28
Pipelined A/D Converter Top Level System Design Sack Savengsveksa

Pipelined A/D Converter Top Level System Designathena.ecs.csus.edu/~pheedley/ADC_team_docs/ADC2_adc_top_arch_review.pdf · Introduction • Most A/D are Application Driven - Video

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Pipelined A/D ConverterTop Level System Design

Sack Savengsveksa

Outline

• Introduction• Pipelined A/D

– Architecture– Non-idealities

• System Specification• Error Budget

– Residue Stage/Op-amp– Comparators– Voltage Reference

• Test Modes• Conclusion

Introduction

• Most A/D are Application Driven- Video - DSP Interface

• Behavioral Modeling (Top-Down Approach)- Effective Way to Check System Architecture- Define Block Specification- Cadence(VerilogA), Mentor Graphics, Matlab/Simulink, Excel

• Why 8bit?-Constrained by Die Size

• Why 20MSample/s?-Low/Medium Speed

P u b lis h e d P ip e l in e d A D C

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

6 8 1 0 1 2 1 4 1 6N u m b e r o f B its

Con

vers

ion

Spee

d (M

S/s)

[2 ][1 ]

[1] S.H. Lewis et. al, 3/92[2] A. Abo, P.R. Gray, 5/99

Technology vs. Conversion Speed

0102030405060708090

100110120130140150160170180190200210

0 0.2 0.4 0.6 0.8 1 1.2

Technology(um)

General Architecture

Figure 1[1]

•Trade Latency for speed•Allows For Concurrent Operation

1 bit/stage Architecture+Vref+Vref

-Vref -Vref

+Vref-Vref Vin

Vout=2Vin±Vref

0

Vin > 0, Vout=2Vin-VrefVin < 0, Vout=2Vin+Vref

Vout

•Require Some Type of Calibration/Error Correction Scheme

2bit/stage Architecture

Figure 2[2]

• Interstage Gain=4, requires more power & Bandwidth.

• Susceptible to over-range problems

1.5bit/stage Architecture• For an 8 bit Pipelined A/D:

– 6 (1.5bit per stage) + 1 (2bit per stage)– Front End SHA & 1st Stage need to be 8bit accurate.

• Digital Error Correction relaxes sub-ADC requirements.

•Requires a precise Gain of Two for Residue Stage.

•Maximizes the Bandwidth of Residue Stage, BW depends on Interstage Gain.

1.5bps Architecture

Figure 3[2]

•Large Correctable Range: Vref/4Relax Comparator Precision

Front End SHA

Cs

Cs

Vcm

P1

P1

P2

P2

P1

CL

CL

P1P

VINP

VINM

+

+

-

-

Cip

C ip

Figure 4[3]

• Bottom Plate Sampling, T-gate for switches

Errors Affecting Accuracy

• Interstage Gain Error- Capacitor Mismatch

Calibration,Trimming- Finite Gain Error

High Gain Opamp- Settling Time

• D/A Non-linearity -1.5bps Architecture, Inherently Linear

• A/D Non-linearity-Digital Error Correction

System Specifications

• Technology: AMI 0.5u CMOS Process-Double Poly, Triple Metal, VDD=5V

• Resolution: 8 bit • Sampling Frequency: 20MHz• DNL < 0.5LSB, INL < 0.5 LSB• Differential Input Range: 2V• Input Common Mode: 2.5V

Differential Full Scale Range+ V R E F = (3 -2 )= 1 V

-V R E F = (2 -3 )= -1 V

+ V R E F /4 = .2 5 V

-V R E F /4 = - .2 5 V

Error Budget

• Total Offset Tolerance: 250mVComparator – 100mVOp amp – 25mVFront End S/H Op amp – 25mVVoltage Reference Buffer (6) - 70mV

Residue Stage/Op Amp

• Error Sources- Capacitor Mismatch- Op amp Finite Gain- Op amp Settling Time

• Capacitor Mismatch- Calibration Techniques- Trimming- Poly/Poly caps have good matching (9-10 bits)

Thermal Noise

Table 1 [2]

• Limits Achievable SNR• For C=500fF => sigma=90uV

SNR

Figure 5[2]

•SNR=6.02*N+1.76dB•SNDR= SNR+Distortion Ratio, SNDR<SNR

Sampling Capacitor Size• Capacitor sizes are set by Thermal Noise & Matching

requirement.• Sampling Capacitor size will be 500fF

– Poly/Poly Caps => 1fF/um^2 • Unit Size Capacitor with Common Centroid will be

use for good matching.2/484.2 mfFCox µ=WLCoxC =

218021752/848.2

500 ummmfF

fFWL ≈=⎟⎟

⎜⎜

⎛= µ

µ

mLW µ90==∴

Op amp Finite Gain

VrefCfCsVin

CfCsVo ⎟⎟

⎞⎜⎜⎝

⎛±⎟⎟

⎞⎜⎜⎝

⎛+= 1

Equation 1[1]

iNiCC

iGG

−<

∆+

2

143

21

VnVrefCC

GGVin

CC

GGVo +⎟

⎠⎞

⎜⎝⎛ ∆

+∆

+±⎟⎠⎞

⎜⎝⎛ ∆

+∆

+≈ 12211'

LSBDNL 5.0< LSBINL 5.0<

=∆GG Finite Gain + Settling Time

βAGG 1

−=∆ 92−=

∆GG

dBdBA 8666 →>∴

&

•Added 20dB for process variations & poorly modeled output impedance.

Opamp Bandwidth• Op amp has to settle to within half the clock

period(25ns).• Allocated 5ns for comparator decision time.• General Equation for Single Pole Settling

For .1% settling accuracy, Wt has to be greater than 250MHz for 20ns settling. Feedback Factor = 1/4

)1ln(*)(εtW

Aot >

Opamp Specifications

• Open Loop Gain: 86 dB

• Unity Gain Bandwidth > 250MHz

• Phase Margin: 75 degrees

• Output Swing: 1 V differential

• Offset Voltage: 25mV

Reference Generator

• Total Offset Error (6 Buffer): 70mV• Reference Voltages: 2V differential

-Vrefp: 3.0-Vrefp/4: 2.625-Vcm: 2.5-Vrefn/4: 2.375-Vrefn: 2.0

Comparator• Offset Error: 100mV• Comparator Decision Time: 5ns

Test Modes• Clock Generator

- Adjustable Non overlap Time• Voltage References

-External Bias Current-External Resistor for Reference Control

• Residue Stage-Adjustable Bias Current

• Comparator-Adjustable Bias Current

• Digital Decode Logic-External Decoder

•Pipelined Stages: 291x176um^2Digital Decode ≈ 200x100um^2

2

5

3 4

9

678

1

Figure 6[4]

Conclusions

• 1.5bps Pipelined Architecture is Chosen• Error Tolerances

– Behavioral Models to refine block specifications.• Test Modes

– Work in progress.• Top Level Simulation

– Start integrating blocks for top level simulation.• Layout

-Big Challenge Ahead

References• [1] A. Abo “Design for reliability of low-voltage, switched

capacitor circuits (thesis),” Ph.D. dissertation, University of California, Berkeley,May1999

• [2] T.Cho, “Low-power, low-voltage analog-to-digital conversion techniques using pipelined architectures, Ph.D. dissertation, University of California, Berkeley, 1995.

• [3] Y. Park et. al, “A 10b 100MSample/s CMOS Pipelined ADC with 1.8V Power Supply,” IEEE ISSCC, vol. XLIV, pp. 130-131, Feb. 2001

• [4] Kannan Socklingham et. al, “10-Bit 5MHz Pipeline A/D Converter,” University of Maine, July 2002

• [5] Johns & Martin, Analog Integrated Circuit Design. New York. John Wiley& Sons, 1997