16
CE 809 - Structural Dynamics Lecture 5: Response of SDF Systems to Impulse Loading Semester – Fall 2020 Dr. Fawad A. Najam Department of Structural Engineering NUST Institute of Civil Engineering (NICE) National University of Sciences and Technology (NUST) H-12 Islamabad, Pakistan Cell: 92-334-5192533, Email: [email protected] Prof. Dr. Pennung Warnitchai Head, Department of Civil and Infrastructure Engineering School of Engineering and Technology (SET) Asian Institute of Technology (AIT) Bangkok, Thailand

PMCE Structural Dynamics - Home - StructuresPro

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PMCE Structural Dynamics - Home - StructuresPro

CE 809 - Structural Dynamics

Lecture 5: Response of SDF Systems to Impulse Loading

Semester – Fall 2020

Dr. Fawad A. Najam

Department of Structural Engineering

NUST Institute of Civil Engineering (NICE)

National University of Sciences and Technology (NUST)

H-12 Islamabad, Pakistan

Cell: 92-334-5192533, Email: [email protected]

Prof. Dr. Pennung Warnitchai

Head, Department of Civil and Infrastructure Engineering

School of Engineering and Technology (SET)

Asian Institute of Technology (AIT)

Bangkok, Thailand

Page 2: PMCE Structural Dynamics - Home - StructuresPro

2

Impulse Loading

β€’ Impulsive forces, shock loads, short duration loads.

β€’ Impact, blast wave, explosion

β€’ Sudden stop/break of trucks & automobiles & travelling cranes

The study of impulse response is also important for the analysis of response to arbitrary

loadings.

Page 3: PMCE Structural Dynamics - Home - StructuresPro

3

Response to Impulse Loading

Response

𝑝 : Step Impulse

π‘π‘œ

𝑇

𝑑No Load

Decayed

Oscillation

βˆ†π‘‘

Phase I: Loading Phase

Phase II: Free Vibration Phase

(𝑑)

Page 4: PMCE Structural Dynamics - Home - StructuresPro

4

Response to Impulse Loading

Impulse Force Magnitude = π‘π‘œ, start at 𝑑 = 0, Duration = Δ𝑑, where Δ𝑑/𝑇 << 1

Initial at-rest: 𝑒 = 0, 𝑒 = 0Structure (0) (0)

Page 5: PMCE Structural Dynamics - Home - StructuresPro

5

Response to Impulse Loading

Phase 1:

The particular solution to a step

loading is simply a static deflection:

π‘π‘œ

π‘‘βˆ†π‘‘

𝑝 𝑑

𝑑 ……….. (1)𝑒𝑝 =π‘π‘œπ‘˜

Page 6: PMCE Structural Dynamics - Home - StructuresPro

6

Response to Impulse Loading

This solution satisfies the equation of motion:

𝑒𝑝 = 0

𝑒𝑝 = 0

Substitute the above relations into the equation of

motion:

Phase 1:

0 + 0 + π‘˜π‘0π‘˜

= 𝑝0

𝑒𝑝 =π‘π‘œπ‘˜

𝑑

𝑑

𝑑

π‘š 𝑒𝑝 + 𝑐 𝑒𝑝 + π‘˜ 𝑒𝑝 = 𝑝0𝑑 𝑑 𝑑

Page 7: PMCE Structural Dynamics - Home - StructuresPro

7

Response to Impulse Loading

A general solution:

𝑒 = 𝑒𝑝 + π‘’β„Ž

𝑒 =π‘π‘œπ‘˜+ π‘’βˆ’πœ‰ πœ” 𝑑 𝐴 sin πœ”π·π‘‘ + 𝐡 cos πœ”π·π‘‘

Where

𝐴 and 𝐡 are determined such that the at-rest initial conditions are satisfied.

Phase 1:

……….. (2)

(𝑑) (𝑑) (𝑑)

𝑑

Page 8: PMCE Structural Dynamics - Home - StructuresPro

8

Response to Impulse Loading

𝑒 =π‘π‘œπ‘˜+ 𝐡 = 0

𝑒 = πœ”π·π΄ βˆ’ πœ‰πœ”π΅ = 0

So we obtain:

Phase 1:

𝐡 = βˆ’π‘π‘œπ‘˜

𝐴 =πœ‰πœ”π΅

πœ”π·

……….. (3)

0

0

𝑒 =π‘π‘œπ‘˜+ π‘’βˆ’πœ‰ πœ” 𝑑 βˆ’

πœ‰ πœ”

πœ”π·

π‘π‘œπ‘˜sin πœ”π·π‘‘ βˆ’

π‘π‘œπ‘˜cos πœ”π·π‘‘

……….. (4)𝑑

(valid in the range 0 < 𝑑 < Δ𝑑)

Page 9: PMCE Structural Dynamics - Home - StructuresPro

9

Response to Impulse Loading

Due to fact that 0 < 𝑑 < Δ𝑑 and Δ𝑑/𝑇 << 1 and πœ‰ << 1

𝑒 β‰ˆπ‘π‘œπ‘˜βˆ’π‘π‘œπ‘˜cos πœ”π‘‘ β‰ˆ

π‘π‘œπ‘˜

1 βˆ’ cos πœ”π‘‘

Phase 1:

……….. (5)

Equation (5) shows the approximate response during the loading phase.

𝑑

𝑒 =π‘π‘œπ‘˜+ π‘’βˆ’πœ‰ πœ” 𝑑 βˆ’

πœ‰ πœ”

πœ”π·

π‘π‘œπ‘˜sin πœ”π·π‘‘ βˆ’

π‘π‘œπ‘˜cos πœ”π·π‘‘

……….. (4)𝑑

Page 10: PMCE Structural Dynamics - Home - StructuresPro

10

Response to Impulse Loading

Phase 2:

𝑑

𝑑 = βˆ†π‘‘

𝑑 = 0Phase II

No Load: Free vibration response

depends on the initial conditions at

𝑑 = βˆ†π‘‘

Page 11: PMCE Structural Dynamics - Home - StructuresPro

11

Response to Impulse Loading

Phase 2:

𝑒 =π‘π‘œπ‘˜

1 βˆ’ cos πœ”π‘‘π‘‘

𝑒 =π‘π‘œπ‘˜

πœ” sin πœ”π‘‘π‘‘

𝑒 =π‘π‘œπ‘˜

πœ” sin πœ” Δ𝑑 ……….. (6)βˆ†π‘‘

𝑒 =π‘π‘œπ‘˜

1 βˆ’ cos πœ” Ξ”π‘‘βˆ†π‘‘

Page 12: PMCE Structural Dynamics - Home - StructuresPro

12

Response to Impulse Loading

Phase 2:

Employing Tylor’s expansion:

sin πœƒ = πœƒ βˆ’πœƒ3

3!+πœƒ5

5!……

cos πœƒ = 1 βˆ’πœƒ2

2!+πœƒ4

4!……

For small πœƒ, by neglecting the second order term and higher terms, we get

sin πœƒ β‰ˆ πœƒ, cos πœƒ β‰ˆ 1 ……….. (7)

Page 13: PMCE Structural Dynamics - Home - StructuresPro

13

Response to Impulse Loading

Phase 2:

Introducing this approximation in Equation (7) into Equation (6), we obtain

𝑒 =π‘π‘œπ‘˜

1 βˆ’ cos πœ” Δ𝑑 β‰… 0

𝑒 =π‘π‘œπ‘˜

πœ” sin πœ” Δ𝑑 β‰…π‘π‘œ πœ”

2 βˆ†π‘‘

π‘˜=π‘π‘œ βˆ†π‘‘

π‘š

Note that π‘π‘œ βˆ†π‘‘ is an impulse.

Equation (8) says that impulse β‰ˆ the change in momentum (of the mass)

The impulse introduces β€œmomentum” into a structure but the duration of impulse is so

short that the displacement has not been developed yet.

……….. (8)

Δ𝑑

Δ𝑑

Page 14: PMCE Structural Dynamics - Home - StructuresPro

14

Response to Impulse Loading

Using the Equation (8) as the initial conditions for free vibration in Phase 2,

𝑒 = π‘’βˆ’πœ‰ πœ” (π‘‘βˆ’βˆ†π‘‘) 𝑒

πœ”π·sin πœ”π· 𝑑 βˆ’ βˆ†π‘‘

Since βˆ†π‘‘/𝑑 << 1 , it is justified to let 𝑑 βˆ’ βˆ†π‘‘ β‰ˆ 𝑑, that is

𝑒 β‰ˆ π‘’βˆ’πœ‰ πœ” π‘‘π‘π‘œ Δ𝑑

π‘š πœ”π·sin(πœ”π·π‘‘)

Equation (10) will be used when we analyze the response to arbitrary loading in the next

section.

Phase 2 (t > βˆ†π’• ):

……….. (9)

……….. (10)

π‘‘βˆ†π‘‘

𝑑

Page 15: PMCE Structural Dynamics - Home - StructuresPro

15

Response to Impulse Loading

π‘’βˆ’πœ‰ πœ” π‘‘π‘π‘œ Δ𝑑

π‘š πœ”π·sin(πœ”π·π‘‘)

π‘π‘œ

π‘‘βˆ†π‘‘

Total Response

Page 16: PMCE Structural Dynamics - Home - StructuresPro

Thank you