PR 00 Introduccion motivacion

Embed Size (px)

Citation preview

  • 8/2/2019 PR 00 Introduccion motivacion

    1/69

    IAEAInternational Atomic Energy Agency

    RADIATION PROTECTION INDIAGNOSTIC ANDINTERVENTIONAL RADIOLOGY

    L 0. Principles of Radiation Protection andMotivation for the Course

    IAEA Standard Syllabus Course on Radiation Protection in Diagnostic and Interventional Radiology

  • 8/2/2019 PR 00 Introduccion motivacion

    2/69

    IAEA

    Introduction to Radiation Protection in Diagnostic Radiology 2

    Introduction

    Subject matter motivation for radioprotectionand quality assurance in diagnostic andinterventional radiology

    Give an overview of different contributions ofradiation exposure, the principles ofradiation protection

    Specifity of the medical exposure

  • 8/2/2019 PR 00 Introduccion motivacion

    3/69

    IAEA

    Introduction to Radiation Protection in Diagnostic Radiology 3

    Is there

    RADIATIONin this room?

  • 8/2/2019 PR 00 Introduccion motivacion

    4/69

    IAEA

    Introduction to Radiation Protection in Diagnostic Radiology 4

    Radiation - We live with

    Natural Radiation: Cosmic rays, radiation within ourbody, in food we eat, water we drink, house we livein, lawn, building material etc.

    Human Body: K-40, Ra-226, Ra-228

    e.g. a man with 70 kg wt. 140 gm of K140 x 0.012%=0.0168 gm of K-400.1 Ci of K-40

    24,000 photons emitted/min

    (T1/2 of K-40 = 1.3 billion yrs)

  • 8/2/2019 PR 00 Introduccion motivacion

    5/69

    IAEA

    Introduction to Radiation Protection in Diagnostic Radiology 5

    K-40 Estimate for Lean Body Mass

    Body weight = Fat + lean body mass

    K-40 directly related to lean body mass

    Whole body counter used

  • 8/2/2019 PR 00 Introduccion motivacion

    6/69

    IAEA

    Introduction to Radiation Protection in Diagnostic Radiology 6

    Radiation - We live with

    Earth: Top 1m of 0.1 acre garden

    =1200 kg of K of which K-40 =1.28 Kg

    = +3.6 Kg of Th + 1 Kg Ur

    Gy/yrNew Delhi 700

    Bangalore 825

    Bombay 424

    Kerala 4000

    (in narrow coastal strip)

  • 8/2/2019 PR 00 Introduccion motivacion

    7/69

  • 8/2/2019 PR 00 Introduccion motivacion

    8/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 8

    Radiation - We live with

    Food Radioactive levels (Bq/kg)

    Daily intake(g/d)

    Ra-226 Th-228 Pb-210 K-40

    Rice 150 0.126 0.267 0.133 62.4

    Wheat 270 0.296 0.270 0.133 142.2

    Pulses 60 0.233 0.093 0.115 397.0

    OtherVegetables

    70 0.126 0.167 -- 135.2

    LeafyVegetables

    15 0.267 0.326 -- 89.1

    Milk 90 -- -- -- 38.1CompositeDiet

    1370 0.067 0.089 0.063 65.0

    Dose equivalent=0.315 mSv/yr

    Total dose from Natural sources = 1.0 to 3.0 mSv/yr

  • 8/2/2019 PR 00 Introduccion motivacion

    9/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 9

    Radiation from Natural Sources

    Normally 1-3 mSv/year

    In areas of high background, 3-13 mSv/year

  • 8/2/2019 PR 00 Introduccion motivacion

    10/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 10

    DO WE NEED

    RADIATION

    PROTECTION ?

  • 8/2/2019 PR 00 Introduccion motivacion

    11/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 11

    Drinking Hot Coffee

    Excess Temperature = 60 - 37 = 23

    1 sip = 3ml

    3x 23 = 69 calories

  • 8/2/2019 PR 00 Introduccion motivacion

    12/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 12

    Lethal Dose= 4Gy

    LD 50/60 = 4 Gy

    For man of 70 kg

    Energy absorbed = 4 x 70 = 280 Joules

    = 280/418= 67 calories

    = 1 sip

  • 8/2/2019 PR 00 Introduccion motivacion

    13/69

  • 8/2/2019 PR 00 Introduccion motivacion

    14/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 14

  • 8/2/2019 PR 00 Introduccion motivacion

    15/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 15

    SO WE NEED

    RADIATION

    PROTECTION

  • 8/2/2019 PR 00 Introduccion motivacion

    16/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 16

    We live with1-3 mSv

    Can kill4000 mSv

    Radiation

    Where to stop, where is the safe point?What are the effects of radiation?

  • 8/2/2019 PR 00 Introduccion motivacion

    17/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 17

    Death

    Cancer

    Skin Burns

    Cataract

    InfertilityGenetic effects

    What can radiation do?

  • 8/2/2019 PR 00 Introduccion motivacion

    18/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 18

    CAN X-RAY

    CAUSE

    DEATH?

  • 8/2/2019 PR 00 Introduccion motivacion

    19/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 19

    Dose

    Deterministic effects

    Cataract

    infertility

    erythema

    epilation

    500 mSv cataract150 mSv for sterility (temporary-males)

    2500 mSv for ovarian

    Effect

    OBJECTIVES OF RADIATION

  • 8/2/2019 PR 00 Introduccion motivacion

    20/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 20

    OBJECTIVES OF RADIATIONPROTECTION

    PREVENTION of deterministic effect

    LIMITING the probability of stochastic effect

    HOW? Up to what point?

  • 8/2/2019 PR 00 Introduccion motivacion

    21/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 21

    OPTIMIZATION

    principle

    To what extent OPTIMIZATION ?Over-stretching OPTIMIZA TION

    F t f id i l i l t di f

  • 8/2/2019 PR 00 Introduccion motivacion

    22/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 22

    Features of some epidemiological studies ofradiation-induced cancer risks

    Life Span Study Massachusetts Children in

    (LSS) of Ankylosing tuberculosis patients Israel irradiated

    Japanese atomic Spondylitis given chest for ringworm UK National Registry for

    bomb survivors Study (ASS) fluoroscopies of the scalp Radiation Workers

    Parameter (Shimizu et al) (Weiss et al) (Boice et al) (Ron et al) (Kendall et al)

    Population 75991 14109 2573 10834 95217

    size (with DS86 doses)

    Period of 5-55 years Up to over Up to over 50 years Up to 32 years Up to 40 yearsfollow-up following exposure 50 years

    (mean 25.2 (mean 30 years) (mean 26 years)

    years)

    Ranges of:

    (a) ages at All Virtually all Under 15 to over 40 0-15 years 18-64 years

    exposure 15 years

    (b) sexes Similar numbers of 83.5% male Female Similar number of 92% male

    males and females males and females

    ethnic Japanese Western (UK) Western (N. American) African and Asian Western (UK)

    groups

    Setting in War Medical:ther- Medical:diagnostic Medical:therapy Occupational

    which apy for non- for non-malignant

    exposure malignant diseasewas received disease

    F t f id i l i l t di f

  • 8/2/2019 PR 00 Introduccion motivacion

    23/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 23

    Features of some epidemiological studies ofradiation-induced cancer risks (cont.)

    Life Span Study Massachusetts Children in

    (LSS) of Ankylosing tuberculosis patients Israel irradiated

    Japanese atomic Spondylitis given chest for ringworm UK National Registry

    bomb survivors Study (ASS) fluoroscopies of the scalp for Radiation Workers

    Parameter (Shimizu et al) (Weiss et al) (Boice et al) (Ron et al) (Kendall et al)

    Range of All All (but Mainly breast & lung mainly brain, All

    organs mainly those bone marrow,

    irradiated in proximity thyroid, skin

    to spine and breast

    Availability Organ doses: Mean organ Organ doses: Brain, thyroid & Individual whole-body

    of dose individual basis doses: indiv. Individual basis skin doses: external doses

    estimates only for red individual basis

    bone marrow

    at present

    Range dose Mainly 0-4 Gy Mainly 0-20 Gy Mainly 0-3 Gy Brain: 0-6 Gy Mainly 0-0.5 Sv

    (mean 1.5 Gy) (mean 0.034 Sv)

    Thyroid:0-0.5 Gy

    (mean 0.09 Gy)

    Dose rate High High High, but highly High Low

    fractionated

    Radiation Mainly low-LET Low-LET Low-LET Low-LET Mainly low-LET

    Quality

  • 8/2/2019 PR 00 Introduccion motivacion

    24/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 24

    Dose Limits (ICRP 60)

    Occupational PublicEffective dose 20 mSv/yr averaged* 1 mSv in a yr

    over 5 yrs.

    Annual equivalent

    dose to

    Lens of eye 150 mSv 15 mSv

    Skin 500 mSv 50 mSv

    Hands & Feet 500 mSv

    * with further provision that dose in any single yr > 30 mSv (AERB)and =50 mSv (ICRP)

    N.B.: M.P.D. 1931 = 500 mSv, 1947=150 mSv, 1977=50 mSv &

    in 1990=20 mSv

    Changes in Dose Limit (ICRP)

  • 8/2/2019 PR 00 Introduccion motivacion

    25/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 25

    mSv

    Year

    Changes in Dose Limit (ICRP)(Safe levels)

    0

    100

    200

    300

    400

    500

    1931 1947 1977 1990

  • 8/2/2019 PR 00 Introduccion motivacion

    26/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 26

    WHAT IS

    BASIS FOR

    DOSE LIMITS?

  • 8/2/2019 PR 00 Introduccion motivacion

    27/69

  • 8/2/2019 PR 00 Introduccion motivacion

    28/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 28

    WHY

    REDUCTION IN

    DOSE LIMITS?

  • 8/2/2019 PR 00 Introduccion motivacion

    29/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 29

    PRINCIPLES

    OFRADIATION

    PROTECTION

  • 8/2/2019 PR 00 Introduccion motivacion

    30/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 30

    1. Justification of practices

    2. Optimization of protection by

    keeping exposure as low asreasonably achievable

    3. Dose limits for occupational

  • 8/2/2019 PR 00 Introduccion motivacion

    31/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 31

    HOW TO APPLY

    THESE PRINCIPLES IN

    DIAGNOSTIC RADIOLOGY?

  • 8/2/2019 PR 00 Introduccion motivacion

    32/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 32

    How much time one works with radiation?

    RADIOGRAPHY

  • 8/2/2019 PR 00 Introduccion motivacion

    33/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 33

    Radiation ON Time

    Workload=100 exposures/day

    CxR = 50x50 m sec = 2500 = 2.5

    LS = 50x800 m sec = 40000=40s

    Total time = 45 sec/day

    Not greater than 1 min/day

    S ff D

  • 8/2/2019 PR 00 Introduccion motivacion

    34/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 34

    Staff Doses

    Dose limit ICRP = 20 mSv/yr.

    Radiography work 0.1 mS/yr.

    i.e. 1/200th ofdose limit

    Radiation Doses in Radiological Exam

  • 8/2/2019 PR 00 Introduccion motivacion

    35/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 35

    Relative Dose Received

    number of chest x-rays0 50 100 150 200

    Arm, head,ankle & foot (1)Head & Neck (3)

    Head CT (10)Thoracic Spine (18)Mammography, Cystography (20)

    Pelvis (24)Abdomen, Hip, Upper & lower femur (28)

    Ba Swallow (30)

    Obsteric abdomen (34)Lumbo-sacral area (43)

    Cholangiography (52)Lumber Myelography (60)

    Lower abdomen CT male (72)Upper Abdomen CT (73)Ba Meal (76)

    Angio-head, Angio-peripheral (80)Urography (87)

    Angio-abdominal (120)Chest CT (136)

    Lower Abd. CT fem. (142)Ba enema (154)

    Lymphan. (180)

    mSv.05

    0.15

    0.49

    0.92

    1.0

    1.22

    1.4

    1.5

    1.7

    2.15

    2.59

    3.0

    3.61

    3.67

    3.8

    4.0

    4.36

    6.0

    6.8

    7.13

    7.69

    9.0

    Radiation Doses in Radiological Exam.(as multiple of chest x-ray)

  • 8/2/2019 PR 00 Introduccion motivacion

    36/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 36

    IS IT POSSIBLE TO GET

    DETERMINISTIC EFFECTS INRADIOGRAPHIC WORK ?

    For staff, for patient..??

    Radiography

  • 8/2/2019 PR 00 Introduccion motivacion

    37/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 37

    Radiography

    Risk of Staff Patient Public

    DeathSkin burnInfertilityCataractCancerGenetic effect

    UU

    UU

    UU

    U: unlikely

  • 8/2/2019 PR 00 Introduccion motivacion

    38/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 38

    FLUOROSCOPY

    ANDCT

  • 8/2/2019 PR 00 Introduccion motivacion

    39/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 39

    Fluoroscopy

    Barium study: 3-6 min/pt x 8 patients/d=40 min/d

    ANGIOGRAPHY Diagnostic = 50 min/d Therapeutic = 2-5 hr/d

    CT = 10-45 min/d

    Fluoroscopy ( l th i )

  • 8/2/2019 PR 00 Introduccion motivacion

    40/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 40

    Fluoroscopy (excl. ther angio)

    Risk of Staff Patient Public

    DeathSkin burn

    InfertilityCataractCancerGenetic effect

    UU

    UU

    UU

    U: unlikely

    S

  • 8/2/2019 PR 00 Introduccion motivacion

    41/69

    IAEA Introduction to Radiation Protection in Diagnostic Radiology 41

    Summary

    1. Radiation we live with

    2. Radiation that can be lethal

    3. Radiation effects

    4. Dose limits

    5. Principles of protection

    6. Application of protection principles indiagnostic radiology

    R di h

  • 8/2/2019 PR 00 Introduccion motivacion

    42/69

    IAEA Part 1: Introductory lecture42

    Radiotherapy

    One of the main treatment modalities forcancer (often in combination withchemotherapy and surgery)

    It is generally assumed that 50 to 60% ofcancer patients will benefit from radiotherapy

    Minor role in other diseases

    Siemens Oncology

    Obj ti f th M d l

  • 8/2/2019 PR 00 Introduccion motivacion

    43/69

    IAEA Part 1: Introductory lecture43

    Objectives of the Module

    To become familiar with the principles of radiotherapy

    the role of radiotherapy in cancer management

    the cost effectiveness of radiotherapy

    To appreciate the importance of radiationdose in radiotherapy

  • 8/2/2019 PR 00 Introduccion motivacion

    44/69

    IAEA Part 1: Introductory lecture 44

    Aim

    To kill ALL viablecancer cells

    To deliver as muchdose as possible tothe target whileminimising the dose

    to surroundinghealthy tissues

    target

    Patient

    Critical

    organs

    Beam

    directions

    P ti F t

  • 8/2/2019 PR 00 Introduccion motivacion

    45/69

    IAEA Part 1: Introductory lecture45

    Prognostic Factors

    Cancer type and stage

    Patient performance

    Radiation dose

    ...survival

    time

    Good prognosis

    Bad prognosis

    P ti F t

  • 8/2/2019 PR 00 Introduccion motivacion

    46/69

    IAEA Part 1: Introductory lecture46

    Prognostic Factors

    Cancer type and stage

    Patient performance

    Radiation dose

    ...

    Accurate dose delivery

    matters!

  • 8/2/2019 PR 00 Introduccion motivacion

    47/69

    IAEA Part 1: Introductory lecture47

    Doseresponse

    100% response

    means the tumouris cured with

    certainty (TCP) or

    unacceptable normal

    tissue damage (e.g.

    paralysis) is

    inevitable

  • 8/2/2019 PR 00 Introduccion motivacion

    48/69

    IAEA Part 1: Introductory lecture48

    Doseresponse

    Therapeutic window:

    Maximum probabilityof Complication FreeTumour Control

    Dose sho ld be acc rate

  • 8/2/2019 PR 00 Introduccion motivacion

    49/69

    IAEA Part 1: Introductory lecture49

    Dose should be accurate

    To target: 5% too low - may result in clinically detectable

    reduction in tumour control (e.g. Head and neckcancer: 15%)

    To normal tissues: 5% too high - may lead to significant increase in

    normal tissue complication probability =

    morbidity = unacceptable side effects

  • 8/2/2019 PR 00 Introduccion motivacion

    50/69

    IAEA Part 1: Introductory lecture50

    Deviations from Prescribed

    Dose

    May involve severe or even fatalconsequences.

    IAEA Basic Safety Standards (SS 115):require prompt investigation by

    licensees in the event of an accidental

    medical exposure

    Options for dose delivery

  • 8/2/2019 PR 00 Introduccion motivacion

    51/69

    IAEA Part 1: Introductory lecture51

    Options for dose delivery

    External beam radiotherapy = dose isdelivered from outside the patient usingX Rays or gamma rays or high energy

    electrons (refer to part 5 of the course) Brachytherapy = dose delivered from

    radioactive sources implanted in the

    patient close to the target (brachys =Greek for short distance; refer to part 6of the course)

    External beam radiotherapy

  • 8/2/2019 PR 00 Introduccion motivacion

    52/69

    IAEA Part 1: Introductory lecture52

    External beam radiotherapy

    IAEA Training Material on Radiation Protection in Radiotherapy

  • 8/2/2019 PR 00 Introduccion motivacion

    53/69

    IAEAInternational Atomic Energy Agency

    Radiation Protection in

    Radiotherapy

    IAEA Training Material on Radiation Protection in Radiotherapy

    The IAEA

  • 8/2/2019 PR 00 Introduccion motivacion

    54/69

    IAEA Part 0: Lecture CourseOutline54

    The IAEA

    International Atomic Energy Agency Statutory function: to establish standards

    of safety for the protection of health and

    to provide for the applications of thesestandards.

    Objective to accelerate and enlarge thecontribution of atomic energy to peace,health and prosperity throughout the world.

  • 8/2/2019 PR 00 Introduccion motivacion

    55/69

    IAEA Part 0: Lecture CourseOutline55

    Radiotherapy

    Constitutes a peaceful

    application of ionizing radiation Is an essential part of cancer

    management

    Issues of safety, quality assurance andorganization must be considered

    VARIAN Oncology

    Content of the Lecture Course

  • 8/2/2019 PR 00 Introduccion motivacion

    56/69

    IAEA Part 0: Lecture CourseOutline56

    Content of the Lecture Course

    A Background (Radiotherapy, effectsof radiation, principles of protection)

    B Properties of equipment used inradiotherapy

    C Radiation exposure (Occupational,medical and accidental)

    D Associated issues (Transport,discharge of patients, organization)

  • 8/2/2019 PR 00 Introduccion motivacion

    57/69

    IAEA Part 0: Lecture Course Outline 57

    Essential Reading

    International Basic SafetyStandards for Protectionagainst Ionizing Radiation

    and for the Safety ofRadiation Sources,Vienna 1996 (IAEA, FAO,ILO, OECD/NEA, PAHOand WHO)

  • 8/2/2019 PR 00 Introduccion motivacion

    58/69

    IAEAInternational Atomic Energy Agency

    RADIATION PROTECTION IN NUCLEARMEDICINE

    Part 0: Introduction to Nuclear Medicine

    NUCLEAR MEDICINE

  • 8/2/2019 PR 00 Introduccion motivacion

    59/69

    IAEA Part 0. Introduction toNuclear Medicine59

    Clinical problem

    Radiopharmaceutical Instrumentation

    Diagnosis and therapy withunsealed sources

    NUCLEAR MEDICINE

    RADIOPHARMACEUTICALS

  • 8/2/2019 PR 00 Introduccion motivacion

    60/69

    IAEA Part 0. Introduction toNuclear Medicine60

    Radionuclide Pharmaceutical Organ Parameter

    + colloid Liver RES

    Tc-99m + MAA Lungs Regional

    perfusion

    + DTPA Kidneys Kidneyfunction

    RADIOPHARMACEUTICALS

    HISTORY-RADIONUCLIDES

  • 8/2/2019 PR 00 Introduccion motivacion

    61/69

    IAEA Part 0. Introduction toNuclear Medicine61

    1896 Natural radioactivity Becquerel1898 Radium Curie

    1911 Atomic nucleus Rutherford

    1913 Model of the atom Bohr

    1930 Cyclotron Lawrence1932 Neutron Chadwick

    1934 Artificial radionuclide Joliot-Curie

    1938 Production and identification of I-131 Fermi et al

    1942 Nuclear reactor Fermi et al

    1946 Radionuclides commercially available Harwell

    1962 Tc99m in nuclear medicine Harper

    HISTORY-RADIONUCLIDES

    PIONEERS

  • 8/2/2019 PR 00 Introduccion motivacion

    62/69

    IAEA Part 0. Introduction toNuclear Medicine62

    Henri Becquerel Ernest Rutherford Maria Curie

    Frederique Joliot-Irene Curie

    PIONEERS

    CURRENT METHODS-THERAPY

  • 8/2/2019 PR 00 Introduccion motivacion

    63/69

    IAEA Part 0. Introduction toNuclear Medicine63

    Radiopharmaceutical For treatment of Route of Maximum

    administration activity

    I-131 iodide Thyrotoxicosis Oral 1 GBq

    I-131 iodide Carcinoma of thyroid Oral 20 GBq

    I-131 MIBG Malignancy IV 10 GBq

    P-32 phosphate Polycythaemia vera IV or oral 200 MBq

    Sr-89 chloride Bone metastases IV 150 MBq

    Y-90 colloid Arthritic conditions Intra-articular 250 MBq

    malignant effusions Intra-cavitary 5 GBq

    Er-169 colloid Arthritic conditions Intra-articular 50 MBq

    Re-186 colloid Arthritic conditions Intra-articular 150 MBq

    CURRENT METHODS-THERAPY

    HISTORY-THERAPY

  • 8/2/2019 PR 00 Introduccion motivacion

    64/69

    IAEA Part 0. Introduction toNuclear Medicine64

    1936 Therapeutic use of Na-24 (leukemia) Hamilton et

    al

    1936 Therapeutic use of P-32 (leukemia and Lawrence

    polycythemia vera)

    1941 Therapeutic use of iodine in hyperthyroidism Hertz et al1942 Therapeutic use of iodine in treatment of

    metastasis from thyroid cancer

    1945 Therapeutic use of Au-198 in treatment of Muller

    malignant effusion

    1958 Treatment of bone metastasis with P-32 Maxfield1963 Medical synovectomy using Au-198 Ansell

    HISTORY-THERAPY

    I-131 THERAPY

  • 8/2/2019 PR 00 Introduccion motivacion

    65/69

    IAEA Part 0. Introduction toNuclear Medicine65

    The absorbed dose to be delivered should be determined

    from uptake measurements, effective half-life of the radio-

    pharmaceutical and the size of the thyroid.

    The radiopharmaceutical is administered p.os.

    Hyperthyroidism

    Cured after Hypothyroidism3-4 months 1 year after 7 years

    85% 98% 14.8% 27.9%

    I-131 THERAPY

    RADIOSYNOVECTOMY

  • 8/2/2019 PR 00 Introduccion motivacion

    66/69

    IAEA Part 0. Introduction toNuclear Medicine66

    RADIOSYNOVECTOMY

    PAIN PALLIATION

  • 8/2/2019 PR 00 Introduccion motivacion

    67/69

    IAEA Part 0. Introduction toNuclear Medicine67

    PAIN PALLIATION

    Intravenous injection of

    a radiopharmaceutical which

    includes e.g. Sr-89 orSm-153

    ANNUAL FREQUENCY-THERAPY

  • 8/2/2019 PR 00 Introduccion motivacion

    68/69

    IAEA Part 0. Introduction toNuclear Medicine68

    Thyroid (tumours & hyperthyroidism) 0.39

    Polycythemia vera 0.034Other tumours 0.003

    Others 0.001

    Total 0.428

    Number of patients per 1000 population

    about 3% of all nuclear medicine

    (Sweden 1995)

    CURRENT DIAGNOSTIC METHODS

  • 8/2/2019 PR 00 Introduccion motivacion

    69/69

    Imaging

    Bone, Brain, Lungs , Thyroid, Kidneys, Liver/spleen,Cardiovascular, Stomach/GI-tract, Tumours, Abscesses .

    Non-imaging (probes)

    Thyroid uptake, Renography, Cardiac output, Bile acid

    resorption.

    Laboratory tests

    GFR, ERPF, Red cell volume/survival, Absorption

    studies (B12, iron, fat), Blood volume, Exchange-

    able electrolytes, body water, bone metabolism..

    Radioimmunoassays (RIA) Radioguided Surgery

    CURRENT DIAGNOSTIC METHODS