    ZL(q)q2

    PLµν(q)

    SQuark(q) =1

    −i ~γ~q A(q)− i γ4ωn C(q) + B(q)

    The Goal:Gauge invariant information from gauge fixed functional approach

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 8 / 34

  • Green’s functions

    QCD Green’s functionsare connected to confinement:

    Gribov-Zwanziger and Kugo-Ojima scenariosRunning CouplingPositivityPolyakov Loop

    encode DχSB

    are ingredients for hadron phenomenologyBound state equations:Bethe–Salpeter equation / Faddeev equationForm factors, decays etc.

    The Goal:Gauge invariant information from gauge fixed functional approach

    The Tool:Dyson-Schwinger and Bethe-Salpeter-equations (DSE/BSE)

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 9 / 34

  • Lattice QCD vs. DSE/FRG: Complementary!

    Lattice simulations

    ◮ Ab initio

    ◮ Gauge invariant

    Functional approaches:Dyson-Schwinger equations (DSE)Functional renormalisation group (FRG)

    ◮ Analytic solutions at small momenta

    ◮ Space-Time-Continuum

    ◮ Chiral symmetry: light quarks and mesons

    ◮ Multi-scale problems feasible: e.g. (g-2)µT. Goecke, C.F., R. Williams, arXiv:1012.3886 [hep-ph]

    ◮ Chemical potential: no sign problem

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 10 / 34

  • Content

    1 Introduction

    2 Properties of SU(N) Yang-Mills theoryT = 0T 6= 0

    3 Chiral and deconfinement transitions in QCD

    4 Quark spectral functions

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 11 / 34

  • Dyson-Schwinger equations (DSEs)

    −1

    =

    −1

    -1

    2

    -1

    2-

    1

    6

    -1

    2+

    −1

    =

    −1

    -

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 12 / 34

  • DSEs vs Lattice (T = 0)

    0 1 2 3 4 5p [GeV]

    0

    0.5

    1

    1.5

    ZT=Z

    L

    Bowman (2004)Sternbeck (2006)DSEFRG

    Deep infrared: Interesting and subtle questions

    Physics: positivity violation, glueball states

    L. von Smekal, R. Alkofer, A. Hauck, PRL 79 (1997) 3591-3594.C.F., A. Maas and J. M. Pawlowski, Annals Phys. 324 (2009) 2408-2437.

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 13 / 34

  • Glue at finite temperature T 6= 0

    T -dependent gluon propagator from lattice simulations:

    0 5 10 15

    p2 [Gev

    2]

    0

    0.5

    1

    1.5

    2

    2.5

    ZT(p

    2 )

    T=0T=0.6 T

    cT=0.99 T

    cT=2.2 T

    c

    0 5 10 15

    p2 [Gev

    2]

    0

    0.5

    1

    1.5

    2

    2.5

    ZL(p

    2 )

    T=0T=0.6 T

    cT=0.99 T

    cT=2.2 T

    c

    Difference between electric and magnetic gluon

    Maximum of electric gluon at Tc

    Cucchieri, Maas, Mendes, PRD 75 (2007)

    C.F., Maas and Mueller, EPJC 68 (2010)

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 14 / 34

  • Gluon screening mass

    0 0.5 1 1.5 2 2.5T/T

    c

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4m

    el (lattice)

    SU(2) - ’new’ data

    0 0.5 1 1.5 2 2.5T/T

    c

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4 mel

    (lattice)Fits

    SU(3) - ’new’ data

    C.F., Maas, Mueller, EPJC 68 (2010)

    ZT ,L(q,T )q2Λ2

    (q2+Λ2)2

    {

    (

    cq2+Λ2aT ,L(T )

    )bT ,L(T )

    + q2

    Λ2

    (

    β0α(µ) ln[q2/Λ2+1]

    )γ}

    SU(2): 2nd order phase transition not yet visible

    Fits more reliable at large T than lattice: m ∝ T

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 15 / 34

  • Content

    1 Introduction

    2 Properties of SU(N) Yang-Mills theoryT = 0T 6= 0

    3 Chiral and deconfinement transitions in QCD

    4 Quark spectral functions

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 16 / 34

  • The ordinary chiral condensate�1 = �1 +gluon propagator from DSE/lattice

    T = 0 : quark-gluon vertex studied via DSEsAlkofer, C.F., Llanes-Estrada, Schwenzer, Annals Phys.324:106-172,2009.

    C.F, R. Williams, PRL 103 (2009) 122001

    T 6= 0 : temperature and mass dependent ansatz

    Order parameter for chiral symmetry breaking:

    〈ψ̄ψ〉 = Z2NcT∑

    np

    ∫d3p(2π)3

    TrD S(~p, ωp)

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 17 / 34

  • T = 0: Explicit vs. dynamical chiral symmetry breaking

    �1 = �1 +

    10-2

    10-1

    100

    101

    102

    103

    p2 [GeV

    2]

    10-4

    10-3

    10-2

    10-1

    100

    101

    Qua

    rk M

    ass

    Fun

    ctio

    n: M

    (p2 )

    Bottom quarkCharm quarkStrange quarkUp/Down quarkChiral limit

    C.F. J.Phys.G G32 (2006) R253-R291

    M(p2) = B(p2)/A(p2):momentum dependent!

    Dynamical massesMstrong(0) ≈ 350 MeV

    Flavour dependencebecause of Mweak

    〈ψ̄ψ〉 ≈ (250MeV)3

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 18 / 34

  • T 6= 0: Chiral symmetry restauration

    SQuark(q) =1

    −i ~γ~q A(q)− i γ4ωn C(q) + B(q)

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    p2

    [GeV2]

    10-3

    10-2

    10-1

    100

    B(i

    ω0,

    p) [

    GeV

    ]

    T= 130 MeVT= 190 MeV

    m(µ)=1.85 MeV

    10-4

    10-2

    100

    102

    104

    p2

    [GeV2]

    1

    1.2

    1.4

    1.6

    1.8

    A(i

    ω0,

    p) ,

    C(i

    ω0,

    p)

    T= 130 MeVT= 190 MeV

    m(µ)=1.85 MeV

    A(iω0,p)

    C(iω0,p)

    dynamical effects below Tc ↔ ’HTL-ish’ above Tc

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 19 / 34

  • The Polyakov Loop

    Φ =

    〈1

    NcTrDP exp

    {i∫ 1/T

    0A4 dt

    }〉∼ e−Fq/T

    Lattice:

    x

    t

    Order parameter for centersymmetry breaking:Φ = 0 : confinedΦ 6= 0 : deconfined

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 20 / 34

  • The dual condensate I

    Consider general U(1)-valued boundary conditions in temporaldirection for quark fields ψ:

    ψ(~x ,1/T ) = eiϕψ(~x ,0)

    Matsubara frequencies: ωp(nt) = (2πT )(nt + ϕ/2π)

    Lattice:ϕ

    e i

    〈ψψ〉ϕ ∼∑ exp[i ϕn]

    (am)l Closed Loops

    E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, PRD 77 (2008) 094007.F. Synatschke, A. Wipf and C. Wozar, PRD 75, 114003 (2007).

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 21 / 34

  • The dual condensate II

    Then define dual condensate Σn:

    Σn = −

    ∫ 2π

    0

    dϕ2π

    e−iϕn 〈ψψ〉ϕ

    n = 1 projects out loops with n(l) = 1: dressed Polyakov loop

    transforms under center transformation exactly like ordinaryPolyakov loop: order parameter for center symmetry breaking

    Σ1 is accessible with functional methodsC.F., PRL 103 (2009) 052003

    C. Gattringer, PRL 97, 032003 (2006)F. Synatschke, A. Wipf and C. Wozar, PRD 75, 114003 (2007).E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, PRD 77 094007 (2008).F. Synatschke, A. Wipf and K. Langfeld, PRD 77, 114018 (2008).J. Braun, L. Haas, F. Marhauser, J. M. Pawlowski, PRL 106 (2011)

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 22 / 34

  • Condensate: angular dependence in chiral limit

    Σ1 = −

    ∫ 2π

    0

    dϕ2π

    e−iϕ 〈ψψ〉ϕ

    Width of plateau is T -dependent, 〈ψψ〉ϕ(ϕ = 0) ∼ T 2

    C.F. and Jens Mueller, PRD 80 (2009) 074029.

    Jens Mueller, PhD-thesis, TU Darmstadt, 2010Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 23 / 34

  • Transition temperatures, quenched

    quenched, DSE

    0 0.5 1 1.5 2 2.5T/T

    c

    0.00

    0.05

    0.10Polyakov loopCondensate

    C.F., Maas, Mueller, EPJC 68 (2010).Mueller, PhD-thesis.

    SU(2): Tc ≈ 305 MeVSU(3): Tc ≈ 270 MeV

    increasing condensate due toelectric part of gluon

    quenched, FRG

    J. Braun, H. Gies, J. M. Pawlowski, PLB 684 (2010) 262-267.

    Polyakov loop potential viagluon/ghost propagators

    cf. Buividovich, Luschevskaya, Polikarpov, PRD 78 (2008) 074505.

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 24 / 34

  • Transition temperatures, Nf = 2DSE

    0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19T [GeV]

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    Polyakov LoopCondensate

    Luecker, C.F., Mueller, in preparationMueller, PhD-thesis TU Darmstadt 2010.

    reduction of Tc: Tc ≈ 165 MeV

    ’usual’ behaviour ofcondensate

    FRG

    0

    0.2

    0.4

    0.6

    0.8

    1

    150 160 170 180 190 200 210 220 230

    T [MeV]

    fπ(T)/fπ(0)

    Dual density

    Polyakov Loop

    160 180 200

    χ L,d

    ual

    J. Braun, L. Haas, F. Marhauser, J. M. Pawlowski, PRL 106(2011) 022002

    chiral limit

    Tχ ≃ Tconf ≃ 180 MeV

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 25 / 34

  • µ 6= 0 : Chiral and deconfinement transition

    0 100 200 300µ [MeV]

    0

    50

    100

    150

    200

    T [

    MeV

    ]

    Polyakov Loopkonjugate P.-Loopchiral crossoverchiral 1st orderCEP

    approximation: backcoupling of quarks onto glue via HTL

    CEP at (T , µ) ≃ (85,275) MeV

    Small µ: difference between Φ and Φ̄ with Φ < Φ̄C.F., Luecker, Mueller, in preparationJ. Mueller, PhD-thesis, TU Darmstadt, 2010

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 26 / 34

  • Content

    1 Introduction

    2 Properties of SU(N) Yang-Mills theoryT = 0T 6= 0

    3 Chiral and deconfinement transitions in QCD

    4 Quark spectral functions

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 27 / 34

  • Framework

    Vital input into transport approaches (HSD,...)

    Computation of quark-loop contribution of dilepton productionBraaten, Pisarski, Yuan, PRL 64, 1990

    Idea: Fit spectral representation to quark propagatorF. Karsch and M. Kitazawa, PRD 80, 056001 (2009).F. Karsch and M. Kitazawa, PLB 658, 45 (2007).

    S(ωp, ~p) =∫

    dω′ρ(ω′, ~p)ωp − ω′

    Use ansatz for spectral function:

    ρ(ω) = Z1 δ(ω − E1) + Z2 δ(ω + E2)

    Pseudoparticles: Quark and Plasmino (idealized!)

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 28 / 34

  • Results I: Deconfinement and quark analytic structure

    0 0.2 0.4 0.6 0.8 1τT

    0.04

    0.2

    1

    S(τ)

    T≈1.03Tc

    T≈0.92Tc

    T≈0.73Tc

    Mueller, C.F., Nickel, EPJ C70 (2010) 1037

    T > Tc : Two pole ansatz works: quark and plasmino

    T < Tc : No fit with only real poles; positivity violations

    Alternative criterion for deconfinement

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 29 / 34

  • Results II: Mass dependence of quark and plasmino

    Lattice DSE

    1

    2

    3

    4

    5

    E1/

    T ,

    E2/

    T

    0 0.25 0.5 0.75 1mµ/T

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Z2/

    (Z+

    Z2) T/Tc= 2.2

    T/Tc= 1.5

    T/Tc= 1.25

    Karsch and Kitazawa, PRD 80, 056001 (2009). Mueller, C.F., Nickel, EPJ C70 (2010) 1037

    Qualitative agreement with lattice results

    Large quark masses: plasmino disappears

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 30 / 34

  • Results III: Dispersion Relation

    Lattice DSE

    1

    2

    3

    4

    5

    E1/

    T ,

    E2/

    T

    T/Tc= 2.2

    T/Tc= 1.5

    T/Tc= 1.25

    0 1 2 3 4 5p/T

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Z2/

    (Z1+

    Z2)

    E2/T

    (plasmino)

    E1/T

    (normal)

    Karsch and Kitazawa, PRD 80, 056001 (2009). Mueller, C.F., Nickel, EPJ C70 (2010) 1037

    Min for Plasmino at p 6= 0

    Plasmino enters spacelike region → fit function incomplete!

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 31 / 34

  • Results IV: Dispersion Relation - Details

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    E1/

    T ,

    E2/

    T

    T/Tc=2.2

    T/Tc=1.5

    0 0.2 0.4 0.6 0.8 1p/T

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Z2/

    Zto

    t

    E2/T

    E1/T

    0.75

    0.8

    0.85

    0.9

    0.95

    E1/

    T ,

    E2/

    T

    T/Tc=2.2

    T/Tc=1.5

    0 0.05 0.1 0.15 0.2p/T

    0.42

    0.44

    0.46

    0.48

    0.5

    Z2/

    (Z1+

    Z2)

    E2/T

    E1/T

    Include continuum part (Landau damping) into fits:

    ρP±(ω, |p|) = 2π

    [

    Z1δ(ω ∓ E1) + Z2δ(ω ± E2)]

    |p|m2T (1 ∓

    ω

    |p|)Θ(1 − (

    ω

    |p|)2)

    [

    (

    |p| (1 ∓ω

    |p|) ±

    m2T2 |p|

    [

    (1 ∓ω

    |p|) ln

    ω

    |p| + 1

    ω

    |p| − 1

    ± 2])2

    +π2m4T4|p|2

    (1 ∓ω

    |p|)2]−1

    Dashed lines: HTL-result of slope at p → 0.Mueller, C.F., Nickel, EPJ C70 (2010) 1037

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 32 / 34

  • Summary: QCD phase transitions

    Summary:

    Temperature dependent gluon propagator:characteristic behavior of electric screening mass at TcSimilar Tc from dressed Polyakov-loop calculated from DSEs

    Similar chiral Tc from ordinary quark condensate

    Finite chemical potential beyond mean field

    Quark spectral functions: quarks and plasminos

    Outlook:

    Quark spectral functions at finite chemical potential

    Thermodynamic observables

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 33 / 34

  • Thank you for your attention!

    Happy Birthday and Happy Retirement, Ulrich!

    Helmholtz Young Investigator Group ”Nonperturbative Phenomena in QCD”

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 34 / 34

  • Gluon and Quark-Gluon-Vertex

    Ansatz for Quark-Gluon-Vertex:

    Γν(q, k ,p) = Z̃3

    (δ4νγ4

    C(k) + C(p)2

    + δjνγjA(k) + A(p)

    2

    ×

    (d1

    d2 + q2+

    q2

    Λ2 + q2

    (β0α(µ) ln[q2/Λ2 + 1]

    )2δ).

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 33 / 34

  • Ghost, Glue and Coupling

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    p2 [GeV

    2]

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    G(p2)

    Z(p2)

    ’decoupling’’decoupling’

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    p2 [GeV

    2]

    10-1

    100

    101

    α(p2

    )

    running coupling

    dynamically generated scalefixed point of coupling α(p2) = g2/(4π)Z (p2)G(p2) ≈ 9/Ncdeep infrared (p < 50 MeV): scaling vs. decoupling

    CF and Alkofer, PLB 536 (2002) 177. C. Lerche and L. von Smekal, PRD 65, 125006 (2002)

    C.F., A. Maas and J. M. Pawlowski, Annals Phys. 324 (2009) 2408-2437.

    Christian S. Fischer (JLU Giessen) QCD phase transitions with functional methods Feb. 2011 34 / 34

    ContentMain TalkIntroductionProperties of SU(N) Yang-Mills theoryT=0T =0

    Chiral and deconfinement transitions in QCDQuark spectral functions