67
1 PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF THIN FILMS By DAN R. DENOMME A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2012

PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

1  

PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF THIN FILMS

                                   

By  

DAN R. DENOMME  

                                                       

A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE  

UNIVERSITY OF FLORIDA  

2012

Page 2: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

2  

                                             

© 2012 Dan Denomme

Page 3: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

3  

ACKNOWLEDGEMENTS  

This thesis would not have been possible without the guidance and patience of my

research advisor Professor Lisa McElwee-White. I am also indebted to many

colleagues who have supported me along the way a couple of those who have been

crucial are Jürgen Koller and K. Randall McClain. I am extremely grateful to Khalil

Abboud for being a great mentor, friend, and boss. I owe my deepest gratitude to my

friends and family who have been crucial to my success.

Page 4: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

4  

TABLE OF CONTENTS  

page  ACKNOWLEDGEMENTS ............................................................................................... 3  LIST OF TABLES ............................................................................................................ 6  LIST OF FIGURES.......................................................................................................... 7  LIST OF SCHEMES ........................................................................................................ 8  ABSTRACT ..................................................................................................................... 9  CHAPTER  1 INTRODUCTION .................................................................................................... 11  

Thin Films ............................................................................................................... 11 Chemical Vapor Deposition and Atomic Layer Deposition ...................................... 11

Interconnects .................................................................................................... 11 Refractory Metal Nitrides .................................................................................. 12

 2 ZIRCONIUM CARBIDE PRECURSORS ................................................................ 14  

Background............................................................................................................. 14 Results and Discussion........................................................................................... 16 Conclusion .............................................................................................................. 24 Experimental Section .............................................................................................. 25

 3 COMPOUNDS FOR DEPOSITION OF RU AND FE THIN FILMS ......................... 28  

Background............................................................................................................. 28 Results and Discussion........................................................................................... 29 Conclusion .............................................................................................................. 35 Experimental Section .............................................................................................. 37

 4 PRECURSORS FOR TUNGSTEN NITRIDE THIN FILMS ..................................... 40  

Background............................................................................................................. 40 Results and Discussion........................................................................................... 41 Experimental Section .............................................................................................. 42

 APPENDIX  A NMR DATA ............................................................................................................. 44  B IR SPECTRUM ....................................................................................................... 50

Page 5: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

5  

C X-RAY CRYSTALLOGRAPHY TABLES................................................................. 51  D MOLECULAR ORBITAL DIAGRAM OF 4............................................................... 61  REFERENCES.............................................................................................................. 62  BIOGRAPHICAL SKETCH ............................................................................................ 67

Page 6: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

6  

LIST OF TABLES  Table page  2-1 Crystallographic Structural Data for 3 ................................................................. 19  2-2 Selected Bond Angles (°) and Distances (Å) for 3 .............................................. 20

 2-3 Selected Bond Distances (Å) for 227 .................................................................. 21  3-1 Crystallographic Structural Data for 7 ................................................................. 30  3-2 Parameters for Selected CVD Runs with Compound 8 ...................................... 36

C-1 Atomic Coordinates for 3 .................................................................................... 51  C-2 Bond Lengths and Angles 3 ................................................................................ 51

 C-3 Anisotropic Displacement Parameters for 3 ....................................................... 56  C-4 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for 7 ... 57  C-5 Bond Lengths and Angles 7 ................................................................................ 60 C-6 Anisotropic Displacement Parameters for 7........................................................ 60

Page 7: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

7  

LIST OF FIGURES  Figure page  1-1 Dual Damascene Structure................................................................................. 13  2-1 Examples of phenyl propargyl zirconium complexes .......................................... 16  2-2 1H and 13C chemical shifts for one of the four equivalent phenylpropargyl

ligands of 3 ......................................................................................................... 17  2-3 Thermal ellipsoids drawing of the molecular structure of 3 ................................. 19  2-4 Resonance structures of propargyl zirconium complex ...................................... 21  2-5 Optimized derivative of 3 for DFT calculations ................................................... 22  2-6 Degenerate HOMO (top) and HOMO-2 (bottom) of propargyl complex 4........... 23  2-7 LUMO (top left), LUMO+1 (top right), and degenerate LUMO+2 (bottom) of

propargyl complex 4 ........................................................................................... 24  3-1 Ruthenium β-diketonates.................................................................................... 28  3-2 Compound 7 ....................................................................................................... 29  3-3 Thermal ellipsoids drawing of the molecular structure of 7................................. 31  3-4 Compound 8 ....................................................................................................... 32  3-5 TGA data of 7 and 8 ........................................................................................... 33  3-6 Atomic composition of films from three separate CVD runs ............................... 34  4-1 Single-source precursors for WN thin films ........................................................ 40  4-2 Diazo-tungsten complex 15-17 ........................................................................... 41  A-1 1H NMR spectrum of 3 ....................................................................................... 44  A-2 1H-13C gHMBC spectrum of 3 ............................................................................ 45  A-3 Expansion of the 1H-13C gHMBC spectrum of 3 ............................................... 46  A-4 1H NMR spectrum of 7 ...................................................................................... 47  A-5 1H NMR spectrum of 8........................................................................................ 48  A-6 1H NMR spectrum of 9........................................................................................ 49  B-1 IR of 7 .................................................................................................................. 50

Page 8: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

8  

LIST OF SCHEMES  Scheme page  2-1 Synthesis of Complex 3. ..................................................................................... 16  3-1 Synthesis of 7 ..................................................................................................... 30  3-2 Synthesis of 9 ..................................................................................................... 35

Page 9: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

9  

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science  

PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF THIN FILMS

 By

 Dan R. Denomme

 December 2012

 Chair: Lisa McElwee-White Major: Chemistry  

A variety of metal-organic complexes to be used as precursors for chemical vapor

deposition (CVD) of thin films were designed and synthesized. Tetra(η3-

phenylpropargyl)zirconium was created as a precursor for zirconium carbide (ZrC) thin

films. ZrC thin films have been used in many applications, one of those being a

component in field emitter arrays replacing thermionic emitters in vacuum tubes as

electron sources.

The phenylpropargyl zirconium compound was created by reacting ZrCl4 with

phenylpropargylmagnesium bromide to yield the first known example of a homoleptic

propargyl complex. Characterization was done by 1H NMR spectroscopy and X-ray

crystallography showing all four phenylpropargyl ligands coordinated to the Zr center in

an η3-mode resulting in a complex of D2d symmetry.

Dicarbonylmethylcyclopentadienyl ruthenium was synthesized from triruthenium  dodecacarbonyl and characterized by 1H NMR, X-ray crystallography, and TGA. This

volatile compound is an effective precursor for deposition of ruthenium metal thin films,

which have great potential as a copper diffusion barrier in integrated circuits. Initial

CVD experiments have been conducted. An analogous compound,

Page 10: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

10  

dicarbonylmethylcyclopentadienyl iron was synthesized to further study the thermal

decomposition during CVD. The iron derivative is similar in structure and volatility

allowing it to be a viable model compound for CVD optimization.

A third group of metal-organic precursors was researched. These compounds

contain the general formula W(NNCR2)Cl4, where R = phenyl or tolyl. The diazo

complexes of tungsten are a new class of potential precursors for deposition of WNx

and WNxCy thin films, a proven copper diffusion barrier material. Synthesis has been

attempted by combining WCl4 with the corresponding diazo ligand. Preliminary results

and characterization with 1H NMR spectroscopy indicate the compounds have been  produced with CVD experiments pending.

Page 11: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

11  

CHAPTER 1 INTRODUCTION

 Thin Films

 The ability to produce thin films of various materials has had a broad impact on

many applications. “Thin” is a relative term, and films with thicknesses less than a

micrometer will be addressed herein. While the first reported studies of thin films were

in the 17th century by Sir Isaac Newton it was not until the 20th century that their

relevance became well known.1 Thin films have been found to be useful in an  enormous array of applications. These applications include optics, where thin films can

be used as reflective or anti-reflective coatings. This was first seen in silvering, a

technique used to manufacture mirrors in the 19th century. Tools have benefited from

thin film coatings to enhance properties and effectiveness. One of the most interesting

fields in thin films is microelectronics. Batteries, chips, boards, and integrated circuits

have advanced with the help of thin films.

Chemical Vapor Deposition and Atomic Layer Deposition  

Chemical vapor deposition (CVD) and atomic layer deposition (ALD) are valuable

techniques used in the production of thin films .2,3 One of the advantages CVD and

ALD have over PVD is higher conformality when covering features with high aspect

ratios compared to the physical methods that rely on “line of sight” deposition. Also the

selection of precursors for CVD and ALD is larger allowing for a greater variety of

materials that can be deposited. 4

Interconnects  

Interconnects in microelectronic devices were made from aluminum up until the

turn of the millennium when Intel and other companies began the transition to copper as

Page 12: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

12  

the material for metallization. Copper has less RC delays, the slowing of electrons

along a wire due to resistance and capacitance, than aluminum and is less likely to

electromigrate. This has been known for some time, however the technology to use

copper was not available when microelectronics were first mass produced. It wasn’t

until 1991 when Howard demonstrated reactive ion etching on copper which was the

common practice in fabricating aluminum based interconnect material.5 Now the length  and complexity of the interconnects are growing and copper is needed to maintain high

speed transfer of electrons. While copper has advantages over aluminum it still diffuses

into the silicon and dielectric substrates it rests on forming copper silicide. To prevent

device failure a diffusion barrier is needed. The barrier has to have a low solubility for

copper, be durable, and not impede the flow of electrons.6

Refractory Metal Nitrides  

Refractory metal nitrides have been implemented as diffusion barriers due to their

superb physical and chemical properties. These transition metal nitrides are extremely

hard, have high melting points, resistant to corrosion and chemical reactivity, and are

conductive.4 Titanium nitride was the industry standard for aluminum diffusion barriers,

currently tantalum nitride is most commonly used for copper interconnects.7 Tantalum  nitride is an effective diffusion barrier, however copper does not adhere well to its

surface, therefore is a need for an additional layer, a tantalum bilayer.

Current interconnect technology is being pushed to its limits in integrated circuits.

Microprocessors have followed Moore’s law doubling the number of transistors in a

given area on an IC every two years.8 The manufacturing of ICs employs the Dual

Damascene process. 9 This process consists of deposition of a dielectric material,  etching of the desired feature, physical vapor deposition (PVD) of a diffusion barrier

Page 13: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

13  

material, PVD of a metal bilayer that Cu will adhere to, PVD of a Cu seed layer,

electrochemical deposition (ECD) of the Cu interconnect, and finally chemical

mechanical polishing.

 Figure 1-1. Dual Damascene Structure  

The significant volume of the three diffusion barrier and seed layers, coupled with

the decreasing size of the interconnects and their features, demands a change in

diffusion barrier material and/or deposition techniques. The thickness of these layers

needs to continually shrink in size; however PVD is not an appropriate technique for the

production of ultra thin films. Physical vapor deposition techniques rely on “line of sight”

deposition and consequently conformality becomes a greater issue as the film thickness

decreases.10 CVD and ALD are superior alternatives to PVD, providing conformal  coverage when depositing diffusion barriers.

Page 14: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

14  

CHAPTER 2 ZIRCONIUM CARBIDE PRECURSOR1S

 Background

 Zirconium carbide (ZrC) has promise in many different applications. With a

hardness of 25,000 N/mm2, ZrC is an ideal coating for tools that are susceptible to

wear, especially tools used for cutting other hard materials. Zirconium carbide is also

used as a coating for nuclear fuel pellets because of its high melting point, 3400 °C.

Another use of ZrC is in field emitter arrays (FEAs). FEAs are replacing thermionic

emitters in vacuum tubes as electron sources. While FEAs have many advantages over

the heat-induced flow of electrons, they are still subject to failure. Vacuum arcing or tip

dulling can lead to the destruction of the cathode. A zirconium carbide thin film coating

over the cathode can provide the needed strength to FEAs without dampening the

transfer of electrons, due to its electrical conductivity of 2 ×104 /Ω cm and relatively low

work function of 4.0 eV. 11

Alkylzirconium compounds have been used as single-source precursors for CVD

of ZrC thin films12-16 as an alternative to growth from ZrCl4 and methane under a

reducing H2 atmosphere at high temperatures (>1500 °C).17-19 The best established

single-source precursor for the CVD of ZrC is tetraneopentyl zirconium (Np4Zr).12,14,15,20

 Successful CVD from Np4Zr is possible because the lack of β-hydrogen atoms on the  alkyl ligands renders it stable enough for volatilization and transport in a CVD reactor.

         

1 (Portions of Chapter 2 were taken directly from, Denomme, D. R.; Dumbris, S. M.; Hyatt, I. F. D.; Abboud, K. A.; Ghiviriga, I.; McElwee-White, L., “Synthesis and Electronic Structure of Tetrakis(η3-phenylpropargyl)zirconium.” Organometallics 2010, 29 (21), 5252-5256.)

Page 15: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

15  

The range of compounds that have been used as single source precursors for

early metal carbides is very small. Ligands that contain heteroatoms are undesirable,

as incorporation of the additional element into the resulting thin films can be an issue.

Early transition metal alkyls with β-Hs are known to undergo β-H elimination under mild

conditions,21 making them unsuitable for CVD. The result is that few ligands meet the

necessary criteria for use in single source ZrC precursors. Propargyl ligands are

potential candidates, as they contain no heteroatoms and no β-H atoms.22-25 We thus

undertook a study of zirconium propargyl complexes as possible precursors for the CVD  of ZrC.  

To our knowledge, no homoleptic propargyl complex had been previously  reported. However, propargyl derivatives of zirconocene have been previously reported

in the literature.22,24,26-29 The 18-electron bis(phenylpropargyl)zirconocene complex 1

contains one η1-propargyl ligand, with the second propargyl coordinated in the η3-

bonding mode.24 The signals of the methylene protons of the propargyl ligand in the 1H

NMR spectrum are characteristic of the bonding mode and were assigned at δ 1.9 for

the η1-ligand while the corresponding protons in the η3-ligand were observed at 3.3

ppm. The 16-electron phenylpropargyl methylzirconocene complex 2 was subsequently

described and a crystal structure confirmed η3-coordination of the phenylpropargyl

ligand.27 The 1H NMR spectrum of this compound also showed the methylene protons

of the η3-ligand at the expected value of 3.37 ppm.

Page 16: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

16  

     Figure 2-1. Examples of phenyl propargyl zirconium complexes.  

Results and Discussion  

In an effort to prepare homoleptic propargylzirconium compounds for use in the  CVD of ZrC, we first reacted ZrCl4 with CH3C CCH2MgBr. Since we were unable to

isolate tetra(η3-methylpropargyl)zirconium from the oligomeric material that resulted, we

synthesized tetra(η3-phenylpropargyl)zirconium (3) as a model compound for the

preparation of more volatile homoleptic propargyl zirconium species. The

phenylpropargyl Grignard reagent was synthesized as described in the literature

(Scheme 1).30,31 The commercially available phenylpropargyl alcohol was reacted with

PBr3 and the resulting bromide was then converted to the corresponding Grignard

reagent. Reaction with ZrCl4 afforded 3 in 74% crude yield. Single crystals of the pure

material can be obtained by recrystallization but continued handling of the complex

resulted in decomposition, rendering it unsuitable for CVD studies.

   

             Scheme 2-1. Synthesis of Complex 3.

Page 17: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

17  

8

After recrystallization, the 1H NMR of 3 at room temperature in toluene-d8 showed

only a single aliphatic resonance at δ 3.21 ppm, consistent with η3-phenylpropargyl

ligands. All of the ligands were symmetry equivalent by NMR and although the complex

was prepared in ethereal solvents, no other signals corresponding to additional ligands

such as coordinated solvent were observed in the 1H NMR spectrum.

The 1H spectrum in THF-d8 at -60 °C displays distinct signals for the aromatic  protons of the four equivalent phenyl rings at 7.35 (t, 7.7 Hz, 8H), 7.23 (t, 7.7 Hz, 4H)

and 6.96 (d, 7.7 Hz, 8H) which were assigned as meta, para and ortho,

correspondingly, based on their multiplicity and intensity (Figure 1).

       

     Figure 2-2. 1H and 13C chemical shifts for one of the four equivalent phenylpropargyl

ligands of 3.2

The intensity was referenced to the signal for the four CH2 groups at 3.10 ppm.

The 13C chemical shifts were measured in the gHMBC spectrum, which was acquired    

2 NMR spectra were obtained at -60 °C in THF-d .

Page 18: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

18  

with two different spectral windows in f1 to detect possible folding. One-bond couplings

with the protons identified the ortho, meta and para carbons at 127.5, 128.8 and 126.7

ppm, correspondingly. The quaternary carbon on the phenyl moiety (Cipso), at 129.1

ppm, coupled with the meta protons. The ortho protons coupled with a quaternary

carbon at 113.5, which was assigned as alpha to the phenyl. The methylene protons, on

the carbon at 38.7 ppm, coupled with this later carbon, with another quaternary at

129.4, assigned as beta to the phenyl, and, surprisingly, to the ortho carbons on the

phenyl ring. These 13C shifts are consistent with those previously reported for η3-

phenylpropargyl zirconium compounds 1 and 2. The quaternary carbons of 1 were

shown to be located at 120.5 and 114.1 ppm with the methylene shift at 55.5 ppm.

Dynamic exchange between η3 and η1 coordination of the phenylpropargyl ligand of 2 in

solution gave shifts of 112.9, 98.8, and 30.7 ppm.26 The methylene protons displayed an  nOE with the ortho protons in the NOESY spectrum. Examination of the X-ray crystal

structure (vide infra) leads to the conclusion that the nOe is from the methylene group

on one propargyl ligand to the phenyl group of an adjacent ligand.

Crystallographic structure determination (Table 2-1) confirmed the identification of  3 as tetra(η3-phenylpropargyl)zirconium. The crystal structure of 3 verified the presence

of only the four propargyl ligands, all displaying η3-coordination (Figure 2-2). Complex 3

has an overall D2d symmetry, a point group previously but rarely observed in other Zr

compounds.32,33 An EAN of 16 electrons for 3 results from each phenylpropargyl ligand

donating four electrons. Selected bond angles and distances of 3 are shown in Table 2.

Page 19: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

19  

     

         Figure 2-3. Thermal ellipsoids drawing of the molecular structure of 3.3

     Table 2-1. Crystallographic Structural Data for 3.4

Empirical formula C36 H28 Zr Formula weight 551.8 Temperature 173(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group C2/c

     

3Thermal ellipsoids are drawn at 50% probability. Hydrogens on the phenyl rings are omitted for clarity.  

4 R1 = Σ(||Fo| - |Fc||) / Σ |Fo|  

wR2 = [Σ [w(Fo2 - Fc2)2] / Σ [w((Fo2))2]]1/2

 

S = [Σ [w(Fo2 - Fc2)2] / (n-p)]1/2

 w= 1/[σ2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m and n are constants.

Page 20: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

20  

Table 2-1. Crystallographic Structural Data (Continued) a = 20.7551(14) Å α= 90°

Unit cell dimensions b = 8.6203(6) Å β= 11° c = 17.4685(11) Å γ = 90°

Volume 2808.1(3) Å3

Z 4 Density (calculated) 1.305 Mg/m3

Absorption coefficient 0.413 mm-1

F(000) 1136 Crystal size 0.19 x 0.11 x 0.04 mm3

Theta range for data collection 2.18 to 27.50° Index ranges -20≤h≤26, -11≤k≤11, -22≤l≤15 Reflections collected 9334 Independent reflections 3226 [R(int) = 0.0272]

Completeness to theta = 27.50° 99.80%

Absorption correction Integration Max. and min. transmission 0.9861 and 0.9103 Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3226 / 0 / 168 Goodness-of-fit on F2 1.065 Final R indices [I>2sigma(I)] R1 = 0.0244, wR2 = 0.0676 [2730] R indices (all data) R1 = 0.0312, wR2 = 0.0700 Largest diff. peak and hole hole 0.300 and -0.346 e.Å-3

     Table 2-2. Selected Bond angles (°) and distances (Å) for 3. Zr-C1 2.4955(2) C2-C1-Zr 70.08(9) Zr-C2 2.4043(1) C3-C2-C1 154.38(2) Zr-C3 2.4474(2) C3-C2-Zr 77.01(1) C1-C2 1.3760(2) C4-C3-Zr 137.87(1) C2-C3 1.2490(0) C1-Zr-C1A 128.88(8) C3-C4 1.4500(2) C11-Zr-C1 131.95(5) C2-Zr- 98.49(5) C2-Zr-C11 108.31(6) C22-Zr- C2A

96.11(7) C3-Zr-C11 82.21(5)

 

Although structural data have been reported for several η3-propargyl complexes,27

the (phenylpropargyl) methylzirconocene complex 2 (Table 3) is perhaps the best model

for the geometry of the propargyl ligands of 3. The phenylpropargyl ligands of

Page 21: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

21  

complexes 2 and 3 exhibit nearly identical C-C-C bond angles of 154.4(3)° and  154.38(2)°, respectively, indicating similar bonding of the propargyl moiety to the Zr

center.

Table 2-3. Selected Bond Distances (Å) for 2.27

C1-C2a 1.344(5) C2-C3 1.259(4) Zr-C1 2.658(4) Zr-C2 2.438(3) Zr-C3 2.361(3)

aThe numbering system of the propargyl ligand is as shown for compound 3 in Figure 2.  

The Zr-C2 bond length is approximately the same in the two structures.  However, the three Zr-C bond distances in 3 are roughly the same length, differing only

by a net 0.09 Å overall, whereas those in 2 differ by a much larger value, 0.29 Å, with

the C1-C2-C3 plane of 2 canted so that the methylene carbon C1 is further from the

metal center. For both complexes, an assignment of the phenylpropargyl bonding as

intermediate between the η3-propargyl and allenyl limiting resonance structures (A and

B) is supported by the bond lengths and angles. A similar assignment of the bonding in

Cp*(TBM)Zr(η3-CH2C CCH3) was made based on the crystal structure.28

     

         Figure 2-4. Resonance structures of propargyl zirconium complex.

       

The bonding of the propargyl ligands to the metal center in 3 was further analyzed

by density functional theory calculations. Geometry optimizations and single-point

calculations were performed using the DFT B3LYP34,35 functional and the lanl2dz36,37

Page 22: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

22  

basis set utilized in the Gaussian 03 program package.38 Compositions of molecular

orbitals were calculated using the AOMix program.39,40 Molecular orbital pictures were

generated from Gabedit.41 Initial calculations were performed on 3 itself, however the

presence of the phenyl rings complicated the interpretation by delocalizing the

molecular orbitals to such an extent that visualization was difficult. In order to simplify

the analysis, calculations were carried out on the parent tetrapropargyl zirconium

complex 4 in which the phenyl rings were replaced with hydrogen to provide a

computational model structure. The crystallographically determined structure of 3 was

used for the positions of the non-H atoms of 4. Hydrogen atoms were placed by

geometry optimization and the D2d symmetry of 3 was enforced in 4.

             Figure 2-5. Optimized derivative of 3 for DFT calculations.

 

   

A molecular orbital diagram (see Appendix D) was generated from the

computational results for 4 and showed a calculated HOMO-LUMO gap of 5.2 eV. This

substantial splitting of the frontier orbitals is consistent with the lack of reactivity of 3

with other species in the reaction mixtures during synthesis. While other D2d Group 4

metal complexes have been reported in the literature,42-44 examples of computational

results are rare. An electronically similar D2d symmetric bispentalene titanium complex

had a calculated HOMO-LUMO gap of 1.93 eV, far smaller than that of 3.42 Tetra(η3-

allyl)zirconium is also a known compound described as a bright red solid, which

decomposes at -20 °C.45,46 The red color and lability of tetra(η3-allyl)zirconium

suggest

Page 23: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

23  

that its HOMO-LUMO gap must also be smaller than that of 3, which is a colorless solid

that is stable for moderate periods of time at room temperature.

     

 Figure 2-6. Degenerate HOMO (top) and HOMO-2 (bottom) of propargyl complex 4.  

The high-lying occupied orbitals of 4 are depicted in Figure 3. The HOMO is

largely comprised of two degenerate orbitals containing the p orbitals of C1 and C3 of

the propargyl ligands. The symmetry dictates that one HOMO orbital includes the dyz of

Zr (20.7%) and the p orbitals in the yz plane of the propargyl ligands, while the other

HOMO orbital utilizes the dxz of Zr (20.7%) and the xz plane of the p orbitals on the

propargyl ligand. The HOMO-2 is comprised mainly of dz2 on Zr (21.3%) and xy plane  of the p orbitals on the ligand. Metal-propargyl bonding dominated by interactions of

metal d orbitals with propargyl MO's localized on C1 and C3 is consistent with the

calculated MO diagrams for bonding in [3-CH2C CPh)Pt(PPh3)2].47

The LUMO of 4 (Figure 4) has the strongest p orbital contributions from C2 in the  propargyl groups. This is consistent with its derivation from the antibonding C1-C2-C3

Page 24: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

24  

-orbital, which has its largest coefficient on C2. The largest contributions to the LUMO

from Zr are s (14.2%), and dz2 (11.9%). The LUMO+1 is mainly comprised of the non-

bonding dxy orbital of Zr (86.7%). The LUMO+2 consists of two degenerate orbitals, one

composed primarily of Zr dxz (25.3%) and the other dyz (25.3%).

 

 Figure 2-7. LUMO (top left), LUMO+1 (top right), and degenerate LUMO+2 (bottom) of

propargyl complex 4.  

The AO composition of the LUMO provides insight into why this 16 electron early

transition metal complex does not have an open coordination site for addition of another

ligand. The section of the LUMO derived from metal AO's is sterically blocked by the

CH2 groups of the four propargyl ligands. Although complex 3 was recrystallized from

THF with vapor diffusion of pentanes, coordinated THF is not detected in either the

NMR or the crystal structure.  

Conclusion  

The synthesis of 3 yields, to the best of our knowledge, the first example of a

homoleptic propargyl complex and has been shown by 1H NMR spectroscopy and X-ray

crystallography to have all four phenylpropargyl ligands coordinated to the Zr center in

Page 25: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

25  

an η3-mode resulting in a complex of D2d symmetry. The π-bonding in 3 was analyzed

by DFT calculations on the model compound 4. The -bonding from the four symmetry

equivalent 3-propargyl ligands and HOMO-LUMO gap of 5.3 eV is consistent with the

stability of the molecule and lack of reactivity toward coordinating solvents.

Experimental Section  

General Procedures. All chemicals were purchased in reagent grade purity and

used with no further purification unless otherwise noted. All manipulations were carried

out using standard Schlenk and glove box techniques under an inert atmosphere of

argon or nitrogen. All solvents, unless otherwise noted, were purchased from Fisher

and passed through an M. Braun MB-SP solvent purification system or were distilled

from sodium/benzophenone prior to use. 1H and 13C NMR spectra were obtained on  Varian Gemini 300 and VXR 300 and Mercury 300 spectrometers. Infrared spectra

were measured on a Perkin-Elmer 1600 FT-IR.

Phenylpropargyl Bromide. A 50-mL Schlenk flask containing 5.0 mL of ether  and 4.8 g (3.7 mmol) phenylpropargyl alcohol and 1.0 g pyridine was cooled to 0 °C and  5.0 g (18 mmol) phosphorus tribromide was added dropwise over a 45 min period with

strong stirring under nitrogen in accordance with literature procedure.30 The resulting

mixture was added to 25 mL of ice to quench the excess PBr3 and extracted with ether

(3x25 mL). The organics were then washed with NaHCO3 and dried over MgSO4,

filtered and the ether was then removed by reduced pressure. Yield 6.0 g, 83%. 1H

NMR (C6D6) δ 4.1 (s, 2H), 7.4 (m, 5H). 13C NMR (CDCl3) δ 15.3, 84.2, 86.6, 121.9,

128.1, 128.7, 131.7.

Page 26: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

26  

Phenylpropargylmagnesium Bromide. An addition funnel was charged with

12.0 g (61.6 mmol) phenylpropargyl bromide and 30 mL ether and the mixture was

added dropwise to a three-neck flask cooled to 0 °C containing 1.80 g (75.0 mmol)

activated Mg turnings with a few crystals of HgCl2 in ether over a 4 h period in

accordance with literature preparation.31 After the addition, the reaction was refluxed for  1 h. The resulting mixture was filtered through a 1 cm pad of Celite (previously dried

and evacuated) to yield a dark yellow solution. Yield 30 mL of a 1.85 M solution of the

Grignard reagent, 90.1%. 1H NMR (C6D6) δ 2.11 (s, 2H), 6.8 (m, 5H).

Tetra(η3-phenylpropargyl)zirconium (3). An addition funnel was charged with  20.0 mL of 1.85 M phenylpropargylmagnesium bromide (37.0 mmol) and added

dropwise into a three neck flask containing 2.16 g (9.25 mmol) ZrCl4 slurried in 100 mL

ether over a 1 h period and stirred overnight at room temperature. Volatiles were then

removed via reduced pressure to afford a brown solid. The solid was extracted with 150

mL of toluene and filtered through a fine glass frit. The filtrate was concentrated to

afford a solution of 3 from which the compound was then precipitated by the addition of

hexanes. The resulting suspension was filtered through a fine glass frit to collect the

solid precipitate of 3. Yield 3.44 g, 74%. The product was tan in color. Single crystals

could be obtained by repeated vapor diffusion recrystallization using THF and pentanes

until a colorless-to-white solid remained. 1H NMR (THF-d8, -60 °C) δ 3.10 (s, 8H), 6.96  (d, 7.7 Hz, 8H), 7.23 (t, 7.7 Hz, 4H), 7.35 (t, 7.7 Hz, 8H). 13C NMR (THF-d8, -60 °C) δ  38.7, 113.5, 126.7, 127.5, 128.8, 129.1, 129.4.  

Crystallographic Structure Determination of 3. X-ray experimental data for 3  were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area

Page 27: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

27  

detector and a graphite monochromator utilizing MoK radiation (l = 0.71073 Å). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850

frames) was collected using the ω-scan method (0.3° frame width). The first 50 frames

were re-measured at the end of data collection to monitor instrument and crystal

stability (maximum correction on I was < 1 %). Absorption corrections by integration

were applied based on measured indexed crystal faces.

The structure was solved by the Direct Methods in SHELXTL6,48 and refined using  full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective

carbon atoms. The complexes are located on 2-fold rotation axes; thus a half complex

occupies the asymmetric unit. A total of 168 parameters were refined in the final cycle

of refinement using 2730 reflections with I > 2s(I) to yield R1 and wR2 of 2.44% and

6.76%, respectively. Refinement was done using F2.

Page 28: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

28  

CHAPTER 3 COMPOUNDS FOR DEPOSITION OF RU AND FE THIN FILMS

 Background

 Ruthenium metal is a promising material for the next generation of copper diffusion

barriers. Not only does it posses all the qualities associated with good diffusion

barriers, such as high melting point, hardness, conductivity, and relative inertness but it

also has an affinity for copper adsorption making it a great seed layer.49,50 The ability to

act as a diffusion barrier and a seed layer can eliminate up to two steps from the dual

damascene process which could greatly reduce production cost and save valuable

space in ever shrinking integrated circuits.

There are three main families of CVD precursors for the deposition of ruthenium

thin films. These families are ruthenium β-diketonates, ruthenocene derivatives, and

ruthenium carbonyl complexes. Two examples of the β-diketonates that have been

studied for CVD of ruthenium thin films are Ru(od)3 (od = 2,4-octanedionato) (5) and

Ru(tmhd)3 (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato) (6). 51,52

                 

O O

O O O O

Ru Ru O

O O O O O

           

5 6  Figure 3-1. Ruthenium β-diketonates.

Page 29: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

29  

Generally compounds 5 and 6 form RuO2 during CVD with O2, however, there is

one example when THF was used as an injecting liquid where Ru metal was formed,

possibly due to the consumption of O2 during the oxidation of THF.53 Triruthenium

dodecacarbonyl, Ru3(CO)12, has been used to deposit ruthenium metal thin films at 150

°C.54

 Results and Discussion

 In efforts to develop a precursor that will produce high quality ruthenium thin films

and at the same time be optimal for CVD, dicarbonylmethylcyclopentadienyl ruthenium

(7) was targeted.            

CO Ru

CO CH3

   

7  Figure 3-2. Compound 7  

Compound 7 is isoelectronic to the ruthenocene compounds that have been

implemented in the past.55 MeRu(CO)2Cp is promising for CVD or ALD because of its

volatility. Complex 7 sublimes at 40 °C (0.1 mmHg).56 The synthesis was adopted from

Davidson et. al. and is shown in Scheme 2.57

Page 30: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

30  

cyclopentadiene (CpH)  

Ru3(CO)12

10

     

Heptane

Ru2(CO)4(Cp)2

11    

3% NaHg THF        

 

MeRu(CO)2Cp    

7

MeI

THF

 

 

Na+[Ru(CO)2Cp]-

 Scheme 3-1. Syntheses of 7

 Crystals of 7 were obtained by sublimation. The 1H NMR spectrum of 7 at room

temperature in chloroform-d showed resonances at δ 5.23 ppm and at δ 0.31 ppm.

Crystallographic structure determination (Table 3-1) confirmed the identification of 7; the

geometry of the compound is that of a three-legged piano stool. The Cp occupies three

coordination sites on one face while the two carbonyls and methyl occupy the other

three.

Table 3-1. Crystallographic Structural Data for 7.5

Empirical formula C8 H7.25 O2.25 Ru Formula weight 240.46 Temperature 173(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group P2(1)2(1)2(1)

   

5 R1 = å(||Fo| - |Fc||) / å|Fo|  

wR2 = [å[w(Fo2 - Fc2)2] / å[w(Fo2)2]]1/2S = [å[w(Fo2 - Fc2)2] / (n-p)]1/2

 w= 1/[s2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants

Page 31: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

31  

Table 3-1. Crystallographic Structural Data (Continued) a = 6.8889(7) Å a= 90°.

Unit cell dimensions b = 10.5841(10) Å b= 90°. c = 11.4638(11) Å g = 90°.

Volume 835.86(14) Å3

Z 4 Density (calculated) 1.911 Mg/m3

Absorption coefficient 1.823 mm-1

F(000) 469 Crystal size 0.142 x 0.136 x 0.11 mm3

Theta range for data collection 2.62 to 27.50°. Index ranges -8≤h≤8, -13≤k≤13, -14≤l≤14 Reflections collected 7208 Independent reflections 1917 [R(int) = 0.0182] Completeness to theta = 100.00% 2A7b.s5o0r°ption correction None Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 1917 / 3 / 104 Goodness-of-fit on F2 1.089 Final R indices [I>2sigma(I)] R1 = 0.0195, wR2 = 0.0464 [1886] R indices (all data) R1 = 0.0200, wR2 = 0.0466 Absolute structure parameter 0.50(6) Largest diff. peak and hole 0.687 and -0.533 e.Å-3

     

 Figure 3-3. Thermal ellipsoids drawing of the molecular structure of 7. Thermal

ellipsoids are drawn at 50% probability.

Page 32: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

32  

To evaluate the effectiveness of compound 7 as a precursor for thin film deposition

of ruthenium films CVD experiments were run. Initial reactions were run with H2 as a

co-reactant and N2 as the carrier gas, based on previous work with growing tungsten  nitride (WN) diffusion barrier films. These experiments were unsuccessful, probably

because the CVD conditions for WN thin films were too extreme for these Ru

precursors. Iron may be the solution to fine tuning the CVD parameters.

The iron analogue to 7, dicarbonylmethylcyclopentadienyl iron (8) is an ideal

model compound to optimize conditions for CVD of Ru thin films. Electronically similar

to 7, 8 is approximately one hundred times cheaper to synthesize than its ruthenium

counterpart. One of the most important physical properties regarding CVD precursors is

the volatility. Thermal gravimetric analysis (TGA) indicates that both compounds

sublime around the same temperature at atmospheric pressure.            

CO Fe

CO CH3

 

     

8    Figure 3-4. Compound 8.

Page 33: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

33  

         

80        

60  

 :E ·a;l

 40

       

20

 88.42%

         

40 50 60 70

Temperature (•C) 80 90

Universal V4.5A TA

 100

       

80        

60 91. 6

:E Cl Qi

 40

       

20        

04--- -- -r-- -- -- -- -- -- -- -r-- --- 20 30 40 so

Temperature (c·)  Figure 3-5. TGA data of 7 and B.

60 70 Universal V4.5A TA

Page 34: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

34  

%  

Iron oxide thin films were obtained with the composition of 36.7% Fe and 61.1%

oxygen according to XPS measurements. This is indicative of Fe2O3. In aerobic

conditions higher temperatures often lead to higher oxidation states.58-61 Reducing the

temperature from the initial run of 575 °C led to films with higher Fe concentrations and

at higher oxidation states as expected. Unfortunately the films were contaminated with

carbon.  

60    

52.0    

50    

40.2      40.0   40  

 26.9   38.0  

 

       

21.1  

       21.8  

32.2  30  

27.8   Fe    

O  20   C  

   

10    

     

450    400  

 350  

 300  

 250  

0  200  

Temperature  (°C)        Figure 3-6. Atomic composition of films from three separate CVD runs.  

Recently Kanjolia et. al. have produced some of our targeted precursors and

have successfully used them as precursors for Ru thin films.62-64 The high carbon

contents in the films were a concern. In attempts to identify the carbon source,

dicarbonylethylcyclopentadienyl iron (9) was synthesized as outlined in Scheme 3.

Page 35: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

35  

O

O

C C O

Fe Fe C

O C  

O

     NaHg  THF

 

       2 Na

       

Fe C O C

                     

Na Fe C O C

O

Et-I Fe Et

 

THF C C O O

 

9  Scheme 3-2. Synthesis of 9  By replacing the methyl with an ethyl it is likely the ethyl will β-hydride eliminate quickly

upon thermal decomposition, thus if carbon content decreased the alkyl most likely is

the carbon source. Compound 9 was identified by 1H NMR δH (CDCl3, p.p.m.): 0.88

(3H, CH3), 1.55 (2H, CH2), 4.72 (5H, Cp). The CVD experiments are summarized in  Table 3-2.  

Conclusion  

Compound 7 was synthesized and characterized. Preliminary data along with

experiments by Kanjolia et. al. indicate that 7 is a viable precursor for CVD of Ru thin

films. The model compound 8 has produced iron oxide thin films with varying iron and

oxygen content trending toward higher percent iron with the increase in deposition

temperatures.

Page 36: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

 

Precursor Temperature

7 8 8 8 8 8 8 8 8

(°C)                  Reactor 200 200 250 200-400 250-100 250-575 400 300 250

Bubbler 45 RT 50 50 55 60 60 60 60

Heating Tapes 50 RT 60 60 55 60 60 60 60  Pressure (Torr)                  

Base 2 0.38 1 1 0.91 1.1 0.28 0.32 0.36

Reactor 16 5 5 5-400 2.6 350 350 350 350  Gases (sccm)

Carrier N2 (50) N2 (1000) N2 (100) N2 (30) N2 (1000) N2 (1000) N2 (100) N2 (100) N2 (100)

Co-Reactant H2 (75) NH3(30) NH3(30) NH3 (30) H2 (1000) H2 (1000) H2 (100) H2 (100) H2 (100)

Ambient N2 -- -- -- -- -- -- -- --  

Substrate Si(100) Si(100) Si(100) Si(100) Si(100) Si(100)/Si(111) Si(100) Si(100) Si(100)

Composition (%)                          Ru -- -- -- -- --   --   --   --   --

Fe -- -- -- -- -- 36.7   26.9   38   40  O -- -- -- -- -- 61.1   21.1   21.8   27.8  C -- -- -- -- --   -- 52   40.2   32.2  

  Fe2O3 Fe-FexOy Fe-FexOy Fe-FexOy

  Amorphous Amorphous Amorphous

 

 

         

Table 3-2. Parameters for selected CVD runs with compound 8.                                    

(200)  

                 

Compounds  

C C C                      

36

Page 37: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

37  

Experimental Section  

General Procedures. All chemicals were purchased in reagent grade purity and

used with no further purification unless otherwise noted. All manipulations were carried

out using standard Schlenk and glove box techniques under an inert atmosphere of

argon or nitrogen. All solvents, unless otherwise noted, were purchased from Fisher

and passed through an M. Braun MB-SP solvent purification system or were distilled

from sodium/benzophenone prior to use. 1H and 13C NMR spectra were obtained on

Varian Gemini 300 and VXR 300 and Mercury 300 spectrometers. Infrared spectra

were measured on a Perkin-Elmer 1600 FT-IR.

CVD Experiments. The thin films were deposited using a custom-built vertical

quartz cold wall CVD reactor. A representative sample of parameters used is displayed

in Table 5. Film composition was determined by Auger electron spectroscopy (AES) or

XPS with a Perkin Elmer 5100 XPS System nominally at 15.0 kV and 300 W for the X-

ray source (monochromated Al X-rays). The sputtering ion was Ar with an accelerating

voltage of 4 KeV.

Bis(η5-cyclopentadienyldicarbonyl ruthenium)(10). Ru3(CO)12 (1.912 g, 2.991

mmol) was charged to a three neck round bottom flask outfitted with air inlet, a reflux

condenser, and a rubber septum. Next 3.0 mL of freshly distilled cyclopentadiene (12:1

molar ratio), and 40 mL dry heptane were added. The mixture was heated to reflux for

1 hr. The septum was removed to allow the heptane to evaporate to ~ 5 mL at which

time untreated (“wet” and oxygenated) heptane was added to the flask to restore initial

volume. The flask was once again sealed and allowed to reflux for an additional 3

hours. The solution was cooled and filtered. The solid collected from filtration was

Page 38: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

38  

washed with hexanes and then dried. The compound was identified by comparison to

literature data.65

1H NMR (CDCl3) δ 5.26 (s, 5H) and by IR with frequencies at 1774, 1933, 1952, 1995  cm-1

 

Sodium η5-cyclopentadienyldicarbonyl ruthenate (11). The dimer Ru2(CO)4Cp2

(1.252 g, 2.250 mmol) was dissolved in THF and cannula transferred into 3 wt% Na

amalgam in a 5:1 Na to Ru molar ratio. After 5 hours of stirring, the solution turned dark

red. The solution was separated from the mercury by cannula transfer and then

reserved in solution for the next step.

Dicarbonylmethylcyclopentadienyl ruthenium (7). To the THF solution

containing the anion of 11, 0.589 mL (11.250 mmol) of methyl iodide was added and

allowed to stir overnight. The THF was removed by trap to trap distillation and then final

product was isolated by sublimation at 40 °C (0.1 mmHg). The compound was identified

by 1H NMR (CDCl3) δ 5.23 (s, 5H), δ 0.31 (s, 3H).

Dicarbonylmethylcyclopentadienyl iron (8). MeLi (3.1 mL, 1.5 : 1 molar ratio of  alkyl lithium : starting material) was added to CpFe(CO)2I (1.000 g, 3.290 mmol) in 30

mL Et2O and allowed to react for 1 h at -78 °C. Product was isolated in vacuo and

sublimed at 50°C (0.1 mmHg). The compound was identified by 1H NMR (CDCl3) δ 4.76

(s, 5H), δ 0.17 (s, 3H).66

 Dicarbonylethylcyclopentadienyl iron (9). A 2 wt% NaHg amalgam was

prepared by slowly adding Hg (2.1 mL) to small pieces of Na (0.593 g), and stirring

vigorously. The dimer Cp2Fe2(CO)4 (3.02g, 8.35 mmol) was dissolved in THF (20 mL)

and added to the amalgam to reduce overnight. 3 equivalents of EtI (2.0 mL) were

Page 39: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

39  

added, and again reacted overnight. Upon completion, stirring was ceased, allowing the

NaI salt to settle to the bottom. The brown liquid layer at the top was cannula

transferred, through Celite, into a clean flask. Trap-to-trap distillation was performed to

remove solvent. The remaining solid was transferred to a small Schlenk flask, and ether

was evaporated over 2 days under strong flow of Ar. Compound 9 was dried under

vacuum to afford 15% yield.

Page 40: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

40  

CHAPTER 4 PRECURSORS FOR TUNGSTEN NITRIDE THIN FILMS

 Background

 Tungsten nitride is a promising refractory nitride for thin film diffusion barriers in

integrated circuits. Along with the beneficial properties associated with the refractory

nitrides, tungsten nitride has the lowest electrical resistivity making it an ideal candidate

in electronics. In addition there are no known reactions of WN with copper therefore

making it a good barrier material to prevent the diffusion of copper interconnects into the

silicon and/or silicon substrate.

Some examples of single-source precursors are bis(tert-butylamino)bis(tert-

butylimino)tungsten (12),67 bis(tert-butylimino)(guanidinato)tungsten hydride (13),68

bis(tert-butylimino)(di-tert-butyl pyrazolato)tungsten (14).69  

tBu      

NtBu H N N W

tBuN N N W

 

tBu

W NHtBu N N  

tBuN N

tBuN NHtBu  

N

N tBu

 

tBu

12 13 14  Figure 4-1. Single-source precursors for WN thin films.  

Our group has reported WNx and WNxCy thin film deposition from two families of  CVD precursors, tungsten imido and tungsten hydrazido complexes.70-75

 The hydrazido compounds yielded a higher maximum nitrogen content (24 at %)

compared to their imido analogues (14 at %).76 The increased N incorporation into the

thin films with the hydrazido complexes could be due to the weaker N-N bond compared

Page 41: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

41  

to the N-C bond connecting the nitrido fragment with the rest of the ligand. NMR kinetic

studies of ligand exchange of the coordinated acetonitrile on the dimethyl hydrazido

complex concluded a low Gibbs free energy of activation, 14.4 kcal/mol.77 This

indicates the W-N bond between the metal center and the hydrazido nitrogen is weak

and is most likely the first bond to be broken in CVD conditions. After loss of the nitrile,

mass spectrometry data from the isopropyl and allyl imido compounds suggests the

cleavage of the N-C bond in the imido ligand while DFT calculations and in-situ Raman

spectroscopy suggest cleavage of the N-N bond in the hydrazido compounds.77,78

Further weakening of the bond between the nitrido fragment and the remainder of the  complex and incorporating more nitrogen into the ligands could lead to thin films with

higher concentrations of nitrogen.

Results and Discussion  

A new class of WNx and WNxCy compounds containing the general formula of

W(NNCR2)Cl4, where R = various alkyl and aromatic compounds (Figure 9) were the

next target precursors. The initial synthetic scheme to develop these novel compounds

was to first create the diazo ligand and then attach it to WCl4.  

R R C

 N

 N

Cl W Cl

   R = phenyl 15

tolyl 16 isobutyl 17

Cl Cl  

N  

C  

CH3

Figure 4-2. Diazo-tungsten complex 15-17.

Page 42: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

42  

(Diphenylmethylene)hydrazine 18 was reacted with mercury oxide in petroleum

ether to afford the diphenyldiazo ligand 19. 1H NMR spectrum of 19 at room

temperature in chloroform-d3 showed aromatic peaks at δ 7.30 and 7.30 along with

some residual peaks from the starting material. Compound 19 was then reacted with

WCl4 in THF in attempts to make 15. The 1H NMR was inconclusive, however it did

show an increased amount of aromatic peaks shifted from that of the starting material.

Attempts at crystallization were unsuccessful leading to the exploration of the tolyl

derivative, which from past experience of ligand substitutions have yielded single

crystals more readily. To make compound 16, first (ditolylmethylene)hydrazine (20) was

synthesized from the reaction of ditolylketone with hydrazine in n-butanol. The 1H NMR

spectrum of 20 at room temperature in chloroform-d3 showed peaks at δ 7.14, 7.16,

7.33, and 7.36 for the aromatic hydrogens and at δ 2.40 for the methyl hydrogens and  5.35 for the ones on the amine.  

Experimental Section  

General Procedures. All chemicals were purchased in reagent grade purity and

used with no further purification unless otherwise noted. All manipulations were carried

out using standard Schlenk and glove box techniques under an inert atmosphere of

argon or nitrogen. All solvents, unless otherwise noted, were purchased from Fisher

and passed through an M. Braun MB-SP solvent purification system or were distilled

from sodium/benzophenone prior to use. 1H spectra were obtained on Varian Gemini

300 and VXR 300 and Mercury 300 spectrometers.  

(Diazomethylene)dibenzene (19). Diphenyl hydrazine, (1.96 grams, 10.0 mmol)

was weighed out and added to 2.21 grams (10.2 mmol) of mercury oxide in a round

bottom flask containing ~20 mL of petroleum ether. The flask was put under argon and

Page 43: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

43  

a condenser was attached. The contents were heated to 50 °C for approximately 2

hours with a mineral oil bath. Afterwards the reaction was cooled to room temperature

and filtered through a fine glass frit via cannula transfer. The resulting liquid was purple;

the solvent was then pulled off in vacuo. 1H NMR (CDCl3): δ 7.15, 6.96 ppm.

4,4'-(Diazomethylene)bis(methylbenzene) (20). Di-tolyl ketone, 4.0 grams  (0.019 mol) was charged to a Schlenk flask. Approximately 20 mL of absolute ethanol

was then added. In a 4:1 ratio hydrazine:ketone 5.6 mL, (0.095 mol) of hydrazine was

added via syringe. The mixture was left to reflux overnight at 120 C. It was then was

cooled to room temperature, filtered through a medium frit yielding a clear colorless

solution. This solution was cooled to ~-25C with a dry ice and a dichlorobenzene bath

for 2 hours. The precipitate was then filtered and dried in vacuo. 1H NMR (CDCl3): δ  7.11, 6.95, 2.09.  

(Di-p-tolylmethylene)hydrazine (16). To a round bottom flask 0.276 grams (1.23

mmol) of 20 was added along with 0.268 grams (1.23 mmol) of HgO. The flask was then

charged with ~20 mL of petroleum ether and put under an argon flow. The contents

were heated to 50°C for 2 hours with an oil bath. Afterwards the reaction was cooled to

room temperature then filtered through a glass frit via cannula transfer The resulting

liquid was purple. The solvent was then pulled off in vacuo. 1H NMR (CDCl3): δ 7.37,

7.30, 7.18, 7.10 , 2.42, 2.32.

Page 44: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

44  

APPENDIX A NMR DATA

                             

Ph  

Zr 4

                                           

Figure A-1. 1H NMR spectrum of 3 in THF-d8 at -60 °C.

Page 45: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

45  

                                           

Ph  

Zr 4

                                         

Figure A-2. 1H-13C gHMBC spectrum of 3 in THF-d8 at -60 °C.

Page 46: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

46  

                                     

Ph  

Zr 4

                                     Figure A-3. Expansion of the 1H-13C gHMBC spectrum of 3.

Page 47: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

47  

                           

CO Ru

CO CH3

 7

                                     Figure A-4. 1H NMR of 7 in chloroform-d.

Page 48: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

48  

                                 

CO Fe

CO CH3

 8

                           

Figure A-5. 1H NMR of 8 in chloroform-d.

Page 49: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

49  

                     

Et Fe

 

C C O O

 

9                                      

Figure A-6. 1H NMR of 9 in chloroform-d.

Page 50: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

50  

 

                                                                         Figure B-1. IR of 7.

APPENDIX B IR SPECTRUM

Page 51: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

51  

APPENDIX C X-RAY CRYSTALLOGRAPHY TABLES

       Table C-1. Atomic coordinates ( x 104) and equivalent isotropic displacement

parameters (Å2 x 103) for 3.6

    x y z U(eq) Zr 5000 2439(1) 2500 23(1) C1 4441(1) 3688(2) 1066(1) 34(1) C2 4154(1) 4303(2) 1576(1) 31(1) C3 4088(1) 4430(2) 2250(1) 30(1) C4 3747(1) 5176(2) 2721(1) 28(1) C5 3979(1) 6629(2) 3098(1) 42(1) C6 3656(1) 7319(2) 3556(2) 51(1) C7 3100(1) 6602(2) 3638(1) 45(1) C8 2858(1) 5173(2) 3258(1) 41(1) C9 3184(1) 4457(2) 2810(1) 34(1) C11 4471(1) 1185(2) 3377(1) 35(1) C12 4162(1) 580(2) 2567(1) 32(1) C13 4071(1) 458(2) 1814(1) 30(1) C14 3699(1) -244(2) 978(1) 29(1) C15 3905(1) -1675(2) 791(1) 45(1) C16 3543(1) -2318(2) -15(1) 54(1) C17 2971(1) -1548(2) -638(1) 45(1)

 

                                       

6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Page 52: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

52  

   

Table C-2.  

Bond lengths [Å] and angles [°] for 3.7

Zr-C12#1 2.4043(15)  Zr-C12 2.4043(15)  Zr-C2 2.4043(14)  Zr-C2#1 2.4044(14)  Zr-C3#1 2.4474(15)  Zr-C3 2.4474(15)  Zr-C13#1 2.4573(15)  Zr-C13 2.4573(15)  Zr-C11#1 2.4884(16)  Zr-C11 2.4884(16)  Zr-C1 2.4955(15)  Zr-C1#1 2.4955(15)  C1-C2 1.376(2)  C1-H1A 0.99  C1-H1B 0.99  C2-C3 1.249(2)  C3-C4 1.450(2)  C4-C9 1.392(2)  C4-C5 1.398(2)  C5-C6 1.383(3)  C5-H5A 0.95  C6-C7 1.371(3)  C6-H6A 0.95  C7-C8 1.385(3)  C7-H7A 0.95  C8-C9 1.383(2)  C8-H8A 0.95  C9-H9A 0.95  C11-C12 1.374(2)  C11-H11A 0.99  C11-H11B 0.99  C12-C13 1.247(2)  C13-C14 1.452(2)  C14-C19 1.390(2)  C14-C15 1.391(2)  C15-C16 1.387(3)  

 7 Symmetry transformations used to generate equivalent atoms:

 #1 -x+1,y,-z+1/2

Page 53: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

53  

Table C-2. Continued  

C15-H15A 0.95 C16-C17 1.378(3) C16-H16A 0.95 C17-C18 1.374(2) C17-H17A 0.95

 

C18-C19  

1.383(2) C18-H18A 0.95 C19-H19A 0.95 C12#1-Zr-C12 96.41(8) C12#1-Zr-C2 138.02(6) C12-Zr-C2 98.49(5) C12#1-Zr-C2#1 98.49(5) C12-Zr-C2#1 138.01(6) C2-Zr-C2#1 96.11(7) C12#1-Zr-C3#1 87.54(6) C12-Zr-C3#1 167.81(5) C2-Zr-C3#1 86.01(5) C2#1-Zr-C3#1 29.81(5) C12#1-Zr-C3 167.81(5) C12-Zr-C3 87.54(6) C2-Zr-C3 29.81(5) C2#1-Zr-C3 86.01(5) C3#1-Zr-C3 90.96(7) C12#1-Zr-C13#1 29.70(5) C12-Zr-C13#1 86.70(5) C2-Zr-C13#1 167.66(5) C2#1-Zr-C13#1 87.24(5) C3#1-Zr-C13#1 91.19(5) C3-Zr-C13#1 162.49(5) C12#1-Zr-C13 86.71(5) C12-Zr-C13 29.70(5) C2-Zr-C13 87.24(5) C2#1-Zr-C13 167.66(5) C3#1-Zr-C13 162.49(5) C3-Zr-C13 91.18(5) C13#1-Zr-C13 91.97(7) C12#1-Zr-C11#1 32.56(5) C12-Zr-C11#1 105.29(6) C2-Zr-C11#1 105.46(5) C2#1-Zr-C11#1 108.32(5) C3#1-Zr-C11#1 84.21(5)

Page 54: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

54  

Table C-2. Continued  

C3-Zr-C11#1 135.25(5) C13#1-Zr-C11#1 62.26(5) C13-Zr-C11#1 82.04(6) C12#1-Zr-C11 105.29(6) C12-Zr-C11 32.56(5) C2-Zr-C11 108.31(6) C2#1-Zr-C11 105.46(5) C3#1-Zr-C11 135.25(5) C3-Zr-C11 84.21(5) C13#1-Zr-C11 82.04(6) C13-Zr-C11 62.26(5) C11#1-Zr-C11 128.49(8) C12#1-Zr-C1 105.47(5) C12-Zr-C1 107.96(5) C2-Zr-C1 32.55(5) C2#1-Zr-C1 105.44(5) C3#1-Zr-C1 81.89(5) C3-Zr-C1 62.35(6) C13#1-Zr-C1 135.14(5) C13-Zr-C1 83.73(5) C11#1-Zr-C1 72.93(5) C11-Zr-C1 131.95(5) C12#1-Zr-C1#1 107.96(5) C12-Zr-C1#1 105.47(5) C2-Zr-C1#1 105.44(5) C2#1-Zr-C1#1 32.54(5) C3#1-Zr-C1#1 62.35(6) C3-Zr-C1#1 81.89(5) C13#1-Zr-C1#1 83.73(5) C13-Zr-C1#1 35.14(5) C11#1-Zr-C1#1 131.95(5) C11-Zr-C1#1 72.93(5) C1-Zr-C1#1 128.88(8) C2-C1-Zr 70.08(9) C2-C1-H1A 116.6 Zr-C1-H1A 116.6 C2-C1-H1B 116.6 Zr-C1-H1B 116.6 H1A-C1-H1B 113.6 C3-C2-C1 154.38(16) C3-C2-Zr 77.01(10) C1-C2-Zr 77.37(9)

Page 55: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

55  

Table C-2. Continued  

C2-C3-C4 148.94(15) C2-C3-Zr 73.19(10) C4-C3-Zr 137.87(11) C9-C4-C5 118.64(15) C9-C4-C3 120.59(14) C5-C4-C3 120.77(15) C6-C5-C4 120.24(17) C6-C5-H5A 119.9 C4-C5-H5A 119.9 C7-C6-C5 120.65(17) C7-C6-H6A 119.7 C5-C6-H6A 119.7 C6-C7-C8 119.72(17) C6-C7-H7A 120.1 C8-C7-H7A 120.1 C9-C8-C7 120.26(17) C9-C8-H8A 119.9 C7-C8-H8A 119.9 C8-C9-C4 120.47(15) C8-C9-H9A 119.8 C4-C9-H9A 119.8 C12-C11-Zr 70.35(9) C12-C11-H11A 116.6 Zr-C11-H11A 116.6 C12-C11-H11B 116.6 Zr-C11-H11B 116.6 H11A-C11-H11B 113.6 C13-C12-C11 154.59(16) C13-C12-Zr 77.50(10) C11-C12-Zr 77.09(9) C12-C13-C14 149.68(16) C12-C13-Zr 72.80(10) C14-C13-Zr 137.51(11) C19-C14-C15 118.51(14) C19-C14-C13 119.95(14) C15-C14-C13 121.54(14) C16-C15-C14 120.47(16) C16-C15-H15A 119.8 C14-C15-H15A 119.8 C17-C16-C15 120.25(16) C17-C16-H16A 119.9 C15-C16-H16A 119.9

Page 56: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

56  

Table C-2. Continued  

C18-C17-C16 119.74(16) C18-C17-H17A 120.1 C16-C17-H17A 120.1 C17-C18-C19 120.37(15) C17-C18-H18A 119.8 C19-C18-H18A 119.8 C18-C19-C14 120.65(14) C18-C19-H19A 119.7 C14-C19-H19A 119.7

   

Table C-3. Anisotropic displacement parameters (Å2 x 103) for 3.8

  U11 U22 U33 U23 U13 U12 Zr 24(1) 25(1) 21(1) 0 9(1) 0 C1 36(1) 39(1) 26(1) 4(1) 12(1) 2(1) C2 28(1) 30(1) 29(1) 7(1) 8(1) 3(1) C3 26(1) 29(1) 32(1) 2(1) 10(1) 0(1) C4 27(1) 29(1) 26(1) 4(1) 9(1) 6(1) C5 44(1) 34(1) 53(1) -4(1) 27(1) -5(1) C6 67(1) 34(1) 61(1) -11(1) 35(1) -2(1) C7 59(1) 41(1) 47(1) 5(1) 34(1) 15(1) C8 38(1) 41(1) 49(1) 11(1) 26(1) 8(1) C9 32(1) 32(1) 38(1) 2(1) 15(1) 1(1) C11 36(1) 39(1) 32(1) 4(1) 17(1) -2(1) C12 29(1) 30(1) 38(1) 4(1) 15(1) -5(1) C13 27(1) 29(1) 32(1) 2(1) 10(1) 0(1) C14 28(1) 28(1) 30(1) 1(1) 12(1) -5(1) C15 45(1) 34(1) 39(1) -1(1) 4(1) 8(1) C16 64(1) 35(1) 48(1) -10(1) 12(1) 8(1) C17 52(1) 41(1) 32(1) -6(1) 9(1) -6(1) C18 34(1) 40(1) 34(1) 3(1) 6(1) -1(1) C19 31(1) 33(1) 36(1) 0(1) 11(1) 4(1)

                         

8 The anisotropic displacement factor exponent takes the form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]

Page 57: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

57  

 

Table C-4. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 7.9

 

 Ru1

x 897(1)

y 4939(1)

z 8267(1)

U(eq) 20(1)

O1 -1576(5) 6976(3) 9352(3) 56(1) O2 -1375(5) 3063(3) 9705(3) 54(1)

O3 - 2285(17) 4763(11) 6344(10) 53(3)

C1 3359(5) 5832(4) 7268(4) 34(1) C2 3871(5) 5843(3) 8457(3) 36(1) C3 4001(6) 4585(3) 8845(3) 33(1) C4 3589(5) 3788(3) 7878(3) 29(1) C5 3221(5) 4549(3) 6911(3) 29(1) C6 -611(5) 6232(3) 8945(3) 29(1) C7 -513(5) 3746(3) 9163(3) 28(1) C8 -1246(6) 4841(5) 6971(4) 26(1) C8' -970(20) 4521(18) 7103(12) 44(5)

                                                                         

9 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Page 58: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

58  

   

Table C-5. Bond lengths [Å] and angles [°] for 7. Ru1-C6 1.886(3)  Ru1-C7 1.894(3)  Ru1-C8' 1.904(5)  Ru1-C8 2.098(4)  Ru1-C1 2.255(3)  Ru1-C4 2.263(3)  Ru1-C5 2.270(3)  Ru1-C3 2.270(4)  Ru1-C2 2.272(4)  O1-C6 1.131(4)  O2-C7 1.124(4)  O3-C8' 1.283(14)  C1-C2 1.408(5)  C1-C5 1.421(5)  C1-H1A 0.95  C2-C3 1.407(5)  C2-H2A 0.95  C3-C4 1.422(5)  C3-H3A 0.95  C4-C5 1.394(4)  C4-H4A 0.95  C5-H5A 0.95  C8-H8A 0.98  C8-H8B 0.98  C8-H8C 0.98  C6-Ru1-C7 88.74(12)  C6-Ru1-C8' 94.9(6)  C7-Ru1-C8' 83.1(6)  C6-Ru1-C8 86.53(17)  C7-Ru1-C8 89.46(17)  C8'-Ru1-C8 10.6(6)  C6-Ru1-C1 108.61(15)  C7-Ru1-C1 160.10(15)  C8'-Ru1-C1 104.4(6)  C8-Ru1-C1 100.95(16)  C6-Ru1-C4 157.41(15)  C7-Ru1-C4 99.71(14)  C8'-Ru1-C4 106.8(6)  C8-Ru1-C4 114.25(16)  C1-Ru1-C4 60.59(13)  

Page 59: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

59  

Table C-5. Continued  

C6-Ru1-C5 143.35(13) C7-Ru1-C5 127.74(14) C8'-Ru1-C5 87.3(6) C8-Ru1-C5 90.12(14) C1-Ru1-C5 36.60(14) C4-Ru1-C5 35.82(11) C6-Ru1-C3 121.24(15) C7-Ru1-C3 102.41(14) C8'-Ru1-C3 143.3(6) C8-Ru1-C3 149.53(15) C1-Ru1-C3 60.58(12) C4-Ru1-C3 36.56(12) C5-Ru1-C3 60.37(11) C6-Ru1-C2 98.71(15) C7-Ru1-C2 133.71(15) C8'-Ru1-C2 140.6(6) C8-Ru1-C2 136.33(16) C1-Ru1-C2 36.25(14) C4-Ru1-C2 60.44(13) C5-Ru1-C2 60.40(12) C3-Ru1-C2 36.10(13) C2-C1-C5 107.7(3) C2-C1-Ru1 72.5(2) C5-C1-Ru1 72.3(2) C2-C1-H1A 126.2 C5-C1-H1A 126.2 Ru1-C1-H1A 120.8 C3-C2-C1 108.3(3) C3-C2-Ru1 71.9(2) C1-C2-Ru1 71.2(2) C3-C2-H2A 125.8 C1-C2-H2A 125.8 Ru1-C2-H2A 122.7 C2-C3-C4 107.6(3) C2-C3-Ru1 72.0(2) C4-C3-Ru1 71.5(2) C2-C3-H3A 126.2 C4-C3-H3A 126.2 Ru1-C3-H3A 122 C5-C4-C3 108.3(3) C5-C4-Ru1 72.3(2) C3-C4-Ru1 72.0(2)

Page 60: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

60  

Table C-5. Continued  

C5-C4-H4A 125.9 C3-C4-H4A 125.9 Ru1-C4-H4A 121.5 C4-C5-C1 108.1(3) C4-C5-Ru1 71.84(19) C1-C5-Ru1 71.1(2) C4-C5-H5A 125.9 C1-C5-H5A 125.9 Ru1-C5-H5A 122.7 O1-C6-Ru1 177.3(4) O2-C7-Ru1 178.3(3) Ru1-C8-H8A 109.5 Ru1-C8-H8B 109.5 H8A-C8-H8B 109.5 Ru1-C8-H8C 109.5 H8A-C8-H8C 109.5 H8B-C8-H8C 109.5 O3-C8'-Ru1 155.0(15)

 

   

Table C-6. Anisotropic displacement parameters for 7.  

 Ru1

U11 15(1)

U22 21(1)

U33 24(1)

U23 1(1)

U13 1(1)

U12 1(1)

O1 52(2) 45(2) 72(2) - 8(2) 13(1)         12(2)      

O2  

56(2)  

46(2)  

60(2)  

12(1)  

11(2) - 11(1)

C1 20(2) 41(2) 42(2) 16(2) 5(2) -2(1)

C2 19(2) 44(2) 44(2) - 16(2) 4(2) -

10(1) C3 19(2) 54(2) 25(1) 0(1) -2(1) 1(2) C4 18(2) 35(2) 32(2) 3(1) 3(1) 7(1) C5 18(2) 53(2) 17(1) -1(1) 2(1) -4(1) C6 25(2) 33(2) 31(2) 2(1) 3(1) 3(2) C7 26(2) 29(2) 28(2) 2(1) 1(1) -3(1)

Page 61: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

61  

APPENDIXD MOLECULAR ORBITAL DIAGRAM OF 4

       

The molecular orbital diagram of 4 was generated using Microsoft Excel.          

eV 0.5 Orbital Energy

 -0.5

   

-1.5

   

-2.5  

 LUFO

-3.5  

 HOFO

-4.5

   

·5.5

   

·6.5

   

-7.5

   

-8.5

 Zr

                                                           Zr(CH2CCH)4 4L

                             HOFO

-+-•1

 --bl

"""*""b2

Page 62: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

62  

REFERENCES

 (1) Heavens, O. S. Optical Properties of Thin Solid Films; Academic Press dimethylamylamine 1955 (2) Burgraaf, P. Semiconductor International; pp. 80-83, 1993.  (3) Zilko, J. L. Handbook of Thin-Film Deposition Processes and Techniques; Noyes Publications: Park Ridge, NJ, 1988.  (4) Jones, A. C. Hitchens., M.L. Chemical Vapour Deposition; Precursors, Processes, and Applications; Royal Society of Chemistry, 2009.

. (5) Howard, B. J.; Steinbruchel, C. Applied Physics Letters 1991, 59, 914. (6) Istratov, A. A.; Weber, E. R. Electrochem. Soc. Conf. Proc. 2000, 2000-27, 90. (7) Nicolet, M. A.; Bartur, M. J. Vac. Sci. Technol. 1981, 19, 786. (8)  Brenner, A. E. Science 1997, 275, 1401.    (9)    Lakshminarayanan, S.; Steigerwald, J.; Price, D. T.; Bourgeois, M.; Chow T. P.; Gutmann, R. J.; Murarka, S. P. Electron Device Letters, IEEE 1994, 15, 307.  (10) Tokei, Z.; Springer London Ltd.: 2005, p 61.

(11) Hauser, C. Wear 1980, 62, 59.

(12) Girolami, G. S.; Jensen, J. A.; Gozum, J. E.; Pollina, D. M. Mater. Res. Soc. Symp. Proc. 1988, 121, 429.  (13) Smith, D. C.; Rubiano, R. R.; Healy, M. D.; Springer, R. W. Mater. Res. Soc. Symp. Proc. 1993, 282, 643.  (14) Parmeter, J. E.; Smith, D. C.; Healy, M. D. J. Vac. Sci. Technol., A 1994,

12, 2107.  (15) Healy, M. D.; Smith, D. C.; Rubiano, R. R.; Springer, R. W.; Parmeter, J. E. Mater. Res. Soc. Symp. Proc. 1994, 327, 127.  (16) Won, Y. S.; Kim, Y. S.; Varanasi, V. G.; Kryliouk, O.; Anderson, T. J.; Sirimanne, C. T.; McElwee-White, L. Journal of Crystal Growth 2007, 304, 324. (17) Glass, J. A., Jr.; Palmisiano, N., Jr.; Welsh, R. E. Mater. Res. Soc. Symp. Proc. 1999, 555, 185. 1052.      

Page 63: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

63  

(18) Blair, H. T.; Carroll, D. W.; Matthews, R. B. AIP Conf. Proc. 1991, 217,  (19) Wagner, P.; Wahman, L. A.; White, R. W.; Hollabaugh, C. M.; Reiswig, R. D. J. Nucl. Mater. 1976, 62, 221.  (20) Wu, Y. D.; Peng, Z. H.; Chan, K. W. K.; Liu, X. Z.; Tuinman, A. A.; Xue, Z. L. Organometallics 1999, 18, 2081.  (21 Schrock, R. R.; Parshall, G. W. Chemical Reviews 1976, 76, 243.

(22) Wojcicki, A. Inorganic Chemistry Communications 2002, 5, 82.

(23) Doherty, S.; Corrigan, J. F.; Carty, A. J.; Sappa, E. Advances in Organometallic Chemistry 1995, 37, 39.  (24) Blosser, P. W.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics 1993, 12, 1993.  (25) Casey, C. P.; Yi, C. S. Journal of the American Chemical Society 1992, 114, 6597.  (26) Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. Journal of the American Chemical Society 1993, 115, 2994.  (27) Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. Journal of Organometallic Chemistry 2000, 597, 125.  (28) Rodriguez, G.; Bazan, G. C. Journal of the American Chemical Society 1997, 119, 343.  (29) Horton, A. D.; Orpen, A. G. Organometallics 1992, 11, 8.  (30) André, V.; Robin, S.; Rousseau, G. Tetrahedron Letters 2008, 49, 5059.

(31) Lappin, G. R. Journal of the American Chemical Society 1949, 71, 3966.

(32) Girolami, G. S.; Wilkinson, G.; Thornton-Pett, M.; Hursthouse, M. B. Journal of the Chemical Society, Dalton Transactions 1984, 2789.  (33) Heyduk, A. F.; Blackmore, K. J.; Ketterer, N. A.; Ziller, J. W. Inorg. Chem. 2005, 44, 468.

(34) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  (35) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  (36) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.  

Page 64: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

64  

(37) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.  (38) Gaussian 03, Revision. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. 2004.  (39) Gorelsky, S. I.; University of Ottawa: 2009.  (40) Gorelsky, S. I.; Lever, A. B. P. Journal of Organometallic Chemistry 2001, 635, 187.  (41) Allouche, A. R.; http://gabedit.sourceforge.net/.  (42) Costuas, K.; Saillard, J.-Y. Chem. Commun. (Cambridge) 1998, 18, 2047. (43) Gleiter, R.; Bethke, S.; Okubo, J.; Jonas, K. Organometallics 2001, 20, 4274.    (44) Bendjaballah, S.; Kahlal, S.; Costuas, K.; Bévillon, E.; Saillard, J.-Y. Chemistry - A European Journal 2006, 12, 2048.  (45) Becconsall, J. K.; O'Brien, S. Chem. Commun. 1966, 302.

(46) Jennings, J. R. J. Mol. Catal. 1990, 58, 95.

(47) Graham, J. P.; Wojcicki, A.; Bursten, B. E. Organometallics 1999, 18, 837.

(48) Bruker-AXS: Madison, Wisconsin, 2000.

Page 65: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

65  

(49) Chyan, O.; Arunagiri, T. N.; Ponnuswamy, T. Journal of the Electrochemical Society 2003, 150, C347.  (50) Josell, D.; Wheeler, D.; Witt, C.; Moffat, T. P. Electrochemical and Solid- State Letters 2003, 6, C143.  (51) Bai, G. R.; Wang, A.; Foster, C. M.; Vetrone, J. Thin Solid Films 1997, 310, 75.  (52) Lee, J.-H.; Kim, J.-Y.; Rhee, S.-W. Electrochemical and Solid-State Letters 1999, 2, 622.  (53) Kadoshima, M.; Nabatame, T.; Hiratani, M.; Nakamura, Y.; Asano, I.; Suzuki, T. Jpn. J. Appl. Phys. 2002, 41, L347.  (54) Wang, Q.; Ekerdt, J. G.; Gay, D.; Sun, Y. M.; White, J. M. Applied Physics Letters 2004, 84, 1380.

(55) Trent, D. E.; Paris, B.; Krause, H. H. Inorg. Chem. 1964, 3, 1057.

(56) Robertson, A. H. J.; McQuillan, G. P.; McKean, D. C. Journal of the Chemical Society, Dalton Transactions 1995, 3955.

(57) Davison, A.; McCleverty, J. A.; Wilkinson, G. J. Chem. Soc. D 1963, 1133.

(58) Rastogi, A. C.; Dhara, S.; K. Das, B. Journal of The Electrochemical Society 1995, 142, 3148.  (59) Maruyama, T.; Shinyashiki, Y. Thin Solid Films 1998, 333, 203.  (60) Mathur, S.; Veith, M.; Sivakov, V.; Shen, H.; Huch, V.; Hartmann, U.; Gao, H. B. Chemical Vapor Deposition 2002, 8, 277.  (61) Park, S.; Lim, S.; Choi, H. Chemistry of Materials 2006, 18, 5150.

(62) Kanjolia, R.; Odedra, R.; Boag, N. 2009, p 47pp.

(63) Kanjolia, R.; Odedra, R.; Boag, N.; Weyburne, D. 2009, p 62pp.  (64) Kanjolia, R. K.; Anthis, J.; Odedra, R.; Williams, P.; Heys, P. N. ECS Trans. 2008, 16, 79.  (65) Humphries, A. P.; Knox, S. A. R. Journal of the Chemical Society, Chemical Communications 1973, 326.  (66) Li, H. J.; Turnbull, M. M. J. Organomet. Chem. 1991, 419, 245.

Page 66: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

66  

(67) Chiu, H. T.; Chuang, S. H. J. Mater. Res. 1993, 8, 1353 (68) Rische, D.; Parala, H.; Gemel, E.; Winter, M.; Fischer, R. A. Chemistry of Materials 2006, 18, 6075.

(69) El-Kadri, O. M.; Heeg, M. J.; Winter, C. H. Dalton Transactions 2006, 1943. (70) Ajmera, H. M.; Anderson, T. J.; Koller, J.; McElwee-White, L.; Norton, D. P. Thin Solid Films 2009, 517, 6038.  (71) Ajmera, H. M.; Heitsch, A. T.; Bchir, O. J.; Norton, D. P.; Reitfort, L. L.; McElwee-White, L.; Anderson, T. J. J. Electrochem. Soc. 2008, 155, H829.  (72) Bchir, O. J.; Green, K. M.; Hlad, M. S.; Anderson, T. J.; Brooks, B. C.; Wilder, C. B.; Powell, D. H.; McElwee-White, L. J. Organomet. Chem. 2003, 684, 338.  (73) Bchir, O. J.; Johnston, S. W.; Cuadra, A. C.; Anderson, T. J.; Ortiz, C. G.; Brooks, B. C.; Powell, D. H.; McElwee-White, L. J. Cryst. Growth 2003, 249, 262.  (74) Johnston, S. W.; Ortiz, C. G.; Bchir, O. J.; Zhang, Y.; McElwee-White, L.; Anderson, T. J. Proc. - Electrochem. Soc. 2000, 2000-13, 268.  (75) Kim, D.; Kim, O. H.; Ajmera, H. M.; Anderson, T.; Koller, J.; McElwee- White, L. ECS Trans. 2009, 25, 541.  (76) Koller, J. Ph.D. Dissertation, University of Florida, 2008.  (77) Lee, J.; Kim, D.; Kim, O. H.; Anderson, T.; Koller, J.; Denomme, D.; Habibi, S. Z.; McElwee-White, L. ECS Transactions, 28, 15.  (78) Bchir, O. J.; Green, K. M.; Ajmera, H. M.; Zapp, E. A.; Anderson, T. J.; Brooks, B. C.; Reitfort, L. L.; Powell, D. H.; Abboud, K. A.; McElwee-White, L. Journal of the American Chemical Society 2005, 127, 7825.

Page 67: PRECURSORS FOR METAL-ORGANIC CHEMICAL VAPOR DEPOSITION …ufdcimages.uflib.ufl.edu/UF/E0/04/43/27/00001/DENOMME_D.pdf · 2013-02-22 · Chemical Vapor Deposition and Atomic Layer

67  

BIOGRAPHICAL SKETCH  

Dan Denomme was born in 1981, in Redford, MI. Science was an interest as

early as age 7 when he wanted to be a paleontologist. This desire lasted for almost a

full year before he realized it required digging in dirt. While attending Central Michigan

University Dan worked for Dow Chemical in Midland, MI as a technical co-op in the

water-soluble polymer research laboratories. In 2007, he received his B.S. in chemistry

from CMU and enrolled in graduate school and joined the research group of Prof. Lisa

McElwee-White. He received his Master of Science degree from the University of

Florida in the fall of 2012.