125
Phase Retrieval And Cryo-Electron Microscopy http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html Acknowledgement: this slides is based on Prof. Emmanuel Candès ’s and Prof. Amit Singer’s lecture notes 1/125

Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

Phase Retrieval And Cryo-Electron Microscopy

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Emmanuel Candès ’s and Prof. AmitSinger’s lecture notes

1/125

Page 2: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

2/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 3: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

3/125

X-ray crystallography

Method for determining atomic structure within a crystal

10 Nobel Prizes in X-ray crystallography, and counting...

Page 4: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

4/125

Missing phase problem

Detectors record intensities of diffracted rays =⇒ phaseless dataonly!

Fraunhofer diffraction =⇒ intensity of electrical ≈ Fourier transform

|x(f1, f2)|2 =

∣∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2)dt1dt2

∣∣∣∣Electrical field x = |x|eiφ with intensity |x|2

Phase retrieval problem (inversion)How can we recover the phase (or signal x(t1, t2)) from |x(f1, f2)|

Page 5: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

5/125

Phase and magnitude

Phase carries more information than magnitude

Page 6: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

6/125

Phase retrieval in X-ray crystallography

Knowledge of phase crucial to build electron density map

Algorithmic means of recovering phase structure withoutsophisticated setups

Sayre (’52), Fienup (’78)

Initial success in certain cases by using very specific priorknowledge

Page 7: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

7/125

X-ray imaging: now and then

Need for lens-less imagingResurgence: imaging with new X-ray sources (undulators andsynchrotrons); e.g. Miao and collaborators (’99—present)

Page 8: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

8/125

X-ray diffraction microscopy

Imaging non-crystalline objects by measuring X-ray diffractionpatterns using extremely intense and ultrashort X-ray pulses

ConsequencesPR problem getting more importantFar less prior knowledge about unknown signal

Page 9: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

9/125

Ultrashort X-ray pulses

Page 10: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

10/125

Other applications of phase retrieval

Page 11: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

11/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 12: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

12/125

Classical Phase Retrieval

Feasibility problem

find x ∈ S ∩M or find x ∈ S+ ∩M

given Fourier magnitudes:

M := {x(r) | |x(ω)| = b(ω)}

where x(ω) = F(x(r)), F : Fourier transformgiven support estimate:

S := {x(r) | x(r) = 0 for r /∈ D}

orS+ := {x(r) | x(r) ≥ 0 and x(r) = 0 if r /∈ D}

Page 13: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

13/125

Error Reduction

Alternating projection:

xk+1 = PSPM(xk)

projection to S:

PS(x) =

{x(r), if r ∈ D,

0, otherwise,

projection toM:

PM(x) = F∗(y), where y =

{b(ω) x(ω)

|x(ω)| , if x(ω) 6= 0,b(ω), otherwise,

Page 14: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

14/125

Summary of projection algorithms

Basic input-output (BIO)

xk+1 = (PSPM + I − PM) (xk)

Hybrid input-output (HIO)

xk+1 = ((1 + β)PSPM + I − PS − βPM) (xk)

Hybrid projection reflection (HPR)

xk+1 =((1 + β)PS+PM + I − PS+ − βPM

)(xk)

Relaxed averaged alternating reflection (RAAR)

xk+1 =(2βPS+PM + βI − βPS+ + (1− 2β)PM

)(xk)

Difference map (DF)

xk+1 = (I + β(PS((1− γ2)PM − γ2I) + PM((1− γ1)PS − γ1I))) (xk)

Page 15: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

15/125

ADMM

Consider problem

find x and y, such that x = y, x ∈ X and y ∈ Y

X is either S or S+, and Y isM.Augmented Lagrangian function

L(x, y, λ) := λ>(x− y) +12‖x− y‖2

ADMM:

xk+1 = arg minx∈X

L(x, yk, λk),

yk+1 = arg miny∈YL(xk+1, y, λk),

λk+1 = λk + β(xk+1 − yk+1),

Page 16: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

16/125

ADMM

ADMM

xk+1 = PX (yk − λk),

yk+1 = PY(xk+1 + λk),

λk+1 = λk + β(xk+1 − yk+1),

ADMM is equivalent to HIO or HPRif PX (x + y) = PX (x) + PX (y)

xk+2 + λk+1 = [(1 + β)PXPY + (I − PX )− βPY ](xk+1 + λk)

Hybrid input-output (HIO)

xk+1 = ((1 + β)PSPM + I − PS − βPM) (xk)

if β = 1

Page 17: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

17/125

ADMM

ADMM: updating Lagrange Multiplier twice

xk+1 := PX (yk − πk),

πk+1 := πk + β(xk+1 − yk) = −(I − βPX )(yk − πk),

yk+1 := PY(xk+1 + λk),

λk+1 := λk + ν(xk+1 − yk+1) = (I − νPY)(xk+1 + λk),

ADMM is equivalent to ER if β = ν = 1

xk+1 := PX (yk) and yk+1 := PY(xk+1).

ADMM is equivalent to BIO if β = ν = 1

xk+1 + λk = (PXPY + I − PY) (xk + λk−1)

Page 18: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

18/125

Numerical comparison

The parameter β in HPR and RAAR was updated dynamically withβ0 = 0.95. For ADMM, β = 0.5.

ADM

iter

= 1

0iter

= 2

0iter

= 2

00

HPR RAAR

Page 19: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

19/125

Numerical comparison

The parameter β in HPR and RAAR was updated dynamically withβ0 = 0.95. For ADMM, β = 0.5.

ADM

iter

= 2

0

HPR RAAR

iter

= 4

0iter

= 2

00

Page 20: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

20/125

Numerical comparison

The parameter β was fixed at 0.6, 0.8 and 0.95 for the first, secondand third rows respectively.

ADM HPR RAAR

Page 21: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

21/125

Numerical comparison

The parameter β was fixed at 0.6, 0.8 and 0.95 for the first, secondand third rows respectively.

ADM HPR RAAR

Page 22: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

22/125

Numerical Results

Convergence behavior:

errk =‖PX (PY(xk))− PY(xk)‖F

‖m‖F

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

−3

ADM

HPR

RAAR

(a) Satellite0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5x 10

−3

ADM

HPR

RAAR

(b) lena

Page 23: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

23/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 24: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

24/125

Ptychographic Phase Retrieval

Given |F(Qiψ)| for i = 1, . . . , k, can we recover ψ?

Ptychographic imaging along with advances in detectors andcomputing have resulted in X-ray microscopes with increased spatialresolution without the need for lenses

Page 25: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

25/125

Ptychographic Phase Retrieval

Nanoporous structure of shale, Toxicity of silver nanoparticles,Nano-scale properties of concrete, Bone and high strengthnano-composite materials, Chemical structure of 3D polymericmaterials for energy applications, Nanoscale structure of rocksrelated to carbon sequestration

Page 26: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

26/125

Ptychographic Phase Retrieval

Page 27: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

27/125

Ptychographic Phase Retrieval

given an object ψ, the illuminated portion:

xi = Qiψ

Qi is an m× n illumination matrix: contains at least one nonzerorow, and each row of Qi contains at most one nonzero element.measurements:

bi = |Fxi| = |FQiψ|, i = 1, 2, ..., k,

retrieving the phases of xi from bi

xi are not completely independent due to the overlap

Page 28: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

28/125

Ptychographic Phase Retrieval

Define: x ≡ (x∗1, x∗2, . . . , x

∗k)∗, b ≡ (b>1 , b

>2 , . . . , b

>k )>,

Q ≡ (Q∗1,Q∗2, . . . ,Q

∗k)∗, and F ≡ Diag(F ,F , . . . ,F)

projections:

PQ = Q(Q∗Q)−1Q∗ and PF(x) = F∗ Fx

|Fx|· b,

then we can apply projection algorithms

Page 29: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

29/125

Reformulation

reconstruct ψ from measures

bi = |FQiψ|, i = 1, 2, ..., k,

Qi is an m× n illumination matrixoptimization problem

min ρ(ψ) :=

k∑i=1

12‖ |FQiψ| − bi ‖2

2

Reformulation:

min

k∑i=1

12‖|zi| − bi‖2

2, s.t. zi = FQiψ, i = 1, . . . , k

Page 30: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

30/125

ADMM

Augmented Lagrangian function

L(zi, ψ, yi) =

k∑i=1

(12‖|zi| − bi‖2

2 + y∗i (FQiψ − zi) +α

2‖FQiψ − zi‖2

2

)

z-subproblem:

(z+i )(l) =

|(si)(l)|+(bi)(l)(1+α)|(si)(l)|

(si)(l), if (si)(l) 6= 0 and (bi)(l) > 0;

± (bi)(l)1+α , if (si)(l) = 0 and (bi)(l) > 0;

0, otherwise.

where si = yi + αFQiψ, i = 1, ..., kψ-subproblem:

ψ+ =1α

(k∑

i=1

Q∗i Qi

)−1 k∑i=1

Q∗i F∗(αz+i − yi

)

Page 31: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

31/125

Numerical Results

Qi is a 64× 64 matrixthe probe is translated by 16 pixels

50 100 150 200 250

50

100

150

200

250

(a) The amplitude of the “goldball” image.

(b) The amplitude of the probe.

Page 32: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

32/125

Numerical Results

50 100 150 200 250

50

100

150

200

250

(a) The ADMM reconstruc-tion.

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

7

x 10−5

(b) The magnitude of the er-ror produced by ADMM.

Page 33: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

33/125

Numerical Results

relative residual norm and relative error:

res =

√∑ki=1 ‖|z

ji| − bi‖2√∑k

i=1 ‖bi‖2, err =

‖cψj − ψ‖‖ψ‖

,

where c is constant phase factor chosen to minimize ‖cψj − ψ‖.

0 20 40 60 80 10010

−5

10−4

10−3

10−2

10−1

100

iteration number

rela

tive

re

sid

ua

l n

orm

(re

s)

ER

SD

CG

NT

HIO

ADM

(a) Change of the relative residual norm(res) .

0 20 40 60 80 10010

−4

10−3

10−2

10−1

100

iteration number

rela

tive

err

or

(err

)

ER

SD

CG

NT

HIO

ADM

(b) Change of the relative error (err)

Page 34: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

34/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 35: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

35/125

Discrete mathematical model

Phaseless measurements about x0 ∈ Cn

bk = | 〈ak, x0〉 |2, k ∈ {1, . . . ,m}

Phase retrieval is feasibility problem

find x

s.t. | 〈ak, x0〉 |2 = bk, k = 1, . . . ,m

Solving quadratic equations is NP-complete in general

Page 36: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

36/125

NP-complete stone problem

Given weights wi ∈ R, i = 1, . . . , n, is there an assignment xi = ±1such that

n∑i=1

wixi = 0?

Formulation as a quadratic system

|xi|2 = 1, i = 1, . . . , n∣∣∣∣∣n∑

i=1

wixi

∣∣∣∣∣2

= 0

Page 37: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

37/125

PhaseLift (C., Eldar, Strohmer, Voroninski, 2011)

Lifting: X = xx∗

bk = | 〈ak, x0〉 |2 = a∗k xx∗ak = 〈aka∗k ,X〉

Turns quadratic measurements into linear measurements b = A(X)about xx∗

Phase retrieval problem

find X

s.t. A(X) = b

X � 0, rank(X) = 1

PhaseLiftfind X

s.t. A(X) = b

X � 0

Connections: relaxation of quadratically constrained QP’sShor (87) [Lower bounds on nonconvex quadratic optimizationproblems]Goemans and Williamson (95) [MAX-CUT]Chai, Moscoso, Papanicolaou (11)

Page 38: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

38/125

Exact generalized phase retrieval via SDP

Phase retrieval problem

find x

s.t. bk = | 〈ak, x0〉 |2

PhaseLiftfind tr(X)

s.t. A(X) = b, X � 0

Theorem (C. and Li (’12); C., Strohmer and Voroninski (’11))I ak independently and uniformly sampled on unit sphereI m & n

Then with prob. 1− O(e−γm), only feasible point is xx∗

{X : A(X) = b, and X � 0} = {xx∗}

Page 39: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

39/125

Extensions to physical setups

Page 40: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

40/125

Coded diffraction

Collect diffraction patterns of modulated samples

|F(w[t]x[t])|2 w ∈ W

Makes problem well-posed (for some choices ofW)

Page 41: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

41/125

Exact recovery

Figure: Recovery from 6 random binary masks

Page 42: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

42/125

Numerical results: noiseless 2D images

Page 43: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

43/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 44: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

44/125

PhaseCut

Given A ∈ Cm×n and b ∈ Rm

find x, s.t. |Ax| = b.

(Candes et al. 2011b, Alexandre d’Aspremont 2013)

An equivalent model

minx∈Cn,y∈Rm

12‖Ax− y‖2

2

s.t. |y| = b.

Page 45: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

45/125

PhaseCut

Reformulation:

minx∈Cn,u∈Cm

12‖Ax− diag(b)u‖2

2

s.t. |ui| = 1, , i = 1, . . . ,m.

Given u, the signal variable is x = A†diag(b)u. Then

minu∈Cm

u∗Mu

s.t. |ui| = 1, i = 1, . . . ,m,

where M = diag(b)(I − AA†)diag(b) is positive semidefinite.The MAXCUT problem

minU∈Sm

Tr(UM)

s.t. Uii = 1, i = 1, · · · ,m, U � 0.

Page 46: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

46/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 47: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

47/125

Discrete mathematical model

Solve the equations:

yr = |〈ar, x〉|2, r = 1, 2, ...,m. (1)

Gaussian model:

ar ∈ Cn i.i.d.∼ N (0, I/2) + iN (0, I/2).

Coded Diffraction model:

yr =

∣∣∣∣∣n−1∑t=0

x[t]dl(t)e−i2πkt/n

∣∣∣∣∣2

, r = (l, k), 0 ≤ k ≤ n− 1, 1 ≤ l ≤ L.

Page 48: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

48/125

Phase retrieval by non-convex optimization

Nonlinear least square problem:

minz∈Cn

f (z) =1

4m

m∑k=1

(yk − |〈ak, z〉|2)2

Pro: operates over vectors and not matrices

Con: f is nonconvex, many local minima

Page 49: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

49/125

Wirtinger flow: C., Li and Soltanolkotabi (’14)

Strategies:Start from a sufficiently accurate initialization

Make use of Wirtinger derivative

f (z) =1

4m

m∑k=1

(yk − |〈ak, z〉|2)2

∇f (z) =1m

m∑k=1

(|〈ak, z〉|2 − yk)(aka∗k)z

Careful iterations to avoid local minima

Page 50: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

50/125

Algorithm: Gaussian model

Spectral Initialization:1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).

2 Calculate z0 to be the leading eigenvector of Y = 1m

m∑r=1

yrara∗r .

3 Normalize z0 such that ‖z0‖2 = n∑

r yr∑r ‖ar‖2 .

Iteration via Wirtinger derivatives: for τ = 0, 1, . . .

zτ+1 = zτ −µτ+1

‖z0‖2∇f (zτ )

Page 51: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

51/125

Convergence property: Gaussian model

distance (up to global phase)

dist(z, x) = arg minπ∈[0,2π]

‖z− eiφx‖

TheoremConvergence for Gaussian model (C. Li and Soltanolkotabi (’14))

number of samples m & n log n

Step size µ ≤ c/n(c > 0)

Then with probability at least 1− 10e−γn − 8/n2 − me−1.5n, we have dist(z0, x) ≤ 18‖x‖

and after τ iterationdist(zτ , x) ≤

18(1− µ

4)τ/2‖x‖.

Here γ is a positive constant.

Page 52: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

52/125

Algorithm: Coded diffraction model

Initialization via resampled Wirtinger Flow:1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).2 Divide the measurements and observations equally into B + 1

groups of size m′. The measurements and observations in group bare denoted as a(b)

r and y(b)r for b = 0, 1, ...,B.

3 Obtain u0 by conducting the spectral initialization on group 0.4 For b = 0 to B− 1, perform the following update:

ub+1 = ub−µ

‖u0‖2

1m′

m′∑r=1

(|z∗a(b+1)

r |2 − y(b+1)r

)(a(b+1)

r (a(b+1)r )∗)z

.

5 Set z0 = uB.

Same iterations as the Gaussian model:for τ = 0, 1, . . .

zτ+1 = zτ −µτ+1

‖z0‖2∇f (zτ )

Page 53: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

53/125

Convergence property: coded diffraction model

TheoremConvergence for CD model (C. Li and Soltanolkotabi (’14))

L & (log n)4

Step size µ ≤ c(c > 0)

Then with probability at least 1− (2L + 1)/n3 − 1/n2, we havedist(z0, x) ≤ 1

8√

n‖x‖ and after τ iteration

dist(zτ , x) ≤ 18√

n(1− µ

3)τ/2‖x‖.

Page 54: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

54/125

Numerical results: 1D signals

Consider the following two kinds of signals:

• Random low-pass signals:

x[t] =M/2∑

k=−(M/2−1)

(Xk + iYk)e2πi(k−1)(t−1)/n,

with M=n/8 and Xk and Yk are i.i.d. N (0, 1).

• Random Guassian signals: where x ∈ Cn is a random complex Gaussianvector with i.i.d. entries of the form

X[t] = X + iY,

with X and Y distributed as N (0, 1/2).

Page 55: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

55/125

Success rate

• Set n = 128.• Apply 50 iterations of the power method as initialization.• Set the step length parameter µτ = min(1− exp(−τ/τ0), 0.2),

where τ0 ≈ 330.• Stop after 2500 iterations, and declare a trial successful if the

relative error of the reconstruction dist(x, x)/‖x‖ falls below 10−5.• The empirical probability of success is an average over 100 trials.

Page 56: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

56/125

Success rate

Page 57: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

57/125

Numerical results: natural images

• View RGB image as n1 × n2 × 3 array, and run the WF algorithmseparately on each color band.• Apply 50 iterations of the power method as initialization.• Set the step length parameter µτ = min(1− exp(−τ/τ0), 0.4),

where τ0 ≈ 330. Stop after 300 iterations.• One FFT unit is the amount of time it takes to perform a single

FFT on an image of the same size.

Page 58: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

58/125

Numerical results: natural images

Figure: Naqsh-e Jahan Square, Esfahan. Image size is 189× 768 pixels;timing is 61.4 sec or about 21200 FFT units. The relative error is 6.2× 10−16.

Page 59: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

59/125

Numerical results: natural images

Figure: Stanford main quad. Image size is 320× 1280 pixels; timing is181.8120 sec or about 20700 FFT units. The relative error is 3.5× 10−14.

Page 60: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

60/125

Numerical results: natural images

Figure: Milky way Galaxy. Image size is 1080× 1920 pixels; timing is 1318.1sec or 41900 FFT units. The relative error is 9.3× 10−16.

Page 61: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

61/125

Recall the main theorems

TheoremConvergence for Gaussian model (C. Li and Soltanolkotabi (’14))

number of samples m & n log n

Step size µ ≤ c/n(c > 0)

Then with probability at least 1− 10e−γn − 8/n2 − me−1.5n, we havedist(z0, x) ≤ 1

8‖x‖ and after τ iteration

dist(zτ , x) ≤ 18

(1− µ

4)τ/2‖x‖.

Here γ is a positive constant.

Page 62: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

62/125

Recall the main theorems

TheoremConvergence for CD model (C. Li and Soltanolkotabi (’14))

L & (log n)4

Step size µ ≤ c(c > 0)

Then with probability at least 1− (2L + 1)/n3 − 1/n2, we havedist(z0, x) ≤ 1

8√

n‖x‖ and after τ iteration

dist(zτ , x) ≤ 18√

n(1− µ

3)τ/2‖x‖.

Page 63: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

63/125

Regularity condition

DefinitionDefinition We say that the function f satisfies the regularity conditionor RC(α, β, ε) if for all vectors z ∈ E(ε) we have

Re(〈∇f (z), z− xeiφ(z)〉

)≥ 1α

dist2(z, x) +1β‖∇f (z)‖2.

• φ(z) := arg minφ∈[0,2π] ‖z− eiφx‖.• dist(z, x) := ‖z− eiφ(z)x‖.• E(ε) := {z ∈ Cn : dist(z, x) ≤ ε}.

Page 64: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

64/125

Proof of convergence

Lemma 1Assume that f obeys RC((α, β, ε)) for all z ∈ E(ε). Furthermore,suppose z0 ∈ E(ε), and assume 0 < µ ≤ 2/β. Consider the followingupdate

zτ+1 = zτ − µ∇f (zτ ).

Then for all τ we have zτ ∈ E(ε) and

dist2(zτ , x) ≤(

1− 2µα

)τdist2(z0, x).

Page 65: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

65/125

Proof of convergence

Proof.We prove that if z ∈ E(ε) then for all 0 < µ ≤ 2/β

z+ = z− µ∇f (z)

obeys

dist2(z+, x) ≤(

1− 2µα

)dist2(z, x).

Then the lemma holds by inductively applying the equation above.

Page 66: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

66/125

Proof of convergence

Simple algebraic manipulations together with the regularity conditiongive ∥∥∥z+ − xeiφ(z)

∥∥∥2

=∥∥∥z− xeiφ(z) − µ∇f (z)

∥∥∥2

=∥∥∥z− xeiφ(z)

∥∥∥2− 2µRe

(〈∇f (z), z− xeiφ(z)〉

)+ µ2 ‖∇f (z)‖2

≤∥∥∥z− xeiφ(z)

∥∥∥2− 2µ

(1α

∥∥∥z− xeiφ(z)∥∥∥2

+1β‖∇f (z)‖2

)+µ2 ‖∇f (z)‖2

=

(1− 2µ

α

)∥∥∥z− xeiφ(z)∥∥∥2

+ µ

(µ− 2

β

)‖∇f (z)‖2

≤(

1− 2µα

)∥∥∥z− xeiφ(z)∥∥∥2,

which concludes the proof.

Page 67: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

67/125

Proof of regularity condition

We will make use of the following lemma:

Lemma 21 x is a solution obeying ‖x‖ = 1, and is independent from the

sampling vectors;2 m ≥ c(δ)n log n in Gaussian model or L ≥ c(δ) log3 n in CD model.

Then, ∥∥∇2f (x)− E∇2f (x)∥∥ ≤ δ

holds with pabability at least 1− 10e−γn − 8/n2 and 1− (2L + 1)/n3 forthe Gaussian and CD model, respectively.

• The concentration of the Hessian matrix at the optimizers.

Page 68: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

68/125

Proof of regularity condition

Based on the lemma above with δ = 0.01, we prove the regularitycondition by establishing the local curvature condition and the localsmoothness condition.

Local curvature conditionWe say that the function f satisfies the local curvature condition orLCC(α, ε, δ) if for all vectors z ∈ E(ε),

Re(〈∇f (z), z− xeiφ(z)〉

)≥(

+1− δ

4

)dist2(z, x)+

110m

m∑r=1

∣∣∣a∗r (z− xeiφ(z))∣∣∣4 .

The LCC condition states that the function curves sufficiently upwardsalong most directions near the curve of global optimizers.For the CD model, LCC holds with α ≥ 30 and ε = 1

8√

n ;

For the Gaussian model, LCC holds with α ≥ 8 and ε = 18 .

Page 69: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

69/125

Proof of regularity condition

Local smoothness conditionWe say that the function f satisfies the local smoothness condition orLSC(β, ε, δ) if for all vectors z ∈ E(ε) we have

‖∇f (z)‖2 ≤ β

((1− δ)

4dist2(z, x) +

110m

m∑r=1

∣∣∣a∗r (z− xeiφ(z))∣∣∣4) .

The LSC condition states that the gradient of the function is wellbehaved near the curve of global optimizers. Using δ = 0.01, LSCholds with β ≥ 550 + 3n

β ≥ 550 for ε = 1/(8√

n),

β ≥ 550 + 3n for ε = 1/8.

Page 70: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

70/125

Proof of regularity condition

In conclusion, when δ = 0.01, for the Gaussian model, the regularitycondition holds with

α ≥ 8, β ≥ 550 + 3n, and ε = 1/8.

while for the CD model, the regularity condition holds with

α ≥ 30, β ≥ 550, and ε = 1/(8√

n),

Therefore, for the Gaussian model, linear convergence holds if theinitial points satisfies dist(z0, x) ≤ 1/8; for the CD model, linearconvergence holds if dist(z0, x) ≤ 1/(8

√n).

Page 71: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

71/125

Proof of initialization

Recall the initialization algorithm:1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).

2 Calculate z0 to be the leading eigenvector of Y = 1m

m∑r=1

yrara∗r .

3 Normalize z0 such that ‖z0‖2 = n∑

r yr∑r ‖ar‖2 .

Ideas:

E

[1m

m∑r=1

yrara∗r

]= I + 2xx∗,

and any leading eigenvector of I + 2xx∗ is of the form λx. Therefore,by the strong law of large number, the initialization step would recoverthe direction of x perfectly as long as there are enough samples.

Page 72: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

72/125

Proof of initialization

In the detailed proof, we will use the following lemma:

Lemma 3In the setup of Lemma 2, ∥∥∥∥∥I − 1

m

m∑r=1

ara∗r

∥∥∥∥∥ ≤ δ,holds with probability at least 1− 2e−γm for the Gaussian model and 1− 1/n2 for theCD model. On this event,

(1− δ)‖h‖2 ≤ 1m

m∑r=1

|a∗r h|2 ≤ (1 + δ)‖h‖2

holds for all h ∈ Cn.

Page 73: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

73/125

Proof of initialization

Detailed proof:Lemma 2 gives

‖Y − (xx∗ + ‖x‖2I)‖ ≤ ε := 0.001.

Let z0 be the unit eigenvector corresponding to the top eigenvalue λ0of Y, then

|λ0 − (|z0x|2 + 1)| = |z∗0(Y − (xx∗ + I))z0| ≤ ‖Y − (xx∗ + I)‖ ≤ ε.

Therefore, |z∗0x|2 ≥ λ0 − 1− ε. Meanwhile, since λ0 is the topeigenvalue of Y, and ‖x‖ = 1, we have

λ0 ≥ x∗Yx = x∗(Y − (I + x∗x))x + 2 ≥ 2− ε.

Combining the above two inequalities together, we have

|z∗0x|2 ≥ 1−2ε ⇒ dist2(z0, x) ≤ 2−2√

1− 2ε ≤ 1256

⇒ dist(z0, x) ≤ 116.

Page 74: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

74/125

Proof of initialization

Now consider the normalization. Recall that z0 =

(√1m

m∑r=1|a∗r x|2

)z0.

By Lemma 3, with high probability we have

|‖z0‖ − 1| ≤∣∣‖z0‖2 − 1

∣∣ =

∣∣∣∣∣ 1m

m∑r=1

|a∗r x|2 − 1

∣∣∣∣∣ ≤ δ < 116.

Therefore, we have

dist(z0, x) ≤ ‖z0 − z0‖+ dist(z0, x) ≤ |‖z0‖ − 1|+ dist(z0, x) ≤ 18.

Page 75: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

75/125

Proof of initialization: Resampled WF

Recall the initialization step via resampled Wirtinger flow:1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).2 Divide the measurements and observations equally into B + 1

groups of size m′. The measurements and observations in groupb are denoted as a(b)r and y(b)r for b = 0, 1, ...,B.

3 Obtain u0 by conducting the spectral initialization on group 0.4 For b = 0 to B− 1, perform the following update:

ub+1 = ub−µ

‖u0‖2

(1m′

m′∑r=1

(|z∗a(b+1)

r |2 − y(b+1)r

)(a(b+1)

r (a(b+1)r )∗)z

).

5 Set z0 = uB.

Page 76: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

76/125

Proof of initialization: Resampled WF

Outline of the proof:1 For step 3, by the result of Algorithm 1, u0 obeys

dist(u0, x) ≤ 18.

2 For step 4, define f (z; b) = 12m′

m′∑r=1

(|z∗a(b+1)

r |2 − y(b+1)r

)2, then the

update can be written as

ub+1 = ub −µ

‖u0‖2∇f (z; b).

We prove the linear convergence of this series of updates byverifying the following regularity condition:

Re(〈∇f (z; b), z− xeiφ(z)〉

)≥ 1α

dist2(z, x) +1β‖∇f (z; b)‖.

Page 77: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

77/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 78: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

78/125

Nonlinear least square problem

minz∈Cn

f (z) =1

4m

m∑k=1

(yk − |〈ak, z〉|2)2

Using Wirtinger derivative:

z :=

[zz

];

g(z) := ∇cf (z) =1m

m∑r=1

(|aT

r z|2 − yr) [ (araT

r )z(ara>r )z

];

J(z) :=1√m

m∑r=1

[|a∗1z|a1, |a∗2z|a2, · · · , |a∗mz|am

|a∗1z|a1, |a∗2z|a2, · · · , |a∗mz|am

]T

;

Ψ(z) := J(z)TJ(z) =1m

m∑r=1

[|aT

r z|2araTr (aT

r z)2ara>r( ¯aT

r z)2araTr |aT

r z|2ara>r

].

Page 79: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

79/125

The Modified LM method for Phase Retrieval

Levenberg-Marquardt Iteration:

zk+1 = zk − (Ψ(zk) + µkI)−1 g(zk)

Algorithm1 Input: Measurements {ar}, observations {yr}. Set ε ≥ 0.2 Construct z0 using the spectral initialization algorithms.3 While ‖g(zk)‖ ≥ ε do

Compute sk by solving equation

Ψµkzk

sk = (Ψ(zk) + µkI) sk = −g(zk).

until ∥∥Ψµkzk

sk + g(zk)∥∥ ≤ ηk‖g(zk)‖.

Set zk+1 = zk + sk and k := k + 1.

3 Output: zk.

Page 80: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

80/125

Convergence of the Gaussian Model

TheoremIf the measurements follow the Gaussian model, the LM equation issolved accurately (ηk = 0 for all k), and the following conditions hold:• m ≥ cn log n, where c is sufficiently large;

• If f (zk) ≥ ‖zk‖2

900n , let µk = 70000n√

nf (zk); if else, let µk =√

f (zk).Then, with probability at least 1− 15e−γn − 8/n2 − me−1.5n, we havedist(z0, x) ≤ (1/8)‖x‖, and

dist(zk+1, x) ≤ c1dist(zk, x),

Meanwhile, once f (zs) <‖zs‖2

900n , for any k ≥ s we have

dist(zk+1, x) < c2dist(zk, x)2.

Page 81: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

81/125

Convergence of the Gaussian Model

In the theorem above,

c1 :=

(

1− ||x||4µk

), if f (zk) ≥ 1

900n‖zk‖2;4.28+5.56

√n

9.89√

n , otherwise.

and

c2 =4.28 + 5.56

√n

‖x‖.

Page 82: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

82/125

Key to proof

Lower bound of GN matrix’s second smallest eigenvalueFor any y, z ∈ Cn, Im(y∗z) = 0, we have:

y∗Ψ(z)y ≥ ‖y‖2‖z‖2,

holds with high probability.

Im(y∗z) = 0 ⇒ ‖(Ψµz )−1y‖ ≤ 2

‖z‖2 + µ‖y‖.

Page 83: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

83/125

Key to proof

Local error bound property

14

dist(z, x)2 ≤ f (z) ≤ 8.04dist(z, x)2 + 6.06ndist(z, x)4,

holds for any z satisfying dist(z, x) ≤ 18 .

Regularity condition

µ(z)h∗(Ψµ

z)−1 g(z) ≥ 1

16‖h‖2 +

164100n‖h‖

‖g(z)‖2

holds for any z = x + h, ‖h‖ ≤ 18 , and f (z) ≥ ‖z‖

2

900n .

Page 84: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

84/125

Convergence for the inexact LM method

TheoremConvergence of the inexact LM method for the Gaussian model:

• m & n log n;

• µk takes the same value as in the exact LM method for the Gaussian model;

• ηk ≤ (1−c1)µk25.55n‖zk‖

if f (zk) ≥ ‖zk‖2

900n ; otherwise ηk ≤ (4.33√

n−4.28)µk‖gk‖372.54n2‖zk‖3 .

Then, with probability at least 1− 15e−γn − 8/n2 − me−1.5n, we have dist(z0, x) ≤ 18‖x‖, and

dist(zk+1, x) ≤1 + c1

2dist(zk, x), for all k = 0, 1, ...

dist(zk+1, x) ≤9.89√

n + c2‖x‖2‖x‖

dist(zk, x)2, for all f (zk) <‖zk‖2

900n.

Here c1 and c2 take the same values as in the exact algorithm for the Gaussian model.

Page 85: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

85/125

Solving the LM Equation: PCG

Solve(Ψk + µkI)u = gk

by Pre-conditioned Conjugate Gradient Method:

M−1(Ψk + µkI)u = M−1gk, M = Φk + µkI.

Φ(z) :=

[zz∗ 2zzT

2zz∗ zzT

]+ ‖z‖2I2n

small condition numberEasy to inverse: M = (µk + ‖zk‖2)I + M1, where M1 is rank-2matrix.

Page 86: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

86/125

Solving the LM Equation: PCG

• small condition number.

Lemma

Consider solving the equation (Φµz )−1Ψµ

z s = (Φµz )−1g(z) by the CG

method from s0 := −(Φµz )−1g(z). Let s∗ be the solution of the system.

Define V := {× : × = [x∗, xT ]∗, x ∈ Cn}. Then, V is an invariantsubspace of (Φµ

z )−1Ψµz , and s0, s∗ ∈ V. Meanwhile, choosing

µk = Kn√

f (z), then the eigenvalues of (Φµz )−1Ψµ

z on V satisfy:

1− 57K√

n≤ λ ≤ 1 +

57K√

n.

Page 87: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

87/125

Solving the LM Equation: PCG

• Easy to inverse.

Calculate by Sherman-Morrison-Woodbury theorem:

(Φµz )−1 = aI2n + b

[zz

][z∗, zT ] + c

[z−z

][z∗,−zT ]

where

a =1

‖z‖2 + µ, b = − 3

2(‖z‖2 + µ)(4‖z‖2 + µ), c =

12(‖z‖2 + µ)µ

.

Page 88: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

88/125

Outline

1 Phase RetrievalClassical Phase RetrievalPtychographic Phase RetrievalPhaseLiftPhaseCutWirtinger FlowsGauss-Newton Method

2 Cryo-Electron Microscopy

Page 89: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

89/125

Single Particle Cryo-Electron Microscopy

Drawing of the imaging process:

Page 90: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

90/125

Single Particle Cryo-Electron Microscopy

Projection images Pi(x, y) =∫∞−∞ φ(xR1

i + yR2i + zR3

i )dz+ “noise”.

φ : R3 → R is the electric potential of the molecule.Cryo-EM problem: Find φ and R1, . . . ,Rn given P1, . . . ,Pn.

Page 91: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

91/125

A Toy Example

Page 92: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

92/125

E. coli 50S ribosomal subunit: sample images

Fred Sigworth, Yale Medical School

Page 93: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

93/125

Algorithmic Pipeline

Particle Picking: manual, automatic or experimental imagesegmentation.Class Averaging: classify images with similar viewing directions,register and average to improve their signal-to-noise ratio (SNR).S, Zhao, Shkolnisky, Hadani, SIIMS, 2011.Orientation Estimation:S, Shkolnisky, SIIMS, 2011.Three-dimensional Reconstruction:a 3D volume is generated by a tomographic inversion algorithm.Iterative Refinement

Page 94: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

94/125

What mathematics do we use to solve the problem?

Tomography

Convex optimization and semidefinite programming

Random matrix theory (in several places)

Representation theory of SO(3) (if viewing directions areuniformly distributed)

Spectral graph theory, (vector) diffusion maps

Fast randomized algorithms

. . .

Page 95: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

95/125

Orientation Estimation: Fourier projection-slice

Page 96: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

96/125

Augular Reconstruction

Van Heel 1987, Vainshtein and Goncharov 1986

Page 97: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

97/125

Experiments with simulated noisy projections

Each projection is 129x129 pixels

SNR =Var(Signal)Var(Noise)

Page 98: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

98/125

Detection of Common-lines between images

common line between two images Pi and Pj:radial resolution: nr, angular resolution: nθ

Fourier transformed images:(~lk0,~l

k1, . . . ,

~lknθ−1

)Compare~li0,~l

i1, . . . ,

~linθ−1 and~lj0,~lj1, . . . ,

~ljnθ−1

maximum normalized cross correlation:

(mi,j,mj,i) = arg max0≤m1<nθ/2, 0≤m2<nθ

⟨~lim1

,~ljm2

⟩∥∥∥~lim1

∥∥∥∥∥∥~ljm2

∥∥∥ , for all i 6= j,

Page 99: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

99/125

Least Squares Approach

The directions of detected common-lines between Pi and Pj

~cij =(c1

ij, c2ij)

= (cos (2πmij/nθ) , sin (2πmij/nθ)) ,

~cji =(c1

ji, c2ji)

= (cos (2πmji/nθ) , sin (2πmji/nθ)) .

Ri ∈ SO(3), i = 1, · · · ,K: the orientations of the K images.Fourier projection-slice theorem

Ri

(~cT

ij0

)= Rj

(~cT

ji0

)for 1 ≤ i < j ≤ K.

They are(

K2

)linear equations for the 6K variables

Page 100: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

100/125

Least Squares Approach

Weighted LS approach

minR1,...,RK∈SO(3)

∑i 6=j

wij

∥∥∥Ri (~cij, 0)T − Rj (~cji, 0)T∥∥∥2

Since∥∥∥Ri (~cij, 0)T

∥∥∥ =∥∥∥Rj (~cji, 0)T

∥∥∥ = 1, we obtain

maxR1,...,RK∈SO(3)

∑i 6=j

wij〈Ri (~cij, 0)T ,Rj (~cji, 0)T〉

The solution may not be optimal due to the typically largeproportion of outliers:

0 0.5 1 1.5 20

5000

10000

15000(a) SNR = 1/16

0 0.5 1 1.5 20

2000

4000

6000

8000(b) SNR = 1/32

0 0.5 1 1.5 20

1000

2000

3000

4000(c) SNR = 1/64

histogram plots of errors:∥∥∥Ri (~cij, 0)T − Rj (~cji, 0)T

∥∥∥

Page 101: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

101/125

Least Unsquared Deviations

Sum of unsquared residuals

minR1,...,RK∈SO(3)

∑i6=j

∥∥∥Ri (~cij, 0)T − Rj (~cji, 0)T∥∥∥

ormin

R1,...,RK∈SO(3)

∑i 6=j

∥∥∥(~cij, 0)T − RTi Rj (~cji, 0)T

∥∥∥Reweighted Least unsquared problem

minR1,...,RK∈SO(3)

∑i6=j

wij

∥∥∥Ri (~cij, 0)T − Rj (~cji, 0)T∥∥∥

Less sensitive to misidentifications of common-lines (outliers)

Page 102: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

102/125

Semidefinite Programming Relaxation (SDR)

Rotations:

RiRTi = I3, det (Ri) = 1, for i = 1, . . . ,K

The columns of the rotation matrix Ri:

Ri =

| | |R1

i R2i R3

i| | |

, i = 1, . . . ,K.

Define a 3× 2K matrix R:

R =

| | |R1

1 R21 · · · R1

k| | |

| | |R2

k · · · R1K R2

K| | |

Page 103: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

103/125

Semidefinite Programming Relaxation (SDR)

Objective function:∑i 6=j

wij〈Ri (~cij, 0)T ,Rj (~cji, 0)T〉 = trace ((W ◦ S) G)

Gram matrixG = RTR

G is a rank-3 semidefinite positive matrix

Gij =

((R1

i )T

(R2i )T

)(R1

i R2i).

Page 104: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

104/125

SDR for weighted LS

S = (Sij)i,j=1,··· ,K and W = (Wij)i,j=1,··· ,K are 2K × 2K matrices:

Sij = ~cTji~cij, and Wij = wij

(1 11 1

).

orthogonality implies

Gii = I2, i = 1, 2, · · · ,K

SDR:

maxG∈R2K×2K trace ((W ◦ S) G)

s.t. Gii = I2, i = 1, 2, · · · ,K,G < 0

Page 105: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

105/125

SDR for LUD

Define a 3K × 3K matrix G = (Gij)i,j=1,··· ,K with Gij = RTi Rj:

minG<0

∑i6=j

∥∥∥(~cij, 0)T − Gij (~cji, 0)T∥∥∥ , s.t. Gii = I3

If {Ri} is a solution, then {JRiJ} is also a solution, where

J =

1 0 00 1 00 0 −1

.

Let GJ = (GJij)i,j=1,··· ,K with GJ

ij = JRTi JJRjJ = JRT

i RjJ. Then12(G + GJ) is also a solution.

Page 106: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

106/125

SDR for LUD

Using the fact that

12

(Gij + GJij) =

Gij00

0 0 0

,

we obtainminG<0

∑i 6=j

∥∥~cTij − Gij~cT

ji

∥∥ , s.t. Gii = I2.

Solved by alternating direction augmented Lagrangian method

Page 107: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

107/125

Spectral Norm Constraint

presence of many “outliers" (i.e., a large proportion of misidentifiedcommon-lines):

images whose viewing directions are parallel share manycommon lines, which is resulted by the overlapping Fourierslices.

when the viewing directions of Ri and Rj are nearby, the fidelityterm

∥∥∥Ri (~cij, 0)T − Rj (~cji, 0)T∥∥∥ can become small, even when the

common line pair (~cij,~cji) is misidentified.

the Gram matrix G has just two dominant eigenvalues, instead ofthree.

Page 108: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

108/125

Spectral Norm Constraint

The dependency of the spectral norm of G (denoted as αK here)on the distribution of orientations of the images. Each red pointdenotes the viewing direction of a projection. The larger thespectral norm αK is, the more clustered the viewing directionsare.

Page 109: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

109/125

Spectral Norm Constraint

add constraint on the spectral norm of the Gram matrix G:

G 4 αKI2K

or‖G‖2 ≤ αK

α ∈ [23 , 1) controls the spread of the viewing directions

If true orientations are uniformly sampled SO(3), then by the lawof large numbers and the symmetry of the distribution oforientations, the spectral norm of the true Gram matrix Gtrue isapproximately 2

3 K

If true viewing directions are highly clustered, then the spectralnorm of the true Gram matrix Gtrue is close to K.

Page 110: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

110/125

ADMM for relaxed weighted LS

Primal problem

minG<0

−〈C,G〉

s.t. A (G) = b‖G‖2 ≤ αK

where

A (G) =

G11ii

G22ii√

22 G12

ii +√

22 G21

ii

i=1,2,...,K

, b =

b1i

b2i

b3i

i=1,2,...,K

,

b1i = b2

i = 1, b3i = 0 for all i.

Page 111: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

111/125

ADMM for relaxed weighted LS

Dual problem

miny,X<0

−yTb + αK ‖Z‖∗

s.t. Z = C + X +A∗ (y)

ADMM:

yk+1 = −A(C + Xk − Zk)− 1

µ(A (G)− b) ,

Zk+1 = Udiag (z) UT , z = arg minz

αKµ‖z‖1 +

12‖z− λ‖2

2 ,

Xk+1 =

(C + Xk +A∗

(yk+1)+

Gk)†,

Gk+1 = (1− γ)Gk + γµ(Xk+1 − Hk).

Page 112: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

112/125

ADMM for relaxed LUD

Consider the LUD problem

minxij,G<0

∑i<j

‖xij‖ s.t. A (G) = b, xij = ~cTij − Gij~cT

ji , ‖G‖2 ≤ αK

Dual problem

minθij,y,X<0

−yTb−∑

i<j

⟨θij,~cT

ij

⟩+ αK ‖Z‖∗

s.t. Z = Q (θ) + X +A∗ (y) , and ‖θij‖ ≤ 1.

Apply ADMM to the dual problem

Page 113: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

113/125

Iterative Reweighted Least Squares (IRLS)

SDR:

minG∈R2K×2K F(G) =∑

i,j=1,2,...,K

√2− 2

∑p,q=1,2

Gpqij Spq

ij

s.t. Gii = I2, i = 1, 2, · · · ,K,G < 0,

‖G‖2 ≤ αK (optional)

Smoothing version

minG∈R2K×2K F(G, ε) =∑

i,j=1,2,...,K

√2− 2

∑p,q=1,2

Gpqij Spq

ij + ε2

s.t. Gii = I2, i = 1, 2, · · · ,K,G < 0,

‖G‖2 ≤ αK (optional)

Page 114: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

114/125

Iterative Reweighted Least Squares (IRLS)

Main steps:compute Gk+1 to be the solution of

minG<0

∑i 6=j

wkij(2− 2 〈Gij, Sij〉+ ε2) s.t. A(G) = b, (‖G‖2 ≤ αK)

update

wkij = 1/

√2− 2

⟨Gk

ij, Sij

⟩+ ε2, ∀k > 0.

Convergence:the cost function sequence is monotonically non-increasing

F(Gk+1, ε) ≤ F(Gk, ε).

The sequence of iterates{

Gk}

of IRLS is bounded, and everycluster point of the sequence is a stationary point.

Page 115: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

115/125

Numerical Results

3D Fourier Shell Correlation (FSC). FSC measures thenormalized cross-correlation coefficient between two 3Dvolumes over corresponding spherical shells in Fourier space

FSC (i) =

∑j∈Shelli F (V1) (j) · F (V2) (j)√∑

j∈Shelli |F (V1) (j)|2 ·∑

j∈Shelli |F (V2) (j)|2

The reconstruction from the images with estimated orientationsused the Fourier based 3D reconstruction package FIRMThe reconstructed volumes are shown using the visualizationsystem Chimera

Page 116: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

116/125

Numerical Results: simulated images

Clean SNR = 1/16 SNR = 1/32 SNR = 1/64

The first column shows three clean images of size 129× 129 pixelsgenerated from a 50S ribosomal subunit volume with different orientations.The other three columns show three noisy images corresponding to those inthe first column with SNR= 1/16, 1/32 and 1/64, respectively.

Page 117: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

117/125

Numerical Results: simulated images

The clean volume (top), the reconstructed volumes and the MSEs. Nospectral norm constraint was used (i.e., α = N/A) for all algorithms. Theresult using the IRLS procedure without α is not available due to the highlyclustered estimated projection directions.

Page 118: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

118/125

Numerical Results: simulated images

The reconstructed volumes from images with SNR = 1/64 and the MSEs ofthe estimated rotations using spectral norm constraints (i.e., α = 0.90, 0.75,and 0.67) for all algorithms. The result from the IRLS procedure withα = 0.67 for the spectral norm constraint is best.

Page 119: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

119/125

Numerical Results: simulated images

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1(1) SNR = 1/16

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1(2) SNR = 1/32

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1

FS

C

(3) SNR = 1/64

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1

(4) SNR = 1/64, α = 0.90

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1

Spatial frequency (1/A)

(5) SNR = 1/64, α = 0.75

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1

Spatial frequency (1/A)

(6) SNR = 1/64, α = 0.67

LUD (ADMM)

LS (SDP/ADMM)

LUD (IRLS)

FSCs of the reconstructed volumes against the clean volume

Page 120: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

120/125

Numerical Results: real dataset

Raw image Average image1st Neighbor 2nd Neighbor

Noise reduction by image averaging. Three raw ribosomal images areshown in the first column. Their closest two neighbours (i.e., raw imageshaving similar orientations after alignments) are shown in the second andthird columns. The average images shown in the last column were obtainedby averaging over 10 neighbours of each raw image.

Page 121: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

121/125

Numerical Results: real dataset

The ab-initio models estimated by merging two independentreconstructions, each obtained from 1000 class averages. The resolutions ofthe models are 17.2Å, 16.7Å, 16.7Å, 16.7Å and 16.1Å using the FSC 0.143resolution cutoff.

Page 122: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

122/125

Numerical Results: real dataset

The refined models corresponding to the ab-initio models. The resolutionsof the models are all 11.1Å.

Page 123: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

123/125

Numerical Results: real dataset

The average cost time using different algorithms on 500 and 1000images in the two experimental subsections. The notation α = N/Ameans no spectral norm constraint ‖G‖2 ≤ αK is used.

α = N/A 23 ≤ α ≤ 1

K LS LUD LS LUD(SDP) ADMM IRLS (ADMM) ADMM IRLS

500 7s 266s 469s 78s 454s 3353s1000 31s 1864s 3913s 619s 1928s 20918s

Page 124: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

124/125

Numerical Results: real dataset

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.2

0.4

0.6

0.8

1

Spatial frequency (1/A)

FS

C

Initial models, 16.7A1st iteration, 12.8A2nd iteration, 11.1A3rd iteration, 11.1A0.143 FSC criterion

LUD, ADMM: Convergence of the refinement process

Page 125: Phase Retrieval And Cryo-Electron Microscopybicmr.pku.edu.cn/~wenzw/bigdata/lect-phase.pdf · 2/125 Outline 1 Phase Retrieval Classical Phase Retrieval Ptychographic Phase Retrieval

125/125

Numerical Results: real dataset

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.2

0.4

0.6

0.8

1

Spatial freqency (1/A)

FS

C

Initial models, 16.1A1st iteration, 13.0A2nd iteration, 11.4A3rd iteration, 11.1A4th iteration, 11.1A0.143 FSC criterion

LUD, IRLS: Convergence of the refinement process