44
SAMPLE PHYSICS Written examination Day Date Reading time: *.** to *.** (15 minutes) Writing time: *.** to *.** (2 hours 30 minutes) QUESTION AND ANSWER BOOK Structure of book Section Number of questions Number of questions to be answered Number of marks A 20 20 20 B 18 18 110 Total 130 Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, pre-written notes (one folded A3 sheet or two A4 sheets bound together by tape) and one scientific calculator. Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape. Materials supplied Question and answer book of 43 pages Formula sheet Answer sheet for multiple-choice questions Instructions Write your student number in the space provided above on this page. Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this. Unless otherwise indicated, the diagrams in this book are not drawn to scale. All written responses must be in English. At the end of the examination Place the answer sheet for multiple-choice questions inside the front cover of this book. You may keep the formula sheet. Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2017 Version 3 – May 2017 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Victorian Certificate of Education Year STUDENT NUMBER Letter

Physics - Sample written · PDF filePHYSICS Written examination Day Date ... blank sheets of paper and/or ... ersionV 3 – May 2017 9 PHYSICS (SAMPLE) D O N O T W R I T E I N T H

Embed Size (px)

Citation preview

S A M P L E

PHYSICSWritten examination

Day Date Reading time: *.** to *.** (15 minutes) Writing time: *.** to *.** (2 hours 30 minutes)

QUESTION AND ANSWER BOOK

Structure of bookSection Number of

questionsNumber of questions

to be answeredNumber of

marks

A 20 20 20B 18 18 110

Total 130

• Studentsarepermittedtobringintotheexaminationroom:pens,pencils,highlighters,erasers,sharpeners,rulers,pre-writtennotes(onefoldedA3sheetortwoA4sheetsboundtogetherbytape)andonescientificcalculator.

• StudentsareNOTpermittedtobringintotheexaminationroom:blanksheetsofpaperand/orcorrectionfluid/tape.

Materials supplied• Questionandanswerbookof43pages• Formulasheet• Answersheetformultiple-choicequestions

Instructions• Writeyourstudentnumberinthespaceprovidedaboveonthispage.• Checkthatyournameandstudent numberasprintedonyouranswersheetformultiple-choice

questionsarecorrect,andsignyournameinthespaceprovidedtoverifythis.• Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.• AllwrittenresponsesmustbeinEnglish.

At the end of the examination• Placetheanswersheetformultiple-choicequestionsinsidethefrontcoverofthisbook.• Youmaykeeptheformulasheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

©VICTORIANCURRICULUMANDASSESSMENTAUTHORITY2017

Version3–May2017

SUPERVISOR TO ATTACH PROCESSING LABEL HEREVictorian Certificate of Education Year

STUDENT NUMBER

Letter

PHYSICS(SAMPLE) 2 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION A – Multiple-choice questions

Instructions for Section AAnswerallquestionsinpencilontheanswersheetprovidedformultiple-choicequestions.Choosetheresponsethatiscorrectorthatbest answersthequestion.Acorrectanswerscores1;anincorrectanswerscores0.Markswillnotbedeductedforincorrectanswers.Nomarkswillbegivenifmorethanoneansweriscompletedforanyquestion.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.Takethevalueofgtobe9.8ms–2.

Question 1Whichoneofthefollowingdiagramsshowstheelectricfieldpatternsurroundingtwoequal,positivepointcharges?

A. B.

C. D.

Version3–May2017 3 PHYSICS(SAMPLE)

SECTION A – continuedTURN OVER

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 2ThethreediagramsX,YandZbelowrepresentdifferenttypesoffields.

X Y Z

Whichoneofthefollowingstatementsaboutthesediagramsiscorrect?A. Xcouldbeanelectricfield,YcouldbeagravitationalfieldandZcouldbeamagneticfield.B. Xcouldbeagravitationalfield,YcouldbeanelectricfieldandZcouldbeamagneticfield.C. Xcouldbeamagneticfield,YcouldbeagravitationalfieldandZcouldbeanelectricfield.D. Xcouldbeagravitationalfield,YcouldbeamagneticfieldandZcouldbeanelectricfield.

Question 3Studentsmeasurethegravitationalforcebetweentwomassesof1.0kgand100kg,placed10cmapart.Theuniversalgravitationalconstant,G,is6.67× 10–11Nm2kg–2.Whichoneofthefollowingbestgivesthegravitationalforceofattractionbetweenthetwomasses?A. 1.0×10–3NB. 6.7×10–5NC. 6.7×10–7ND. 1.0×106N

Question 4Thediagrambelowshowsasolenoid.

X

Whichone ofthefollowingbestdescribesthedirectionofthemagneticfieldofthecoilatpointX?A. leftB. rightC. upD. outofthepage

PHYSICS(SAMPLE) 4 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 5Ametalspherehasachargeof1.0× 10–8Conit.Asmallspherewithachargeof1.0×10–9Cisplaced30cmfromit.Assumebothcanbeconsideredpointcharges.Takek=9.0×109.Whichoneofthefollowingbestgivesthemagnitudeoftheforceonthesmallsphere?A. 1.1×10–14NB. 1.0×10–6NC. 3.0×10–6ND. 3.0×10–5N

Question 6Inanexperimentalinvestigation,anindependentvariableisonethatA. theinvestigatorselectsvaluesfor.B. isthekeyvariabletobemeasured.C. isfixedthroughouttheexperiment. D. isindependentoftheinvestigator’scontrol.

Question 7Inanexperimentalinvestigation,adependentvariableisonethatA. theinvestigatorselectsvaluesfor.B. canbefixedthroughouttheexperiment.C. istheleastimportantvariabletobemeasured.D. dependsontheselectedvaluesofanothervariable.

Question 8Inanexperimentalinvestigation,generally,acontrolledvariableisonethatA. isfixedthroughoutaparticularsectionoftheexperiment.B. isdependentontheselectedvaluesofanothervariable.C. istheleastimportantvariabletobemeasured.D. theinvestigatorcontrolsthevaluesfor.

Version3–May2017 5 PHYSICS(SAMPLE)

SECTION A – continuedTURN OVER

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 9SomestudentsaremeasuringtheaccelerationduetogravityinaregionofEarth’ssurfacewherethevalueiswellestablishedas9.81±0.01ms–2.Theytakefivemeasurements,asfollows:• 9.83ms–2

• 9.81ms–2

• 9.79ms–2

• 9.78ms–2

• 9.84ms–2

Systematicerrorsarenegligible.ThestudentscouldreasonablydescribethemeasurementuncertaintyoftheirresultsasaboutA. 0.03ms–2

B. 0.10ms–2

C. 0.005ms–2

D. 9.81ms–2

Question 10Anelectrontravellinginthey-directionataknownvelocitypassesthroughanarrowslitinabarrier,asshownbelow.

O

x

y

electron’spath

barrier with a slit

WhichoneofthefollowingstatementsbestdescribeshowHeisenberg’suncertaintyprincipleappliestoanelectron’smotionafteritpassesthroughtheslit?A. TheelectronmustpassthroughpointO.B. TheelectroncanneverpassthroughpointO.C. Thereisanuncertaintyinitsmomentuminthey-direction.D. Thereisanuncertaintyinitsmomentuminthex-directionafterpassingthroughtheslit,dependingonthewidth

oftheslit.

PHYSICS(SAMPLE) 6 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 11Atestcarisequippedwithacrash-testdummyandanairbag.Thecarcomestoasuddenstopwhenitcollideswithasolidwall,causingtheairbagtoinflate.Theairbagthencompressesby0.10mwhenthecrash-testdummyhitstheairbag.Thediagrambelowshowstherelativepositionofthecrash-testdummy’sheadtotheairbagandsteeringwheel.

airbag

steering wheelcrash-testdummy’shead

Thegraphofretardingforceonthecrash-testdummy’sheadversuscompressiondistanceisshownbelow.

retarding force (N)

0.100

8000

16 000

0.20compression distance (m)

Whichoneofthefollowingbestgivestheworkdoneontheairbaginthiscollision?A. 80 JB. 400JC. 800 JD. 8000 J

Version3–May2017 7 PHYSICS(SAMPLE)

SECTION A – continuedTURN OVER

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 12Whichoneofthefollowingbestdescribestheproperlengthofanobjecttravellingwithconstantvelocity?A. thelengthwhenmeasuredwithaproperstandardmeasuringstickB. thelengthwhenmeasuredbyanobserveratrestrelativetotheobjectC. thelengthwhenbothendsoftheobjectaremeasuredatthesametimeD. thelengthwhenmeasuredbyanobserverinaninertialframeofreference

Question 13Whichofthefollowingcorrectlyrelatesthedirectionofoscillationoftheparticlesinamediumtothedirectionofenergypropagationforatransversewaveandalongitudinalwave?

Transverse wave Longitudinal wave

A. atrightangles parallel

B. atrightangles atrightangles

C. parallel parallel

D. parallel atrightangles

Question 14Anambulanceissoundingitssirenasitapproachesapedestrian.Whichoneofthefollowingbestdescribesthesoundwavesreachingthepedestrianwhentheambulanceismovingtowardsthepedestrian?A. Thespeedofthesoundwavesinairishigher.B. Thedistancebetweensuccessivewavecrestsreachingthepedestrianislarger.C. Thedistancebetweensuccessivewavecrestsreachingthepedestrianisthesame.D. Thedistancebetweensuccessivewavecrestsapproachingthepedestrianissmaller.

PHYSICS(SAMPLE) 8 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Use the following information to answer Questions 15 and 16.Kimplucksoneofhisguitarstrings,causingittovibrateasshownbelow.Twoextremepositionsoftheresultingstandingwaveinthestringareshown.Forthepurposeofthefollowingquestions,theamplitudeofthevibrationshasbeenexaggerated.

ends of guitar string

S

Question 15Whichoneofthefollowingstatementsbestindicateshowweinterpretthemotionoftheguitarstringshownabove?A. Itistheresultoftwotransversewavestravellingalongthestringinthesamedirection.B. Itistheresultoftwotransversewavestravellingalongthestringinoppositedirections.C. Itistheresultoftwolongitudinalwavestravellingalongthestringinthesamedirection.D. Itistheresultoftwolongitudinalwavestravellingalongthestringinoppositedirections.

Question 16Sisapointontheguitarstring,asshownabove.Fortheinstantimmediately afterthatshownabove,thedirectioninwhichpointSontheguitarstringwillmoveisA. upwards.B. totheleft.C. totheright.D. downwards.

Question 17LightcanbepolarisedbecauseitisA. acircularwave.B. atransversewave.C. alongitudinalwave.D. anelectromagneticwaveandhasbothtransverseandlongitudinalcomponents.

Version3–May2017 9 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

END OF SECTION ATURN OVER

Question 18Whichoneofthefollowingstatementsbestdescribeslightproducedfromarangeofsources?A. Lightfromanincandescentlampisgenerallycoherentandcontainsawidespectrumofwavelengths.B. Lightfromasingle-colourlight-emittingdiode(LED)iscoherentandcontainsaverywidespectrumof

wavelengths.C. Synchrotronlightisalwaysincoherentandcontainsawidespectrumofwavelengths.D. Lightfromalaseriscoherentandhasaverynarrowrangeofwavelengths.

Question 19WhatisthebestdescriptionofhowlightisproducedinanLED?A. thermalmotionofelectronsinthevalencebandB. transitionofelectronsfromtheconductionbandtothegroundstateC. transitionofelectronsfromtheconductionbandtothevalencebandD. transitionofelectronsfromthevalencebandtotheconductionband

Question 20Anabsorptionlineinaspectrumoccursat414nm.

Data

Planck’sconstant h=4.14×10–15eVs

speedoflightinavacuum c=3.0×108ms–1

Whichoneofthefollowingbestgivestheenergyofthephotonforthisabsorption?A. 4.8×10–19eVB. 0.33eVC. 3.0eVD. 4.1eV

PHYSICS(SAMPLE) 10 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 1–continued

Question 1 (5marks)ThemassoftheplanetMarsis6.4×1023kg.TheradiusofMarsis3.4×106m.Theuniversalgravitationalconstant,G,is6.67×10–11Nm2kg–2.

a. CalculatetheaccelerationduetogravityatthesurfaceofMars.Showyourworking. 2marks

ms–2

SECTION B

Instructions for Section BAnswerallquestionsinthespacesprovided.Writeusingblueorblackpen.Whereananswerboxisprovided,writeyourfinalanswerinthebox.Ifananswerboxhasaunitprintedinit,giveyouranswerinthatunit.Inquestionswheremorethanonemarkisavailable,appropriateworkingmustbeshown.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.Takethevalueofgtobe9.8ms–2.

Version3–May2017 11 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

b. Aprobeofmass0.20kgisreleasedfromaheightof10mabovethesurfaceofMars.Assumethatthegravitationalfieldstrengthisuniform(thesameasatthesurface).Ignoreairresistance.

SketchthegravitationalpotentialenergyoftheprobeasafunctionofheightabovethesurfaceofMarsontheaxesprovidedbelowandlabelthisasUg.TakepotentialenergyatthesurfaceofMarsaszero.Includetheinitialpotentialenergyvalueontheenergyaxis.

Onthesameaxes,sketchthekineticenergyoftheprobeandlabelthisasEK. 3marks

energy (J)

height (m)100

0

1

2

3

4

5

6

7

8

987654321

PHYSICS(SAMPLE) 12 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 2–continued

Question 2 (8marks)Figure1showspartofaparticleaccelerator.Electronsareacceleratedbyavoltageof10000Vinanelectrongunconsistingoftwoplatesthatare0.10mapart.Afterexitingthegun,theelectronspassintoaregionofuniformmagneticfieldofstrength0.020tesladirectedintothepage.Ignorerelativisticeffects.

Data

massoftheelectron 9.1×10–31kg

chargeontheelectron –1.6×10–19C

strengthofthemagneticfield 0.020tesla

region of uniformmagnetic field

plate plate

10 000 V

0.10 m

Figure 1

a. Calculatethestrengthoftheelectricfieldbetweentheplates.Includeanappropriateunit. 2marks

b. Calculatethespeedoftheelectronsastheyexittheelectrongun. 2marks

ms–1

Version3–May2017 13 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. Theelectronsnextentertheregionofuniformmagneticfield.

Calculatetheradiusofthepathoftheelectrons. 2marks

m

d. Inanotherpartoftheparticleaccelerator,theelectronsaredeflectedbyauniformelectricfield,asshowninFigure2a,andbyamagneticfield,asshowninFigure2b.

Figure 2a Figure 2b

Explainwhythepathsoftheelectronsinthetwofieldshavedifferentshapes. 2marks

PHYSICS(SAMPLE) 14 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 3 (5marks)Figure3showsaDCmotorconsistingofasquareloopof100turnsandsidelength5cm,andacommutator.TheDCmotorhasauniformmagneticfieldof3.0× 10–2Tandacurrentof2.0A.

A +

F G

E HN S

6.0 V

Figure 3

a. WhatistheforceonthesideEHwhentheloopisinthepositionshowninFigure3?Explainyouranswer. 2marks

N

b. ExplaintheroleandoperationofthecommutatorintheDCmotorshowninFigure3. 3marks

Version3–May2017 15 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

CONTINUES OVER PAGE

PHYSICS(SAMPLE) 16 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 4 (6marks)Figure4showsasimpleACalternator.

N

S

oscilloscope

Figure 4

Thestrengthofthemagneticfieldis0.50T,theloophas20turns,theareaoftheloopis0.020m2andtherateofrotationis10Hz.

a. CalculatethemagnitudeoftheaverageEMFinducedastheloopturnsfromtheinstantshowninFigure4toapointone-quarterofaperiodlater.Showyourworkingandincludeanappropriateunit. 3marks

b. TheACalternatorgraduallyslowstoastop.

Onthegridprovidedbelow,sketchthevoltageoutputexpected.Scalevaluesarenotrequiredontheaxes. 3marks

time

voltage output

0

Version3–May2017 17 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Question 5 (3marks)AnoscilloscopeisconnectedtoasinusoidalACsourcewhosefrequencyandvoltageoutputcanbevaried.Figure5showsthetraceobtainedontheoscilloscopescreen,whereonehorizontaldivisionrepresentsatimeof20msandoneverticaldivisionrepresents10V.

Figure 5

a. CalculatetheRMSvoltageforthesignalshowninFigure5. 2marks

V

b. CalculatethefrequencyforthesignalshowninFigure5. 1mark

Hz

PHYSICS(SAMPLE) 18 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 6–continued

Question 6 (5marks)Juanconductsanexperimentusingashallowtrayofwaterinwhichwavescanbeobserved.Hefirstproducesstraightwavesatafrequencyof5Hz.Hemeasuresthewavelengthandfindsitto be10cm.

a. Calculatethespeedofthewaves. 1mark

cms–1

b. Juannowusestwopointsourcesproducingwavesatthesamewavelength(10cm)toinvestigatetwopointsourceinterferencepatterns,asshowninFigure6.

Y X

P

Figure 6

Heobserveslinesofmaximaandminimaintheresultantpattern,asshowninFigure6.Thelinesonthediagramrepresentwavecrests.

PointPisonalineofminima(nodalline). JuanmeasuresthedistancefromsourceXtopointPas16.0cm.

DeterminethedistancefromsourceYtopointP. 2marks

cm

Version3–May2017 19 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. Juannowproducesstraightwavesandplacesanarrowgapinfrontofthewaves,asshowninFigure7.Henextmeasuresthewidthofthediffractionpattern.

Figure 7

Juanincreasesthefrequencyofthesource.

ExplaintheeffectthatthiswouldhaveonthediffractionpatternshowninFigure7. 2marks

PHYSICS(SAMPLE) 20 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 7–continued

Question 7 (4marks)Raniisconductingexperimentstostudytherefractionoflight.

a. Ranipassesabeamoflightfromalaserfromairintoaglassslab,asshowninFigure8.

45°

25° glass slab

airn = 1.00

laser

Figure 8

Calculatetherefractiveindexoftheglass. 1mark

Version3–May2017 21 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Raninextshinesarayoflightfromunderwatertoawater–airinterface,asshowninFigure9.

incoming ray

airn = 1.00

watern = 1.33

Figure 9

b. Determinethecriticalangleforthetotalinternalreflectionatthewater–airinterface. 1mark

c. Theangleofincidenceisincreasedtoanangleslightlygreaterthanthecriticalangle,ic.

Onthediagramprovidedbelow,drawinanyrayorraysthatRaniwouldobserve. 2marks

incoming ray

airn = 1.00

watern = 1.33ic

PHYSICS(SAMPLE) 22 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 8 (2marks)Listthefollowingbandsoftheelectromagneticspectruminorderfromlongestwavelengthtoshortestwavelengthbywritingeachcorrespondingnumberintheappropriateboxbelow:1. infra-redradiation 4. ultravioletradiation2. microwaves 5. visiblelight3. radiowaves 6. X-rays

Longest Shortest

Version3–May2017 23 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Question 9 (2marks)Figure10showstheenergy-leveldiagramforthehydrogenatom.

ionisation energyn = 6n = 5

n = 4

n = 3

n = 2

n = 1 (ground state)0

10.2

12.1

12.8

13.113.213.6

energy (eV)

Figure 10

Anatomofhydrogenisexcitedtothen=4state.

Listthepossibleenergies,ineV,ofphotonsthatcouldbeemittedasthisatomreturnstothegroundstate.

PHYSICS(SAMPLE) 24 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 10–continued

Question 10 (9marks)Aruraltownissuppliedwithelectricityfromasmallhydro-electricpowerplantabout20kmfromthetown.Thealternatorgenerateselectricityat5000V.Thisissteppedupinatransformerto50000V.Electricityistransmittedtothetownthroughatwo-wirehigh-voltagetransmissionline.Theinputvoltagetothetransmissionlineatthealternatorendis50000VRMSAC.Thecurrentinthelineis15ARMS.Attheedgeofthetown,atransformerconvertsthevoltageto250VRMSACforuseinthetown.Thetotalresistanceofthetransmissionlineis40Ω.ThesystemisshowninFigure11.Assumethatthetransformersareideal.

250 VRMS ACto town

transformer

primarycoils

secondarycoils

alternator

20 km

power plant

transmission line

50 000 VRMS AC

Figure 11

a. Calculatethetotalpowerlossinthetransmissionline.Showyourworking. 3marks

W

Version3–May2017 25 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

b. Calculatethevoltageinputfromthetransmissionlinetothestep-downtransformeratthetownendoftheline. 3marks

V

c. ExplainwhyACratherthanDCisgenerallyusedforlong-distancepowertransmission.Includethestepsinvolvedintheprocessoflong-distancepowertransmission. 3marks

PHYSICS(SAMPLE) 26 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 11–continued

Question 11 (6marks)Somestudentsconductanexperimentusingtwotrolleys,AandB,ofmass6.0kgand2.0kgrespectively.Intheexperiment,TrolleyA ismovingat2.0ms–1andTrolleyBisstationarybeforetheycollide.Thereisaspringbetweenthetwotrolleys,attachedtoTrolleyB.Whenthetrolleyscollide,theycompressthespringandthenmoveapartagain.Afterthecollision,TrolleyAismovingat1.0ms–1.Theexperimentalset-upisshowninFigure12.Ignorethemassofthespring.

A 6.0 kg

Before After

B 2.0 kg

u = 2.0 m s–1 u = 0 m s–1

A 6.0 kg B 2.0 kg

v = 1.0 m s–1 v = ? m s–1

Figure 12

a. CalculatethespeedofTrolleyB immediately afterthecollision. 2marks

ms–1

b. Determinewhetherthecollisioniselasticorinelastic.Showyourworking. 2marks

Version3–May2017 27 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. Apairofstudents,PatandAlex,discusshowthekineticenergyofthesystemwouldvarywithtime. Pat’sopinionisthatthevariationwouldberepresentedbythegraphinFigure13a.

t

Figure 13a

Alex’sopinionisthatthevariationwouldberepresentedbythegraphinFigure13b.

t

Figure 13b

Whoiscorrect?Explainyouranswer. 2marks

PHYSICS(SAMPLE) 28 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 12 (4marks)Figure14ashowsamodelcarofmass5.00kgmovinginapartofaverticalcircleofradius4.00m.Atthelowestpoint,L,thecarismovingat5.00ms–1.Figure14bshowsthemodelcaratthelowest point,L.

L

Figure 14a

4.00 m

L

Figure 14b

a. OnFigure14b,drawanarrowtoshowtheresultantforceonthecaratpointL. 1mark

b. CalculatethenormalreactionforceofthetrackonthecaratpointL.Showyourworking. 3marks

N

Version3–May2017 29 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Question 13 (3marks)Astoneofmass2.0kgisthrownfromthetopofa15mhighcliffabovetheseaatanangleof 30°tothehorizontaland ataninitialspeedof20ms–1,asshowninFigure15.Ignoreairresistance.

15 m

20 m s–1

30°cliff

sea

Figure 15

Calculatethekineticenergyofthestoneimmediatelybeforeitstrikesthesea.Showyourworking.

J

PHYSICS(SAMPLE) 30 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 14–continued

Question 14 (10marks)Somestudentstestaspringtodeterminethespringconstant,k.Theexperimentalset-upisshowninFigure16.

70

60

50

40unstretchedspring

ruler (cm) stretchedspring

masses added

30

20

10

0

Figure 16

Five0.50kgmassesaresuccessivelyaddedtotheendofthespringandtheresultinglengthofthespringwasmeasuredeachtime.Theresultsareshowninthetablebelow.

Number of 0.50 kg masses Length of spring

0 40cm

1 45cm

2 53cm

3 57cm

4 63cm

5 70cm

Version3–May2017 31 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 14–continuedTURN OVER

a. Recordthedatafromthetableasagraphonthegridbelow.Includelabels,scalesandunitsoneachaxis.Giventhatthesemeasurementsweretakenwithametreruler,graduatedto5cmintervalsandheldbyhand,insertrealisticuncertaintybars(orerrorbars).Drawalineofbestfit. 5marks

b. Fromthegraphinpart a.,determinethespringconstant,k,ofthespringandincludeapossibleuncertaintyinyourvalue. 3marks

Nm–1

PHYSICS(SAMPLE) 32 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

c. Allfivemassesareaddedtotheendofthespring.Thespringisthenraisedtothe40cmpositionandreleased.

Calculatehowfarthespringstretchesbelowitsinitialrestposition.Showyourworking. 2marks

cm

Version3–May2017 33 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

CONTINUES OVER PAGE

PHYSICS(SAMPLE) 34 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 15–continued

Question 15 (6marks)Muonsareelementaryparticlescreatedintheupperatmospherebycosmicrays.Theyareunstableanddecaywithahalf-lifeof2.2μs(2.2×10–6s)whenmeasuredatrest.Thismeansthatinthereferenceframeofthemuons,halfofthemdecayineachtimeintervalof2.2μs.Inanexperiment,muonswithavelocityof0.995c(γ=10)wereobservedbysomescientiststopassthetopofamountainofheight2627m,asshowninFigure17.Thescientistsmeasuredthenumberofthesemuonsreachinggroundlevel.

muons

top of mountain

ground level

2627 m

Figure 17

a. Calculatethehalf-lifeofthemuonsasmeasuredbyastationaryobserveronthegroundinFigure17. 2marks

s

Version3–May2017 35 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

b. Fromtheirreferenceframe,themuonsseethegroundrushingupwardsataspeedof0.995c.

Findtheheightofthemountainasmeasuredbythemuons. 2marks

m

c. Explainwhymanymoremuonsreachedthegroundthanwouldbeexpectedaccordingtoclassicalphysics. 2marks

PHYSICS(SAMPLE) 36 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 16–continued

Question 16 (7marks)Somestudentsstudythediffractionofelectronsbyacrystallattice.TheapparatusisshowninFigure18a.Inthisapparatus,electronsofmass9.1×10–31kgareacceleratedtoaspeedof1.50×107ms–1.Theelectronspassthroughthecrystalandthediffractionpatternisobservedonafluorescentscreen.ThepatternthatthestudentsobserveisshowninFigure18b.

crystal

e– fluorescentscreen

electron gun

Figure 18a Figure 18b

a. CalculatethedeBrogliewavelengthoftheelectrons.Showyourworking. 2marks

nm

b. Thestudentsnextincreasetheacceleratingvoltageandhencethespeedoftheelectrons.

Describethechangetothepatternthattheywillobserveandgiveyourreasoning. 2marks

Version3–May2017 37 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. ThestudentsreplacetheelectronsourcewithanX-raysourceandfindthatthepatternonthescreenissimilarlyshapedandspacedtothepatternobservedwhentheelectronswereattheoriginalspeedof1.50×107ms–1.

Calculatetheenergy ofaphotonfromthisX-raysource.Giveyouranswercorrecttothreesignificantfigures. 3marks

eV

PHYSICS(SAMPLE) 38 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 17–continued

Question 17 (14marks)SomestudentssetuptheapparatusshowninFigure19tostudythephotoelectriceffect;inparticular,therelationshipbetweenthefrequencyandintensityofincominglightandthemaximumkineticenergyofemittedphotoelectrons.Assumethatallfiltersgivelightofthesameintensity.

A

V

metal plate

collector electrode

light source

filter voltmeter variable DC voltage source

photocell

+

ammeter

Figure 19

Theapparatusconsistsof:• asourceofwhitelight• asetoffilters,eachofwhichallowsonlylightofaselectedwavelengthtopassthrough• aphotocellconsistingofametalplateandacollectorelectrodeenclosedinanevacuated(noair)glasscase• avoltmeter(V),anammeter(A)andavariableDCvoltagesourceinacircuit,asshownabove.

Version3–May2017 39 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 17–continuedTURN OVER

a. Withaparticularfilterinplaceandthesamelightsource,thestudentsgraduallyincreasethevoltage,asmeasuredbythevoltmeter,fromzero.Theyplotthecurrentmeasuredbytheammeterasafunctionofthevoltagemeasuredbythevoltmeter.ThisisshowninFigure20.

I (μA)

V (volts)XO

Figure 20

ExplainwhythecurrentdropstozeroatpointX. 2marks

PHYSICS(SAMPLE) 40 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 17–continued

Thestudentsnextusefivefilterstogivefivefrequenciesoflightfallingonthemetalplateandmeasurethestoppingvoltageonthevoltmeterforeachfrequency.Thedatacollectedisshowninthetablebelow.

Frequency (Hz) Stopping voltage (Vs )

4.5× 1014 1.3

5.0×1014 1.5

6.1×1014 2.0

6.9×1014 2.5

7.6×1014 2.8

b. Plotthedatagiveninthetableaboveontheaxesprovidedbelow,thendrawalineofbestfittoshowmaximumkineticenergyoftheemittedphotoelectronsversusfrequencyoflightfallingonthemetalplate. 3marks

0

0.5

1.0

1.5

2.0

2.5

4.0 5.0 6.0frequency (Hz × 1014)

7.0 8.0

EK max ofphotoelectrons

(eV)

c. Fromthegraphplottedinpart b.,determinethevalueofPlanck’sconstant,h,thatthestudentswouldhaveobtained.Giveyouranswercorrecttotwosignificantfigures. 2marks

eVs

Version3–May2017 41 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

d. Forthisparticularexperiment,identifyeachofthefollowing. 2marks

Dependentvariable(s)

Independentvariable(s)

e. Forthisparticularexperiment,identifyone importantcontrolledvariableandindicatewhythisvariableshouldbecontrolled. 2marks

f. Studentsperformingthephotoelectricexperimentonadifferentmetalhavecarefullydeterminedtheuncertaintyintheirmeasuredvaluesforthemaximumkineticenergyoftheemittedphotoelectrons.Thisisrepresentedbyanuncertaintybar(orerrorbar)drawnononeofthedatapointsinthegraphbelow.Theuncertaintyinthevaluesforfrequenciesmaybeneglected.

0

1

2

3

frequency (Hz × 1014)

EK max ofphotoelectrons

(eV)

Onthegraphabove,showthestepsneededtodeterminewhetherthedatapointsmaybefittedbyastraightline.Explainyouranswer. 3marks

PHYSICS(SAMPLE) 42 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 18–continued

Question 18 (11marks)a. OutlineYoung’sdouble-slitexperiment.Explaintheimplicationsofthisexperimentforunderstanding

thenatureoflight. 3marks

b. Explainhowasingle-photonYoung’sdouble-slitexperimentcanbeusedasevidenceofthedualnatureoflight. 3marks

Version3–May2017 43 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

c. OutlinetheconclusionsaboutthenatureoflightthatAlbertEinsteinmadefromtheobservationsofphotoelectricexperiments.Includehowtheseconclusionsarosefromtheexperimentalobservationsandwhytheseconclusionscontradictedthesimplewavemodel. 5marks

END OF QUESTION AND ANSWER BOOK

PHYSICS (SAMPLE – ANSWERS)

© VCAA 2017 – Version 3 – May 2017

Answers to multiple-choice questions

Question Answer

1 C

2 C

3 C

4 A

5 B

6 A

7 D

8 A

9 A

10 D

11 B

12 B

13 A

14 D

15 B

16 D

17 B

18 D

19 C

20 C