PDF Padlet 6 Raman Spectroscopy Sept2014

Embed Size (px)

Citation preview

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    1/22

    Raman SpectroscopyChapter 18, pp 481

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    2/22

    Introduction

    • C.V.Raman, Indian Physicist, 1928

    • visible l of a small fraction of radiationscattered by certain molecules

     – differ from the incident beam

    • shifts in l depend on chemical structure ofthe molecules responsible for the scattering

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    3/22

    Introduction

    • Raman spectroscopy – 

     – measurement of the wavelength and intensity of

    inelastically scattered light from molecules.

    • Raman scattered light occurs

     – at wavelengths that are shifted from the incident

    light by the energies of molecular vibrations.

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    4/22

    Introduction

    the mechanism of Raman scattering is different fromthat of infrared absorption.

    • Raman and IR spectra provide complementary

    information.

    • Typical applications are in structure determination,

    multicomponent qualitative analysis, and quantitativeanalysis.

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    5/22

    Introduction

    •  compliments IR techniques

     Advantages – water is a useful solvent

     – signals usually in the visible or near IR region, can

    use glass or quartz cells

    •  avoid working with NaCl or other atmospherically

    unstable window materials

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    6/22

    Theory

    • Raman spectra – irradiating a sample with a powerful laser source of visible or

    near IR monochromatic radiation

    • Irradiation (process) – the spectrum of the scattered radiation is measured at some

    angle (often 90o) with a suitable spectrometer (figure 18-6,pp487)

    • To avoid fluorescence – the excitation ls are usually well removed from an absorption

    band of the analyte

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    7/22

    Inelastic Scattering

    sample

    Incident radiation

    Po

    scattered radiation

    Ps

    Figure 6-18, pp 149

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    8/22

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    9/22

    • Incident radiation of frequency, ex , impinges on thesample

     – sample molecules are excited from one of their ground

    vibrational states to a higher so-called virtual state (dashedline)

    • When the molecule relaxes, it may return to the 1st 

    vibrational state & emit a photon of energy

    E = h ( ex - v) 

    where v is the frequency of the vibrational transition

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    10/22

    • Alternatively, if the molecule is in the 1st excited

    vibrational state, it may absorb a quantum of the

    incident radiation, be excited to the virtual state, relaxback to the ground vibrational state.

    E = h (ex + v)

    In both cases emitted radiation differs in frequency from the

    incident radiation by the vibrational frequency of the

    molecule v

    .

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    11/22

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    12/22

    • the intensities of the stokes and anti stokes peak give

    quantitative information.

    • the positions of the peaks give qualitative information 

    about the sample molecule.

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    13/22

     When scattered radiation is of lower frequency than the

    excitation radiation  – Stokes scattering

    Scattered radiation of a higher frequency than the source

    radiation  – anti-Stokes scattering

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    14/22

    Elastic scattering can also occur with emission of a photonof the same energy as the excitation photon, hex

    • Scattering radiation of the same frequency as the source – 

    Rayleigh scattering 

    Raman spectrum

    of CCl4 excited by

    laser radiation of

    ex = 488 nm

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    15/22

    • Raman spectra, abscissa, wavenumber shift,  

    difference in wavenumbers (cm-1) between the

    observed radiation & that of the source

    definition

    • Raman scattering require there be a change in

    polarizability during vibration

    polarizability  – is a measure of deformability of the

    bond in an electric filed

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    16/22

    • Magnitude of Raman shifts is independent of the l of theexcitation

    • Raman shifts for CCl4 is identical regardless excitation withargon-ion laser (488.0 nm) or helium-neon laser (632 nm)

    • Note: ratio of anti-stokes to stokes intensities increases

    with temperature b’coz larger fraction of the molecules is inthe 1st vibrational excited state under these circumstances

    Raman spectrum of CCl4 

    excited by laser radiation of

    ex = 488 nm

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    17/22

      nstrumentation

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    18/22

    Instrumentation

    Modern Raman spectroscopy –  laser source

     –  sample illumination system

     –  suitable spectrometer

    S

    http://research.pbsci.ucsc.edu/chemistry/li/teaching/chem268/Spectroscopic%20techniques.pdf

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    19/22

    Source: http://research.pbsci.ucsc.edu/chemistry/li/teaching/chem268/Spectroscopic%20techniques.pdf  

    http://research.pbsci.ucsc.edu/chemistry/li/teaching/chem268/Spectroscopic%20techniques.pdfhttp://research.pbsci.ucsc.edu/chemistry/li/teaching/chem268/Spectroscopic%20techniques.pdf

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    20/22

    Instrumentation: Sources

    • Sources – nearly always lasers

    • High intensity necessary to produce Ramanscattering of sufficient intensity to be measured witha reasonable signal S/N ratio

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    21/22

    Instrumentation: Sample-illumination System

    • Sample handling for Raman Spectroscopymeasurement is simpler than IR

    Can use glass for windows, lenses and other opticalcomponents

    • Common sample holder for non-absorbing liquid

    samples – ordinary glass-melting-point capillary

  • 8/18/2019 PDF Padlet 6 Raman Spectroscopy Sept2014

    22/22

    Optical diagram of an FT-Raman instrument