24
June 28, 2022 Kalkulus II 1 Pertemu Pertemu an an 17 17 Integral lipat Integral lipat

Pertemuan

  • Upload
    napua

  • View
    55

  • Download
    0

Embed Size (px)

DESCRIPTION

17. Pertemuan. Integral lipat. Double Riemann Sums In first year calculus, the definite integral was defined as a Riemann sum that gave the area under a curve.  There is a similar definition for the volume of a region - PowerPoint PPT Presentation

Citation preview

Page 1: Pertemuan

April 22, 2023 Kalkulus II 1

PertemPertemuan uan

1717Integral lipatIntegral lipat

Page 2: Pertemuan

April 22, 2023 Kalkulus II 2

Double Riemann Sums

In first year calculus, the definite integral was defined as a Riemann sum that gave

the area under a curve.  There is a similar definition for the volume of a region

below a function of two variables.  Let f(x,y) be a positive function of two variables

and consider the solid that is bounded below by f(x,y) and above a region R in the

xy-plane.  

Page 3: Pertemuan

April 22, 2023 Kalkulus II 3

For a two dimensional region, we approximated the area by adding up the areas of

many approximating rectangles.  For the volume of a three dimensional solid, we

take a similar approach.  Instead of rectangles, we use rectangular solids for the

approximation.  We cut the region R into rectangles by drawing vertical and

horizontal lines in the xy-plane.  Rectangles will be formed.  We let the rectangles

be the base of the solid, while the height is the z-coordinate of the lower left

vertex.  One such rectangular solid is shown in the figure.  

Page 4: Pertemuan

April 22, 2023 Kalkulus II 4

Dengan cara yang sama integral dapat juga dinytakan sebagai berikut :

Atau

                                  

Page 5: Pertemuan

April 22, 2023 Kalkulus II 5

Taking the limit as the rectangle size approaches zero (and the number of rectangles

approaches infinity) will give the volume of the solid.  If we fix a value of x and look at

the rectangular solids that contain this x, the union of the solids will be a solid with

constant width Dx.  The face will be approximately equal to the area in the yz-plane

of the (one variable since x is held constant) function  z  =  f(x,y).  

This area is equal to 

Untuk mendekati 0 integral menjadi :

Page 6: Pertemuan

April 22, 2023 Kalkulus II 6

Volume

Cari volume yang dibatasi oleh g(x,y) dan fungsi

f (x,y) seperti pada gambar berikut. Click gambar

untuk melihat animasi

Page 7: Pertemuan

April 22, 2023 Kalkulus II 7

Volume ( seperti soal sebelumnya )

Click gambar untuk melihat animasinya

Page 8: Pertemuan

April 22, 2023 Kalkulus II 8

Volume Seperti soal sebelumnya

Click disini animation

Page 9: Pertemuan

April 22, 2023 Kalkulus II 9

Solution

The cone is sketched below                                                        

We can see that the region R is the blue circle in the xy-plane.  We can find the

equation by setting z  =  0.                                  

Solving for y (by moving the square root to the left hand side,  squaring both sides, etc) gives                                

Page 10: Pertemuan

April 22, 2023 Kalkulus II 10

Volume benda di Oktant pertama 

Yang dibatasi oleh :

Click disini DPGraph Picture

Find the volume of the solid in the first octant

bounded by the graphs of http://www2.scc-fl.edu/lvosbury/images/Mpic132no32.gif

Page 11: Pertemuan

April 22, 2023 Kalkulus II 11

Luas PermukaanCari luas permukaan yang ditentukan oleh

f(x,y) seperti pada gambar    Click here untuk melihat animasi

Page 12: Pertemuan

April 22, 2023 Kalkulus II 12

Fubini's Theorem

Let f, g1, g2, h1, and h2 be defined and continuous on a region R.  Then the double

integral equals

                                                                                                                                   

Example

Set up the integral to find the volume of the solid that lies below the cone                                   

and above the xy-plane.   Solution

The cone is sketched below

Page 13: Pertemuan

April 22, 2023 Kalkulus II 13

The "-" gives the lower limit and the "+" gives the upper limit.  For the outer limits,

we can see that 

        -4  <  x  <  4

Putting this all together gives                                                  

Either by hand or by machine we can obtain the result 

        Volume  =  64 /3

Notice that this agrees with the formula 

        Volume  =  r2h/3

Page 14: Pertemuan

April 22, 2023 Kalkulus II 14

Example

Set up the double integral that gives the volume of the solid that lies below the sphere        x2 + y2 + z2  =  6

and above the paraboloid         z  =  x2 + y2  Solution

                                                      We substitute        x2 + y2 + (x2 + y2)2  =  6or        x2 + y2 + (x2 + y2)2 - 6  =  0

Page 15: Pertemuan

April 22, 2023 Kalkulus II 15

Now factor with x2 + y2 as the variable to get        (x2 + y2 - 2)(x2 + y2 + 3)  =  0

The second factor has no solution, while the first is         x2 + y2  =  2

Solving for y gives                                and         -        <  x  <       

Page 16: Pertemuan

April 22, 2023 Kalkulus II 16

Just as we did in one variable calculus, the volume between two surfaces is the

double integral of the top surface minus the bottom surface.  We have                                                                  

Again we can perform this integral by hand or by machine and get       Volume  =  7.74

Polar Double Integration FormulaBentuk integral dapat dibawa dalam bebntk koordinat polar terutama yang

berbentuk lingkatan yaitu x2 + y2.  Untuk ini digunakan koordinat polar.

Sebagai contoh lihat berikut ini.

Page 17: Pertemuan

April 22, 2023 Kalkulus II 17

Theorem:  Double Integration in Polar Coordinates

Let f(x,y) be a continuous function defined over a region R bounded in polar

coordinates by                r1()  <  r  <  r2()                    1  <    <  2

Then                                                                                                                                        

Page 18: Pertemuan

April 22, 2023 Kalkulus II 18

                                    

Even if r and are very small the area is not the product (r)().  This

comes from the definition of radians.  An arc that extends radians a

distance r out from the origin has length r.  If both r and are very

small then the polar rectangle has area

        Area  =  r r  

Page 19: Pertemuan

April 22, 2023 Kalkulus II 19

The equation of the parabola becomes         z  =  9 - r2 

We find the integral 

                                  

This integral is a matter of routine.  It evaluates to 28.

Page 20: Pertemuan

April 22, 2023 Kalkulus II 20

Example

Find the volume of the part of the sphere of radius 3 that is left after

drilling a cylindrical hole of radius 2 through the center. 

                                      

Solution

The picture is shown below

                                      

The region this time is the annulus (washer)

between the circles r  =  2 and r  =  3 as shown below.

                                     

Page 21: Pertemuan

April 22, 2023 Kalkulus II 21

Example

Find the volume to the part of the paraboloid 

        z  =  9 - x2 - y2

that lies inside the cylinder

        x2 + y2  =  4

Solution  

The surfaces are shown below.

                                         

The region R is the part of the xy-plane that is inside the cylinder.  In polar coordinates, the

cylinder has equation        r2  =  4

Taking square roots and recalling that r is positive gives

        r  =  2The inside of the cylinder is thus the polar

rectangle         0  <  r  <  2        0  <  q  <  2p

Page 22: Pertemuan

April 22, 2023 Kalkulus II 22

The sphere has equation       x2 + y2 + z2  =  9

In polar coordinates this reduces to 

        r2 + z2  =  9

Solving for z by subtracting r2 and taking a square root we

get top and bottom surfaces of                                                                  

We get the double integral 

Page 23: Pertemuan

April 22, 2023 Kalkulus II 23

We get the double integral                                                    

This integral can be solved by letting        u  =  9 - r2           du  =  -2rdr

After substituting we get                                                                                

Page 24: Pertemuan

April 22, 2023 Kalkulus II 24