Guia Examen Ingles Sept2014

Embed Size (px)

Citation preview

  • 8/11/2019 Guia Examen Ingles Sept2014

    1/71

    GUA DE EXAMEN DE INGLS

    INSTITUTO TECNOLGICO DE ACAPULCO

    SUBDIRECCIN ACADMICA

    DIVISIN DE ESTUDIOS PROFESIONALES

    Para presentar el Examen de Ingls en su modalidad de Traduccin y compresin de un

    Artculo Tcnico-Cientfico relacionado con el perfil del egresado de las diferentes carreras

    del Instituto Tecnolgico de Acapulco.

    Acapulco, Gro. a 04 de Septiembre del 2014.

    INSTITUTO TECNOLGICO DE ACAPULCO

    EXAMEN GLOBAL

    DE INGLSExamen tipo ejemplo

  • 8/11/2019 Guia Examen Ingles Sept2014

    2/71

    GUA DE EXAMEN DE INGLS

    INFORMACIN E INSTRUCCIONES SOBRE EL EXAMEN.

    1.- En el da y hora asignados para el examen, debers presentarte con bolgrafo (tinta negra) y unaidentificacin vlida, de preferencia tu credencial de elector (IFE). Identificarse plenamente esindispensable. No identificarse, ser motivo para no permitir realizar el examen.2.- Se te har entrega del artculo escrito en ingls.3.- El examen se hace en dos partes:Primera parte: Consiste en una serie de preguntas de opcin mltiple relacionadas con el tema otemas del artculo. La puntacin total para esta primera parte es del 60 %.Segunda parte: Consiste en elaborar un resumen en espaol con una extensin mnima de una

    cuartilla sobre la informacin ms importante del tema contenido en el artculo. Esta segunda partetiene un valor del 40%.

    4.- La duracin del examen (tiempo asignado) es de 2 horas, contadas a partir del momentomarcado para dar inicio al examen.5.- No se permite el uso de telfonos celulares, Tablet, PC, etc.6.- El examen es individual.7.- Debes guardar silencio, para concentrarse en el examen es necesario un ambiente tranquilo.

    ESTRATEGIAS RECOMENDADAS PARA RESOLVER EL EXAMEN.

    1.- Lee cuidadosamente el texto completo del artculo, antes de proceder a contestar las preguntasque se te hacen y antes de hacer la traduccin.2.- Lo mismo aplica para las preguntas de opcin mltiple. Lee cada pregunta atentamente, hastaque tengas en claro la respuesta.3.-Para la traduccin, Identifica cada frase u oracin (donde inicia, donde termina) del texto atraducir, teniendo siempre presente la idea principal del tema completo. Si encuentras palabras cuyosignificado te sea desconocido, traduce de acuerdo al contexto, sin cambiar completamente elsignificado de la frase u oracin respectiva.

    Los siguientes son EXAMENES- MUESTRA (EJEMPLOS) que te ser til resolver, respondiendo

    las preguntas y haciendo la traduccin por escrito al espaol. Cada Ejemplo-muestra Incluyeprimero el artculo, luego las preguntas. La traduccin intenta hacerla por tu cuenta y compara conla que se te ofrece como correcta o aceptable.

  • 8/11/2019 Guia Examen Ingles Sept2014

    3/71

    GUA DE EXAMEN DE INGLS

  • 8/11/2019 Guia Examen Ingles Sept2014

    4/71

    GUA DE EXAMEN DE INGLS

    Read carefully the following extract from the article titled Design and Implementation of aWideband Channel Sounder for Low-Voltage Powerlines; answer the questions formulated on partI of the exam, and on part II write a synthesis in the Spanish language. Each part (I and II) has avalue of 50 points each.Name:____________________________________________ Control Number:__________

    I. MOTIVATION

    This workshop presents Service-Oriented Programming (SOP), which is a new programmingmethodology that permits the development of software applications by connecting and composingexisting services, thus facilitating software reuse. SOP builds on object-oriented programming

    (OOP), as services are developed in an object-oriented (OO) fashion and then wrapped as Webservices. OOP provides the basis to model and implement software components as objects, whileSOP permits modeling and implementing software systems as web-accessible services, and hasattracted attention from the industry as it substantially improves software reuse. SOP leverages thewebs communication infrastructure to provide easier access to existing software components.Consequently, more and more companies have begun to offer their business functionalities via webservices. Some search engines have been developed specifically for finding existing web services.For example, www.programmableweb.com indexes over 5814 web services and 6610 mashups(which are applications, built on web services). Other search engines, such aswww.webservicelist.com and www.biocatalogue.org, list web services by application domains.

    This workshop is broadly divided into two major parts. In the first part, the presenters will describethe problem areas and motivation underlying the SOP paradigm, the techniques of designing and

    implementing services, and the techniques for developing applications using services. Topicscovered include service-oriented architecture, web services, service description and discovery,service invocation, service composition architecture, and core SOP protocols, e.g., Web ServicesDescription Language (WSDL), Universal Description Discovery and Integration (UDDI), SimpleObject Access Protocol (SOAP), and Representational State Transfer (REST). Participants will alsobe provided guidance to develop and deploy web services in a stepwise fashion, and be split intosmall groups for an activity, e.g., to compare OOP and SOP. In the second part, participants will beintroduced to the developed teaching materials, including a demo of the SOP framework thatexemplifies SOP techniques. Participants will again work in groups and discuss issues about how toincorporate SOP course modules into their existing courses. This workshop is in line with the goalsbecause it aims to introduce new software development methodology into existing curricula.

    II. WORKSHOP LEARNING OUTCOMES

    The workshops learning outcomes are as follows: Attendees will explain the main issues and concepts in SOP.

    Attendees will solve a problem using SOP techniques.

    Attendees will have in-depth experience with SOP.

    Attendees will explain and apply SOP teaching materials, including the SOP framework andcourse modules, developed by the presenters.

    Among other outcomes, the presenters will make their SOP curricular materials available to theparticipants.

  • 8/11/2019 Guia Examen Ingles Sept2014

    5/71

    GUA DE EXAMEN DE INGLS

    III. QUALIFICATIONS OF THE PRESENTERS

    Of the five authors, the three who will be presenting this workshop are Rajendra K. Raj, TomReichlmayr and Alex Pantaleev. Professors Raj and Reichlmayr are faculty members at RochesterInstitute of Technology and Dr. Pantaleev is a faculty member at SUNY at Oswego.

    Rajendra K. Raj is a professor in RITs Computer Science department, and his current researchinterests currently include in large-scale data management, distributed/mobile computing, security,and critical infrastructure protection. He is also interested in computing education methodologies,and is involved in program assessment, evaluation and accreditation. Dr. Raj teaches courses indatabase systems, cloud and largescale data management, distributed systems, and security. Priorto RIT, he was a software designer, developer, architect and manager in the InformationTechnology Division at Morgan Stanley & Co., where he architected, built and managed globallydistributed database infrastructures for financial applications handling big data. He received his PhDin Computer Science from the University of Washington, Seattle. Tom Reichlmayr is an associateprofessor in RITs Software Engineering department. He has extensive experience in curriculumdevelopment and cooperative learning. He has developed and coordinated an introductory softwareengineering course as well as advanced courses in software engineering design and process. Hehas actively converted software engineering courses from traditional lecture/lab format to studioclassroom delivery. Alex Pantaleev is an assistant professor in SUNY Oswegos Computer Sciencedepartment that offers degrees in Computer Science, Information Systems and SoftwareEngineering. His current research interests include service oriented architecture, computer scienceeducation, and distributed computing, especially as it applies to computer game development. Dr.Pantaleevs work has appeared inconferences such as ASEE and ITiCSE. He has developed twonew courses and redesigned several others at SUNY Oswego including CS2 and web services. He

    is the major creator of a new concentration in the Computer Science major at Oswego. Allpresenters are experienced teachers who use active learning techniques extensively and teach inmultiple settings including traditional classroom or blended settings.

    PART I.- SELECT TE CORRECT OPTION(s) FOR THE FOLLOWING QUESTIONS ABOUT THEFORMER ARTICLE YOU HAVE READ. (60%)

    1. SOP is the acronym for _________ and the concept of________________________:a. Sockets Oriented Peripherals. A new type of peripherals which support high data

    through output.b. Software Oriented Programming. A new type of module programming methodology

    that permits the development of software applications by connecting and

    composing existing services.c. Service Original Programming. A new programming methodology that permits the

    development of software applications by connecting and composing existingservices.

    d. All of the above.e. None of the above.

    2. SOP is built on:a. Sockets developed for network access layer of the OSI layer.b. Object oriented programming, as services are developed in an object-oriented (OO)

    fashion and then wrapped as Web services.

  • 8/11/2019 Guia Examen Ingles Sept2014

    6/71

    GUA DE EXAMEN DE INGLSc. Web services for any platform on procedural programming languages.d. All of the above.e. None of the above.

    3. SOPa. Helps re-utilize your web infrastructure to provide a cheaper solution for software

    components.b. Is a java web technology created by oracle corporation to eliminate software

    compatibility problems.c. Leverages the webs infrastructure to provide easier access to existing software

    components.d. All of the above.e. None of the above.

    4. In the first part of the workshop:a. The participants will be provided with guidance to develop and deploy web services

    in a stepwise fashion, and be split into small groups for an activity.b. The presenters will describe the problem areas and motivation underlying the SOP

    paradigm.c. The participants will provide the techniques of designing and implementing

    services, and the techniques for developing applications using services.d. All of the above.e. None of the above.

    5. Who is the professor whose current research interests are service oriented architecture,computer education and distributed computing, especially as it applies to computer gamedevelopment.

    a. Alex Pantaleev.b. Rajendra K. Raj

    c. Tom Reichmayr.d. All of the above.e. None of the above.

    6. Which professors are faculty members at Rochester Institute of technology?a. Alex Pantaleev.b. Rajendra K. Rajc. Tom Reichmayr.d. All of the above.e. None of the above.

    7. Which professor has extensive experience in curriculum development and cooperativelearning?

    a. Alex Pantaleev.b. Rajendra K. Raj

    c. Tom Reichmayr.d. All of the above.e. None of the above.

    8. Select the professors name who had been architect and manager in the informationtechnology division at morgan stanly & co.

    a. Alex Pantaleev.b. Rajendra K. Rajc. Tom Reichmayr.d. All of the above.e. None of the above.

  • 8/11/2019 Guia Examen Ingles Sept2014

    7/71

    GUA DE EXAMEN DE INGLS9. The presenters will not make their SOP curricular materials available to the participants.

    a. Trueb. False

    10. Who is the professor whose current research interests include large-scale datamanagement, distributed/mobile computing, security and critical infrastructure protection?

    a. Alex Pantaleev.b. Rajendra K. Rajc. Tom Reichmayr.d. All of the above.e. None of the above.

    PART II.- WRITE A SYNTHESIS IN SPANISH ABOUT THE MAIN ARTICLES IDEAS. DONTEXCEED ONE PAGE. (40%)

    Read carefully the following extract from the article titled Design and Implementation of aWideband Channel Sounder for Low-Voltage Powerlines; answer the questions formulated on part

    I of the exam, and on part II write a synthesis in the Spanish language. Each part (I and II) has avalue of 50 points each.Name:____________________________________________ Control Number:__________

    INTRODUCTIONIN THE LAST FEW years powerline technology has become a commercially attractive alternativeto wireless technology for in-home applications requiring high speed data communications. Thissuccess has fostered research in wideband communications over low voltage powerlines and, inparticular, has motivated the interest in a deeper understanding of the properties of their propagationmedium. Unfortunately, the properties of real world powerline channels are substantially differentfrom those of their wireless counterparts in terms of system functions and noise; for instance, thefrequency response of such channels is usually periodic, so that standard methods for wireless

    channel sounding cannot be adopted for its measurement. This raises the problem of developingnew channel sounding tools. Even if some powerline channel emulators have been proposed or havebeen made available on the market, the problem of designing and implementing technical solutionsfor wideband sounding of powerline channels has not been tackled yet in the technical literature.This paper aims at filling this gap by providing some design guidelines for powerline channelsounding and by describing a specific low cost FPGA-based implementation of a powerline channelsounder. This manuscript is organized as follows. In Section II some design requirements forpowerline channel sounding are provided. The architecture of the developed channel sounding tool

  • 8/11/2019 Guia Examen Ingles Sept2014

    8/71

    GUA DE EXAMEN DE INGLS

    is described in Section III. Various technical details about such a tool are provided in Sections IV,V and VI, which focus on its analog front-end, FPGA processing and graphical user interfaces,respectively. Some experimental results are illustrated in Section VII, where specific applications ofthe developed tool are taken in consideration; in particular, its use for acquiring the time-varianttransfer function of an indoor powerline channel and the power spectral density of the noiseaffecting it are discussed. Finally, some conclusions are given in Section VIII.

    DESIGN REQUIREMENTS FOR THE SOUNDING OF WIDEBAND POWERLINECHANNELSChannel sounding tools commonly rely on simple theoretical principles. In fact, the response of agiven communication channel can be usually related to its excitation through a specific system

    function (e.g., the channel transfer function) in a simple fashion. Then, if the excitation (i.e., theprobing signal) is properly selected, in principle an estimate of the involved system function can beeasily extracted from a set of samples of the channel response. However, when applied to widebandsounding of powerline channels, the implementation of this procedure on a digital hardwareplatform requires addressing carefully various technical issues; these lead to various designrequirements, as discussed in detail below.

    Signal Generation and Acquisition: The probing signal generated by a channel sounder is employedto scan a specific portion of the available frequency spectrum. In powerline communications twodifferent bands have been standardized; one consists of the frequencies lower than 500 kHz(allocated mainly for home and building automation as well as for applications related to the smartgrid), whereas the other one covers the frequency range 1.830 MHz (devoted to high data rate

    applications). The target of our work has been to sound powerline channels up to 30 MHz. Thisentails that, if a digital hardware platform is used for the generation of a probing signal, it has to beequipped with a digital-to-analog conversion (DAC) device operating at a frequency not smallerthan MHz. In practice, in our channel sounding tool the frequency MHz has been selected; note thatthis frequency is also employed by an analog-to-digital conversion (ADC) device when acquiringthe channel response to the probing signal.

    Fig. 1. Block diagram of the developed channel sounder.

    Another important technical issue concerning the probing signal is represented by the selection ofits duration. In fact, powerline channels are linear and periodically time-varying (LPTV); inaddition, their variations are synchronous to the mains [10] and are characterized by a period ms (ifthe mains frequency is equal to 50 Hz). Therefore, the duration of the probing signal depends onboth the desired frequency resolution and the periodicity of time variations; in practice, one or moreperiods (i.e., samples or a multiple of this quantity) need to be acquired in each measurementinterval [1], so that the selected hardware platform has to be endowed with a fast memory access

  • 8/11/2019 Guia Examen Ingles Sept2014

    9/71

  • 8/11/2019 Guia Examen Ingles Sept2014

    10/71

    GUA DE EXAMEN DE INGLS

    a. System restrictions and vibration.b. System functions and noise.c. System frequency response and security.d. None of the above.

    12.This paper aims to provide some design guidelines for powerline channel sounding and bydescribing a specific high cost FPGA-based implementation of a power line channelsounder.

    a. True.b. False.

    13.The response of a given communication channel can be usually related to:a. Its wave longitude and distance.

    b. Its coding algorithm.c. Its excitation through a specific system function.d. All of the above.

    14.Frequencies lower than 500 kHz are allocated for:a. Mainly for home and building automation as well as for applications related to the

    smart grid.b. Mainly for office and plant level wireless communications.c. Mainly for defense and medical equipment.d. None of the above.

    15.The target of this paper has been to sound powerline channels up to:a. 30 MHz.b. 100 MHz.c. 300 MHzd. 10 MHze. All of the above.

    16.Powerline channels are non-linear and periodically time-varying.a. True.b. False.

    17.The duration of the probing signal depends on the desired frequency resolution and theperiodicity of time variations.

    a. True.b. False.

    18.The impedance of powerlines is usually unknown and may undergo significant timevariations due:

    a. To connection/disconnection of power tools.b. To connection/disconnection of power loads.c. To connection/disconnection of frequency toolsd. To connection/disconnection of frequency loads.

    19.The personal computer provides the FPGA board with sampled version ofa. The probing signal and frequencies of the samples of the corresponding response

    acquired by the board itself.a. The probing signal and processes the samples of the corresponding response

    acquired by the tools.

  • 8/11/2019 Guia Examen Ingles Sept2014

    11/71

    GUA DE EXAMEN DE INGLS

    b. The probing signal and processes the samples of the corresponding responseacquired by the board itself.

    c. None of the above.20.All real time critical tasks of the channel sounding procedure are directly managed by:

    a. FPGA duration times.b. FPGA frequencies board.c. FPGA development board.d. None of the above.

    PART II.- WRITE A SYNTHESIS IN SPANISH ABOUT THE MAIN ARTICLES IDEAS. DONT

    EXCEED ONE PAGE.

  • 8/11/2019 Guia Examen Ingles Sept2014

    12/71

    GUA DE EXAMEN DE INGLS

  • 8/11/2019 Guia Examen Ingles Sept2014

    13/71

    GUA DE EXAMEN DE INGLS

    INSTITUTO TECNOLGICO DE ACAPULCO EXAMEN GLOBAL DEL IDIOMA INGLES.LECTURA, COMPRENSIN Y TRADUCCIN DE UN ARTCULO TCNICO IEM

    PRESENTADO POR: (nombrecompleto)_______________________________________________________________

    NMERO DE CONTROL ____________________FECHA: / /____ TIEMPOASIGNADO: 2 Hrs.

    Mechanical energy and Work1.- Energy gives us one more tool to use to analyze physical situations. When forces andaccelerations are used, you usually freeze the action at a particular instant in time, draw a free-bodydiagram, set up force equations, figure out accelerations, etc. With energy the approach is usually alittle different. Often you can look at the starting conditions (initial speed and height, for instance)and the final conditions (final speed and height), and not have to worry about what happens inbetween. The initial and final information can often tell you all you need to know. Whenever aforce is applied to an object, causing the object to move, work is done by the force. If a force isapplied but the object doesn't move, no work is done; if a force is applied and the object moves adistance din a direction other than the direction of the force, less work is done than if the objectmoves a distance din the direction of the applied force.Work can be either positive or negative: if the force has a component in the same direction as thedisplacement of the object, the force is doing positive work. If the force has a component in thedirection opposite to the displacement, the force does negative work.If you pick a book off the floor and put it on a table, for example, you're doing positive work on thebook, because you supplied an upward force and the book went up. If you pick the book up andplace it gently back on the floor again, you're doing negative work, because the book is going downbut you're exerting an upward force, acting against gravity. If you move the book at constant speedhorizontally, you don't do any work on it, despite the fact that you have to exert an upward force tocounter-act gravity.

    An object has kinetic energy if it has mass and if it is moving. It is energy associated with a movingobject, in other words.

    There is a strong connection between work and energy, in a sense that when there is a net force

    doing work on an object, the object's kinetic energy will change by an amount equal to the workdone:

    Let's say you're dropping a ball from a certain height, and you'd like to know how fast it's travelingthe instant it hits the ground. You could apply the projectile motion equations, or you couldthink of the situation in terms of energy (actually, one of the projectile motion equations is really anenergy equation in disguise).

  • 8/11/2019 Guia Examen Ingles Sept2014

    14/71

    GUA DE EXAMEN DE INGLS

    If you drop an object it falls down, picking up speed along the way. This means there must be a netforce on the object, doing work. This force is the force of gravity. The work done by the force ofgravity is the force multiplied by the distance, so if the object drops a distance h, gravity does workon the object equal to the force multiplied by the height lost.An alternate way of looking at this is to call this the gravitational potential energy. An object withpotential energy has the potential to do work. In the case of gravitational potential energy, the objecthas the potential to do work because of where it is, at a certain height above the ground, or at leastabove something.

    5.- Spring potential energyEnergy can also be stored in a stretched or compressed spring. An ideal spring is one in which theamount of the spring stretches or compresses is proportional to the applied force. This linearrelationship between the force stretching force and the displacement are directly proportional (Hook's law). This is a restoring force, because when the spring is stretched, the force exerted by thespring is opposite to the direction it is stretched. This accounts for the oscillating motion of a masson a spring. If a mass hanging down from a spring is pulled down and let go, the spring exerts anupward force on the mass, moving it back to the equilibrium position, and then beyond. Thiscompresses the spring, so the spring exerts a downward force on the mass, stopping it, and thenmoving it back to the equilibrium and beyond, at which point the cycle repeats. This kind of motionis known as simple harmonic motion. In a perfect spring, no energy is lost; the energy is simplytransferred back and forth between the kinetic energy of the mass on the spring and the potentialenergy of the spring (gravitational potential energy might be involved, too).

    6.- Conservation of energyWe'll take all of the different kinds of energy we know about, and even all the other ones we don't,and relate them through one of the fundamental laws of the universe.

    The law of conservation of energy states that energy can not be created nor destroyed, it can merelybe changed from one form of energy to another. Energy often ends up as heat, which is thermalenergy (kinetic energy, really) of atoms and molecules. Kinetic friction, for example, generallyturns energy into heat, and although we associate kinetic friction with energy loss, it really is just away of transforming kinetic energy into thermal energy.The law of conservation of energy applies always, everywhere, in any situation. There is anotherconservation idea associated with energy which does not apply as generally, and is therefore calleda principle rather than a law. This is the principle of the conservation of mechanical energy: Thetotal amount of mechanical energy, in a closed system in the absence of dissipative forces (e.g.friction, air resistance), remains constant. This means that potential energy can become kineticenergy, or vice versa, but energy cannot disappear. For example, in the absence of air resistance,the mechanical energy of an object moving through the air in the Earth's gravitational field, remainsconstant (it is conserved).

  • 8/11/2019 Guia Examen Ingles Sept2014

    15/71

    GUA DE EXAMEN DE INGLS

    EVALUACIN:PRIMERA PARTE:

    Al final de cada pregunta ( en el espacio subrayado), escribe la letra (A, B o C), que corresponda ala respuesta correcta.

    1.- The Energy methods to analyze physical situations, such as the motion of an object , give us adifferent way for________

    A) Freeze the action at a particular instant in time.B) set up force equations.

    C) solving the motion of the body without knowing what happens in between the starting andfinal conditions of the motion.

    2.- When a force has a component in the same direction as the displacement of the object______

    A) The work done by the force is negativeB) No work is done by the force at all.C) The work done by the force is positive.

    3.- If you move an object at a constant speed horizontally_______A) You do negative work on the object.B) You don t do any work on it.C) You do positive work on it.

    4.- If you drop a ball from a certain height, to figure out the ball velocity for instance, you couldapply the projectile motion equations, or_________

    A) you could apply the Archimedes principle.B) you could think of the situation in terms of energy.C) you could apply the Hooks Law of strain-stress.

    5.- When an object falls down, it picks up speed along his way, the net force acting onthe object, doing work is ___________

    A) An electrical force.B) A magnetic force.C) The force of gravity.

    6.- Gravitational potential energy of an object is named potential , because __________A) The object is moving with a velocity.

  • 8/11/2019 Guia Examen Ingles Sept2014

    16/71

    GUA DE EXAMEN DE INGLS

    B) it has the potential to do work, due to where it is, at a certain height abovethe ground , or at least above something.

    C) it has electrical potential.

    7.- The Hooks Law states that__________

    A) The net work done by a force on an object equals the internal energy change of theobject.

    B) Force and displacement are directly proportional.C) Energy cant be destroyed nor destroyed.

    8.- The spring potential energy is energy stored in_______A) Boiling water.B) the burning of the sun.C) a stretched or compressed spring.

    9.- Kinetic friction generally turns energy into heat, although we associate kinetic friction withenergy loss, it is just__________

    A) a mass transformation process.B) a transformation of kinetic energy into heat.C) the most efficient energy transformation process.

    10.- Energy can not be created nor destroyed, is an statement for______A) The principle of conservation of mechanical energy.B) The Second law of Newton.C) The law of energy conservation.

    SEGUNDA PARTE. escribir la traduccin al espaol de las secciones 1, 2, 3 y 4 (unicamente)del artculo anterior.

    NOTA: Escribir claramente, sin tachaduras, para as poder calificar la traduccin condificultades mnimas para el examinador.

  • 8/11/2019 Guia Examen Ingles Sept2014

    17/71

    GUA DE EXAMEN DE INGLS

    How Does an Air Conditioner Work?

    Air conditioners and refrigerators work the same way. Instead of cooling just the small, insulatedspace inside of a refrigerator, an air conditioner cools a room, a whole house, or an entire business.Air conditioners use chemicals that easily convert from a gas to a liquid and back again. Thischemical is used to transfer heat from the air inside of a home to the outside air. The machine hasthree main parts. They are a compressor, a condenser and an evaporator. The compressor andcondenser are usually located on the outside air portion of the air conditioner. The evaporator islocated on the inside the house, sometimes as part of a furnace. That's the part that heats your house.

    The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor squeezesthe fluid. This packs the molecule of the fluid closer together. The closer the molecules are together,the higher its energy and its temperature. The working fluid leaves the compressor as a hot, highpressure gas and flows into the condenser. If you looked at the air conditioner part outside a house,look for the part that has metal fins all around. The fins act just like a radiator in a car and helps theheat go away, or dissipate, more quickly. When the working fluid leaves the condenser, itstemperature is much cooler and it has changed from a gas to a liquid under high pressure. The liquidgoes into the evaporator through a very tiny, narrow hole. On the other side, the liquid's pressuredrops. When it does it begins to evaporate into a gas.

    As the liquid changes to gas and evaporates, it extracts heat from the air around it. The heat in the

    air is needed to separate the molecules of the fluid from a liquid to a gas. The evaporator also hasmetal fins to help in exchange the thermal energy with the surrounding air. By the time the workingfluid leaves the evaporator, it is a cool, low pressure gas. It then returns to the compressor to beginits trip all over again. Connected to the evaporator is a fan that circulates the air inside the house toblow across the evaporator fins. Hot air is lighter than cold air, so the hot air in the room rises to thetop of a room. There is a vent there where air is sucked into the air conditioner and goes downducts. The hot air is used to cool the gas in the evaporator. As the heat is removed from the air, theair is cooled. It is then blown into the house through other ducts usually at the floor level.

    This continues over and over and over until the room reaches the temperature you want the roomcooled to. The thermostat senses that the temperature has reached the right setting and turns off theair conditioner. As the room warms up, the thermostat turns the air conditioner back on until the

    room reaches the temperature.

    Heat Pump.Imagine that you took an air conditioner and flipped it around so that the hot coils were on theinside and the cold coils were on the outside. Then you would have a heater. It turns out that thisheater works extremely well. Rather than burning a fuel, what it is doing is "moving heat." A heatpump is an air conditioner that contains a valve that lets it switch between "air conditioner" and"heater." When the valve is switched one way, the heat pump acts like an air conditioner, and when

  • 8/11/2019 Guia Examen Ingles Sept2014

    18/71

    GUA DE EXAMEN DE INGLS

    it is switched the other way it reverses the flow of the liquid inside the heat pump and acts like aheater.END

    EVALUACIN:

    PRIMERA PARTE:

    Al final de cada pregunta ( en el espacio subrayado), escribe la letra (A, B o C), que corresponda ala respuesta correcta.

    1.- Refrigerators and Air conditioners work the same way, which means_____

    A) They function under the same physical principles.B) They are very complicated machines.C) They have nothing in common at all.

    2.- Air conditioners use chemicals as working fluids to_______

    A) move huge amounts of air.B) transfer heat from the air inside of a room to the outside air.C) heat spaces that need to be heated.

    3.- An Air conditioner system has three main parts, which are_______

    A) A brake, a water pump and a radiator.B) A compressor, a condenser and an evaporator.C) Wings, an automatic pilot and a landing gear.

    4.- The compressor squeezes the working fluid, which means______

    A) The working fluid pressure is raised by the compressor.

    B) The working fluid temperature is lowered.C) The working fluid has less energy.

    5.- The working fluid leaves the compressor as a_______

    A) compressed liquid.B) as a hot, high pressure gas and flows into the condenser.C) as a saturated vapor.

  • 8/11/2019 Guia Examen Ingles Sept2014

    19/71

    GUA DE EXAMEN DE INGLS

    6.- The metal fins all around some condensers help the heat______

    A) Keep the working fluid at a constant temperature .B) Go away, or dissipate, more quickly.C) Remain stored in the working fluid.

    7.- When the working fluid leaves the condenser it has changed to______

    A) be a saturated liquid.B) be a saturated vapor.C) a liquid under high pressure.

    8.- By the time the working fluid leaves the evaporator, it is ________

    A) a cool, compressed liquid.B) at a very high temperature.C) a cool, low pressure gas.

    9.- The thermostat is a device that turns off_______

    A) When the temperature has reached the right setting.B) When the humidity of an space is too high.C) When the dry bulb temperature has lowered enough.

    10.- A heat pump is an air conditioner that contains a________

    A) many shafts and gears inside.B) microchip to send electronic signalsC) valve that lets it switch between " air conditioner " and a " heater".

    SEGUNDA PARTE. escribir la traduccin al espaol del artculo anterior.

    NOTA: Escribir claramente, sin tachaduras, para as poder calificar la traduccin condificultades mnimas para el examinador.

    REFERENCIAS:

    http://www.ced.cele.unam.mx/clauto/general/formulario.php

    http://www.ced.cele.unam.mx/clauto/general/formulario.phphttp://www.ced.cele.unam.mx/clauto/general/formulario.php
  • 8/11/2019 Guia Examen Ingles Sept2014

    20/71

  • 8/11/2019 Guia Examen Ingles Sept2014

    21/71

    GUA DE EXAMEN DE INGLS

    Laws of thermodynamics

    Main article:Laws of thermodynamics

    Thermodynamics states a set of four laws that are valid for all systems that fall within the

    constraints implied by each. In the various theoretical descriptions of thermodynamics these laws

    may be expressed in seemingly differing forms, but the most prominent formulations are the

    following:

    Zeroth law of thermodynamics:If two systems are each in thermal equilibrium with a third,

    they are also in thermal equilibrium with each other.

    This statement implies that thermal equilibrium is anequivalence relationon the set

    ofthermodynamic systemsunder consideration. Systems are said to be in thermal equilibrium with

    each other if spontaneous molecular thermal energy exchanges between them do not lead to a net

    exchange of energy. This law is tacitly assumed in every measurement of temperature. For two

    bodies known to be at the sametemperature,deciding if they are in thermal equilibrium when put

    into thermal contact does not require actually bringing them into contact and measuring any

    changes of their observable properties in time.[65]In traditional statements, the law provides an

    empirical definition of temperature and justification for the construction of practical thermometers.

    In contrast to absolute thermodynamic temperatures, empirical temperatures are measured just by

    the mechanical properties of bodies, such as their volumes, without reliance on the concepts ofenergy, entropy or the first, second, or third laws of thermodynamics.[49][66]Empirical temperatures

    lead tocalorimetryfor heat transfer in terms of the mechanical properties of bodies, without

    reliance on mechanical concepts of energy.

    The physical content of the zeroth law has long been recognized. For example,Rankinein 1853

    defined temperature as follows: "Two portions of matter are said to have equal temperatures when

    neither tends to communicate heat to the other."[67]Maxwellin 1872 stated a "Law of Equal

    Temperatures".[68]He also stated: "All Heat is of the same kind."[69]Planck explicitly assumed and

    stated it in its customary present-day wording in his formulation of the first two laws.[70]By the time

    the desire arose to number it as a law, the other three had already been assigned numbers, and so itwas designated thezeroth law.

    First law of thermodynamics:The increase in internal energy of a closed system is equal to the

    difference of the heat supplied to the system and the work done by it: U = Q -

    W[71][72][73][74][75][76][77][78][79][80][81]

    http://en.wikipedia.org/wiki/Laws_of_thermodynamicshttp://en.wikipedia.org/wiki/Laws_of_thermodynamicshttp://en.wikipedia.org/wiki/Laws_of_thermodynamicshttp://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/Termodynamics#cite_note-67http://en.wikipedia.org/wiki/Termodynamics#cite_note-67http://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/First_law_of_thermodynamicshttp://en.wikipedia.org/wiki/First_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/Termodynamics#cite_note-73http://en.wikipedia.org/wiki/Termodynamics#cite_note-75http://en.wikipedia.org/wiki/Termodynamics#cite_note-77http://en.wikipedia.org/wiki/Termodynamics#cite_note-Bailyn.2C_M._1994_page_79-79http://en.wikipedia.org/wiki/Termodynamics#cite_note-81http://en.wikipedia.org/wiki/Termodynamics#cite_note-81http://en.wikipedia.org/wiki/Termodynamics#cite_note-81http://en.wikipedia.org/wiki/Termodynamics#cite_note-Bailyn.2C_M._1994_page_79-79http://en.wikipedia.org/wiki/Termodynamics#cite_note-Bailyn.2C_M._1994_page_79-79http://en.wikipedia.org/wiki/Termodynamics#cite_note-77http://en.wikipedia.org/wiki/Termodynamics#cite_note-77http://en.wikipedia.org/wiki/Termodynamics#cite_note-75http://en.wikipedia.org/wiki/Termodynamics#cite_note-75http://en.wikipedia.org/wiki/Termodynamics#cite_note-73http://en.wikipedia.org/wiki/Termodynamics#cite_note-73http://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/First_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-67http://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Laws_of_thermodynamics
  • 8/11/2019 Guia Examen Ingles Sept2014

    22/71

    GUA DE EXAMEN DE INGLS

    The first law of thermodynamics asserts the existence of a state variable for a system, the internal

    energy, and tells how it changes in thermodynamic processes. The law allows a given internal

    energy of a system to be reached by any combination of heat and work. It is important that internal

    energy is a variable of state of the system (seeThermodynamic state)whereas heat and work are

    variables that describe processes or changes of the state of systems.

    The first law observes that the internal energy of an isolated system obeys the principle

    ofconservation of energy,which states that energy can be transformed (changed from one form to

    another), but cannot be created or destroyed.[82][83][84][85][86]

    Second law of thermodynamics:Heat cannot spontaneously flow from a colder location to ahotter location.

    The second law of thermodynamics is an expression of the universal principle of dissipation of

    kinetic and potential energy observable in nature. The second law is an observation of the fact that

    over time, differences in temperature, pressure, and chemical potential tend to even out in a physical

    system that is isolated from the outside world.Entropyis a measure of how much this process has

    progressed. The entropy of an isolated system that is not in equilibrium tends to increase over time,

    approaching a maximum value at equilibrium.

    In classical thermodynamics, the second law is a basic postulate applicable to any system involving

    heat energy transfer; in statistical thermodynamics, the second law is a consequence of the assumed

    randomness of molecular chaos. There are many versions of the second law, but they all have the

    same effect, which is to explain the phenomenon ofirreversibilityin nature.

    Third law of thermodynamics:As a system approaches absolute zero the entropy of the system

    approaches a minimum value.

    The third law of thermodynamics is a statistical law of nature regarding entropy and the

    impossibility of reachingabsolute zeroof temperature. This law provides an absolute reference

    point for the determination of entropy. The entropy determined relative to this point is the absolute

    entropy. Alternate definitions are, "the entropy of all systems and of all states of a system issmallest at absolute zero," or equivalently "it is impossible to reach the absolute zero of temperature

    by any finite number of processes".

    Absolute zero is 273.15C (degrees Celsius), or 459.67F (degrees Fahrenheit) or 0 K (kelvin).

    http://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Termodynamics#cite_note-Truesdell_1980-84http://en.wikipedia.org/wiki/Termodynamics#cite_note-86http://en.wikipedia.org/wiki/Termodynamics#cite_note-86http://en.wikipedia.org/wiki/Second_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Second_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Third_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Third_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Third_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Second_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Termodynamics#cite_note-86http://en.wikipedia.org/wiki/Termodynamics#cite_note-Truesdell_1980-84http://en.wikipedia.org/wiki/Termodynamics#cite_note-Truesdell_1980-84http://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Thermodynamic_state
  • 8/11/2019 Guia Examen Ingles Sept2014

    23/71

    GUA DE EXAMEN DE INGLS

    La ley de la termodinmica

    Artculo principal:Leyes de la termodinmica

    Termodinmica establece un conjunto de cuatro leyes que son vlidas para todos los sistemas que

    caen dentro de las limitaciones implcitas en cada uno. En las distintas descripciones tericas de la

    termodinmica estas leyes se pueden expresar en formas aparentemente diferentes, pero las

    formulaciones ms prominentes son las siguientes:

    Ley cero de la termodinmica: Si dos sistemas estn cada uno en equilibrio trmico con un

    tercero, que tambin se encuentran en equilibrio trmico entre s.

    Esta afirmacin implica que el equilibrio trmico es unarelacin de equivalenciaen el conjunto

    delos sistemas termodinmicosque se consideran. Los sistemas se dice que estn en equilibrio

    trmico entre s, si los intercambios trmicos moleculares espontneos de energa entre ellas no

    conducen a un cambio neto de energa. Esta ley se asume tcitamente en todas las mediciones de la

    temperatura. Durante dos cuerpos que se sabe que en el mismola temperatura, decidiendo si se

    encuentran en equilibrio trmico cuando se ponen en contacto trmico no requiere realmente

    ponerlos en contacto y medicin de los cambios de sus propiedades observables en el

    tiempo.[ 65 ]En los estados tradicionales, la ley establece una definicin emprica de la temperatura

    y la justificacin para la construccin de termmetros prcticos. En contraste con las temperaturas

    termodinmicas absolutas, las temperaturas empricas se miden slo por las propiedades mecnicasde los cuerpos, como su volumen, sin depender de los conceptos de energa, la entropa o los

    primeros segundos, o tercera leyes de la termodinmica,.[ 49 ] [ 66 ]temperaturas empricos llevan

    acolorimtricaspara la transferencia de calor en trminos de las propiedades mecnicas de los

    cuerpos, sin depender de los conceptos mecnicos de energa.

    El contenido fsico de la ley cero ha sido reconocida. Por ejemplo,Rankineen 1853 la temperatura

    se define de la siguiente manera: ". se dice que dos porciones de materia a tener igualdad de

    temperaturas cuando ni tiende a comunicar calor a la otra"[ 67 ]Maxwellen 1872 declar una "Ley

    de Igualdad de temperaturas".[ 68 ]Tambin dijo: "Todo el calor es de la misma

    naturaleza".

    [ 69 ]

    Planck asume explcitamente y dijo en su habitual actual redaccin en suformulacin de las dos primeras leyes.[ 70 ]En el momento surgi el deseo nmero como una ley,

    los otros tres ya haban sido asignados los nmeros, por lo que fue designado a laley cero.

    Primera ley de la termodinmica:El aumento de la energa interna de un sistema cerrado es

    igual a la diferencia del calor suministrado al sistema y el trabajo realizado por ella:? U = Q -

    W[ 71 ] [ 72 ] [ 73 ] [ 74 ] [ 75 ] [ 76 ] [ 77 ] [ 78 ] [ 79 ] [ 80 ] [ 81 ]

    http://en.wikipedia.org/wiki/Laws_of_thermodynamicshttp://en.wikipedia.org/wiki/Laws_of_thermodynamicshttp://en.wikipedia.org/wiki/Laws_of_thermodynamicshttp://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/Termodynamics#cite_note-67http://en.wikipedia.org/wiki/Termodynamics#cite_note-67http://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/First_law_of_thermodynamicshttp://en.wikipedia.org/wiki/First_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/Termodynamics#cite_note-73http://en.wikipedia.org/wiki/Termodynamics#cite_note-75http://en.wikipedia.org/wiki/Termodynamics#cite_note-77http://en.wikipedia.org/wiki/Termodynamics#cite_note-Bailyn.2C_M._1994_page_79-79http://en.wikipedia.org/wiki/Termodynamics#cite_note-81http://en.wikipedia.org/wiki/Termodynamics#cite_note-81http://en.wikipedia.org/wiki/Termodynamics#cite_note-81http://en.wikipedia.org/wiki/Termodynamics#cite_note-Bailyn.2C_M._1994_page_79-79http://en.wikipedia.org/wiki/Termodynamics#cite_note-Bailyn.2C_M._1994_page_79-79http://en.wikipedia.org/wiki/Termodynamics#cite_note-77http://en.wikipedia.org/wiki/Termodynamics#cite_note-77http://en.wikipedia.org/wiki/Termodynamics#cite_note-75http://en.wikipedia.org/wiki/Termodynamics#cite_note-75http://en.wikipedia.org/wiki/Termodynamics#cite_note-73http://en.wikipedia.org/wiki/Termodynamics#cite_note-73http://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/Termodynamics#cite_note-71http://en.wikipedia.org/wiki/First_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Termodynamics#cite_note-70http://en.wikipedia.org/wiki/Termodynamics#cite_note-69http://en.wikipedia.org/wiki/Termodynamics#cite_note-Maxwell_1872_32-68http://en.wikipedia.org/wiki/James_Clerk_Maxwellhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-67http://en.wikipedia.org/wiki/William_John_MacQuorn_Rankinehttp://en.wikipedia.org/wiki/Calorimetryhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-Carath.C3.A9odory_1909-49http://en.wikipedia.org/wiki/Termodynamics#cite_note-65http://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Thermodynamic_systemhttp://en.wikipedia.org/wiki/Equivalence_relationhttp://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Laws_of_thermodynamics
  • 8/11/2019 Guia Examen Ingles Sept2014

    24/71

    GUA DE EXAMEN DE INGLS

    La primera ley de la termodinmica afirma la existencia de una variable de estado de un sistema, la

    energa interna, y le dice a la forma en que los cambios en los procesos termodinmicos. La ley

    permite que la energa interna de un sistema dado que se lleg a travs de una combinacin de calor

    y trabajo. Es importante que la energa interna es una variable de estado del sistema (consulte el

    estado termodinmico), mientras que el calor y el trabajo son variables que describen procesos o

    cambios en el estado de los sistemas.

    La primera ley seala que la energa interna de un sistema aislado obedece el principio

    deconservacin de la energa, que establece que la energa puede ser transformado (cambiado de

    una forma a otra), pero no puede ser creada ni destruida.[ 82 ] [ 83 ][ 84 ] [ 85 ][ 86 ]

    Segunda ley de la termodinmica: el calor no puede fluir espontneamente de un lugar fro a

    un lugar ms caliente.

    La segunda ley de la termodinmica es una expresin del principio universal de la disipacin de la

    energa cintica y potencial observable en la naturaleza. La segunda ley es una observacin del

    hecho de que con el tiempo, las diferencias de temperatura, presin, y potencial qumico tienden a

    igualar en un sistema fsico que est aislado del mundo exterior.La entropaes una medida de la

    cantidad de este proceso ha progresado. La entropa de un sistema aislado que no est en equilibrio

    tiende a aumentar con el tiempo, acercndose a un valor mximo en el equilibrio.

    En la termodinmica clsica, la segunda ley es un postulado bsico aplicable a cualquier sistema

    que implica la transferencia de energa trmica; en la termodinmica estadstica, la segunda ley es

    una consecuencia de la supuesta aleatoriedad de caos molecular. Hay muchas versiones de la

    segunda ley, pero todos tienen el mismo efecto, que es explicar el fenmeno de

    lairreversibilidaden la naturaleza.

    Tercera ley de la termodinmica: Como sistema se aproxima al cero absoluto la entropa del

    sistema se aproxima a un valor mnimo.

    La tercera ley de la termodinmica es una ley estadstica de la naturaleza con respecto a la entropa

    y la imposibilidad de alcanzarel cero absolutode temperatura. Esta ley proporciona un punto dereferencia absoluto para la determinacin de la entropa. La entropa determina en relacin a este

    punto es la entropa absoluta. Definiciones alternas son, "la entropa de todos los sistemas y de

    todos los estados de un sistema es el ms pequeo en el cero absoluto", o de manera equivalente "es

    imposible alcanzar el cero absoluto de temperatura por un nmero finito de procesos".

    El cero absoluto es -273,15 C (grados Celsius), o -459,67 F (grados Fahrenheit) o 0 K (kelvin).

    http://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Termodynamics#cite_note-Truesdell_1980-84http://en.wikipedia.org/wiki/Termodynamics#cite_note-86http://en.wikipedia.org/wiki/Termodynamics#cite_note-86http://en.wikipedia.org/wiki/Second_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Second_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Third_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Third_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Absolute_zerohttp://en.wikipedia.org/wiki/Third_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Irreversibilityhttp://en.wikipedia.org/wiki/Entropyhttp://en.wikipedia.org/wiki/Second_law_of_thermodynamicshttp://en.wikipedia.org/wiki/Termodynamics#cite_note-86http://en.wikipedia.org/wiki/Termodynamics#cite_note-Truesdell_1980-84http://en.wikipedia.org/wiki/Termodynamics#cite_note-Truesdell_1980-84http://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Termodynamics#cite_note-82http://en.wikipedia.org/wiki/Conservation_of_energyhttp://en.wikipedia.org/wiki/Thermodynamic_statehttp://en.wikipedia.org/wiki/Thermodynamic_state
  • 8/11/2019 Guia Examen Ingles Sept2014

    25/71

    GUA DE EXAMEN DE INGLSReferencias

    65.

    Jump up^Moran, Michael J. and Howard N. Shapiro, 2008.Fundamentals of Engineering

    Thermodynamics. 6th ed. Wiley and Sons: 16.

    66.

    Jump up^Planck, M. (1897/1903), p. 1.

    67.

    Jump up^Rankine, W.J.M. (1953).Proc. Roy. Soc. (Edin.), 20(4).

    68.

    Jump up^Maxwell, J.C. (1872), page 32.

    69.

    Jump up^Maxwell, J.C. (1872), page 57.

    70.

    Jump up^Planck, M. (1897/1903), pp. 12.71.

    Jump up^Clausius, R. (1850). Ueber de bewegende Kraft der Wrme und die Gesetze,

    welche sich daraus fr de Wrmelehre selbst ableiten lassen,Annalen der Physik und

    Chemie, 155(3): 368394.

    72.

    Jump up^Rankine, W.J.M. (1850). On the mechanical action of heat, especially in gases

    and vapours. Trans. Roy. Soc. Edinburgh, 20: 147190.[1]

    73.

    Jump up^Helmholtz, H. von. (1897/1903). Vorlesungen ber Theorie der Wrme, edited

    by F. Richarz, Press of Johann Ambrosius Barth, Leipzig, Section 46, pp. 176182, in

    German.74.

    Jump up^Planck, M. (1897/1903), p. 43.

    75.

    Jump up^Guggenheim, E.A. (1949/1967), p. 10.

    76.

    Jump up^Sommerfeld, A. (1952/1956), Section 4 A, pp. 1316.

    77.

    Jump up^Ilya Prigogine, I. & Defay, R., translated by D.H. Everett (1954).Chemical

    Thermodynamics. Longmans, Green & Co., London, p. 21.

    78.

    Jump up^Lewis, G.N., Randall, M. (1961). Thermodynamics, second edition revised by

    K.S. Pitzer and L. Brewer, McGraw-Hill, New York, p. 35.

    79.

    ^Jump up to:abBailyn, M. (1994), page 79.

    80.

    Jump up^Kondepudi, D. (2008).Introduction to Modern Thermodynamics, Wiley,

    Chichester,ISBN 978-0-470-01598-8,p. 59.

    81.

    Jump up^Khanna, F.C., Malbouisson, A.P.C., Malbouisson, J.M.C., Santana, A.E.

    (2009). Thermal Quantum Field Theory. Algebraic Aspects and Applications, World

    Scientific, Singapore,ISBN 978-981-281-887-4,p. 6.

    http://en.wikipedia.org/wiki/Termodynamics#cite_ref-65http://en.wikipedia.org/wiki/Termodynamics#cite_ref-65http://en.wikipedia.org/wiki/Termodynamics#cite_ref-65http://en.wikipedia.org/wiki/Termodynamics#cite_ref-66http://en.wikipedia.org/wiki/Termodynamics#cite_ref-66http://en.wikipedia.org/wiki/Termodynamics#cite_ref-66http://en.wikipedia.org/wiki/Termodynamics#cite_ref-67http://en.wikipedia.org/wiki/Termodynamics#cite_ref-67http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Maxwell_1872_32_68-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Maxwell_1872_32_68-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-69http://en.wikipedia.org/wiki/Termodynamics#cite_ref-69http://en.wikipedia.org/wiki/Termodynamics#cite_ref-70http://en.wikipedia.org/wiki/Termodynamics#cite_ref-70http://en.wikipedia.org/wiki/Termodynamics#cite_ref-71http://en.wikipedia.org/wiki/Termodynamics#cite_ref-71http://en.wikipedia.org/wiki/Termodynamics#cite_ref-72http://en.wikipedia.org/wiki/Termodynamics#cite_ref-72http://www.archive.org/details/miscellaneoussci00rankhttp://www.archive.org/details/miscellaneoussci00rankhttp://www.archive.org/details/miscellaneoussci00rankhttp://en.wikipedia.org/wiki/Termodynamics#cite_ref-73http://en.wikipedia.org/wiki/Termodynamics#cite_ref-73http://en.wikipedia.org/wiki/Termodynamics#cite_ref-74http://en.wikipedia.org/wiki/Termodynamics#cite_ref-74http://en.wikipedia.org/wiki/Termodynamics#cite_ref-75http://en.wikipedia.org/wiki/Termodynamics#cite_ref-75http://en.wikipedia.org/wiki/Termodynamics#cite_ref-76http://en.wikipedia.org/wiki/Termodynamics#cite_ref-76http://en.wikipedia.org/wiki/Termodynamics#cite_ref-77http://en.wikipedia.org/wiki/Termodynamics#cite_ref-77http://en.wikipedia.org/wiki/Termodynamics#cite_ref-78http://en.wikipedia.org/wiki/Termodynamics#cite_ref-78http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-80http://en.wikipedia.org/wiki/Termodynamics#cite_ref-80http://en.wikipedia.org/wiki/Special:BookSources/9780470015988http://en.wikipedia.org/wiki/Special:BookSources/9780470015988http://en.wikipedia.org/wiki/Special:BookSources/9780470015988http://en.wikipedia.org/wiki/Termodynamics#cite_ref-81http://en.wikipedia.org/wiki/Termodynamics#cite_ref-81http://en.wikipedia.org/wiki/Special:BookSources/9789812818874http://en.wikipedia.org/wiki/Special:BookSources/9789812818874http://en.wikipedia.org/wiki/Special:BookSources/9789812818874http://en.wikipedia.org/wiki/Special:BookSources/9789812818874http://en.wikipedia.org/wiki/Termodynamics#cite_ref-81http://en.wikipedia.org/wiki/Special:BookSources/9780470015988http://en.wikipedia.org/wiki/Termodynamics#cite_ref-80http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Bailyn.2C_M._1994_page_79_79-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-78http://en.wikipedia.org/wiki/Termodynamics#cite_ref-77http://en.wikipedia.org/wiki/Termodynamics#cite_ref-76http://en.wikipedia.org/wiki/Termodynamics#cite_ref-75http://en.wikipedia.org/wiki/Termodynamics#cite_ref-74http://en.wikipedia.org/wiki/Termodynamics#cite_ref-73http://www.archive.org/details/miscellaneoussci00rankhttp://en.wikipedia.org/wiki/Termodynamics#cite_ref-72http://en.wikipedia.org/wiki/Termodynamics#cite_ref-71http://en.wikipedia.org/wiki/Termodynamics#cite_ref-70http://en.wikipedia.org/wiki/Termodynamics#cite_ref-69http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Maxwell_1872_32_68-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-67http://en.wikipedia.org/wiki/Termodynamics#cite_ref-66http://en.wikipedia.org/wiki/Termodynamics#cite_ref-65
  • 8/11/2019 Guia Examen Ingles Sept2014

    26/71

    GUA DE EXAMEN DE INGLS

    82.Jump up^Helmholtz, H. von, (1847). Ueber die Erhaltung der Kraft, G. Reimer, Berlin.

    83.

    Jump up^Joule, J.P. (1847). On matter, living force, and heat,Manchester Courier, May

    5 and May 12, 1847.

    84.

    ^Jump up to:abTruesdell, C.A. (1980).

    85.

    Jump up^Partington, J.R. (1949), page 150.

    86.

    Jump up^Kondepudi & Prigogine (1998), pages 31-32.

    PREGUNTAS DE INTERPRETACIN DE TEXTOS DEL EXAMEN DE INGLS

    1. Qu dice la ley cero de la Termodinmica?R = Si dos sistemas estn cada uno en equilibrio trmico con un tercero, que tambin seencuentran en equilibrio trmico entre s.2. Cmo se miden las temperaturas empricas, en contraste con las temperaturas

    termodinmicas absolutas?. (prrafo de ley cero de la termodinmica).R = las temperaturas empricas se miden slo por las propiedades mecnicas de los cuerpos,como su volumen, sin depender de los conceptos de energa, la entropa o los primerossegundos, o tercera leyes de la termodinmica

    3. La Primera Ley de la Termodinmica afirma la existencia de una variable de estado de unsistema; cul es sta? R = La energa interna

    4. Cul es el hecho que observa la Segunda Ley de la Termodinmica?R = La Segunda Ley es una observacin del hecho de que con el tiempo, las diferencias detemperatura, presin, y potencial qumico tienden a igualar en un sistema fsico que estaislado del mundo exterior.

    5. En cul de las Tres Leyes de la termodinmica, la Entropa no tiene la posibilidad dealcanzar el cero absoluto?R = En la Tercera Ley de la Termodinmica.

    http://en.wikipedia.org/wiki/Termodynamics#cite_ref-82http://en.wikipedia.org/wiki/Termodynamics#cite_ref-82http://en.wikipedia.org/wiki/Termodynamics#cite_ref-83http://en.wikipedia.org/wiki/Termodynamics#cite_ref-83http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-85http://en.wikipedia.org/wiki/Termodynamics#cite_ref-85http://en.wikipedia.org/wiki/Termodynamics#cite_ref-86http://en.wikipedia.org/wiki/Termodynamics#cite_ref-86http://en.wikipedia.org/wiki/Termodynamics#cite_ref-86http://en.wikipedia.org/wiki/Termodynamics#cite_ref-85http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-1http://en.wikipedia.org/wiki/Termodynamics#cite_ref-Truesdell_1980_84-0http://en.wikipedia.org/wiki/Termodynamics#cite_ref-83http://en.wikipedia.org/wiki/Termodynamics#cite_ref-82
  • 8/11/2019 Guia Examen Ingles Sept2014

    27/71

    GUA DE EXAMEN DE INGLS

    PREGUNTAS BSICAS DE TERMODINMICAHERMODYNAMICS BASIC QUESTIONS

    1. THERMODYNAMICS STUDY WHAT ? Studies the relationship between thermal energy, heatand temperature. Study the relationships between isobaric thermodynamic processes , isochoric andadiabatic . Study the movement of energy and the relationship between energy and movement.Study heat, work and matter interacting with the universe.Two . WHAT IS A THERMODYNAMIC SYSTEM ? Limited portion of the space by a porousborder , which is being studied . Portion of environmental space that has direct contact with theenergy , heat and work done outside it. Limited portion of the environment by an adiabatic surface

    universe. Limited portion of the space for a real boundary surface, where matter , object of ourstudy is located.Three . WHAT WOULD BE THE FORMULA OF THE UNIVERSE ? + Midrange externalthermodynamic thermodynamic PVT System System System + energy + matter + thermodynamicenergy.April . IT IS AN EXAMPLE OF THERMODYNAMIC SYSTEM 2 kg of molten gold in a furnaceat 2000 C. 1 kg of Fe sectioned into 200 parts . 200g of solid water . Specific heat of a solidsubstance in a calorimeter.May . HOW IS THE AVERAGE SPEED OF A PARTICLE GAS IDEAL ? Adding the kineticenergy of each particle. Summing the speed of each particle , and dividing the value by the numberof particles. Determined the amount of energy received by each particle. Determining the value ofthe average thermal energy of the particles.6. WHAT IS THE PROTEST MOVEMENT MACROSCOPIC MOLECULES OF A GAS ? Thethermal energy Mean Speed The Heat termperature .7. ALL SPEEDS ? MOLECULES COMPRISING AN IDEAL GAS ARE EQUAL ? YES NO.8. WHAT IS THE TEMPERATURE ? As the temperature level of a gas , which is about theaverage speed of the particles. Measurement of body heat generated . Measurement of the averagevelocity of the gas comprising partuclas . Demonstration of thermal heat transfer .9. WHAT IS REAL ? Heat is the statement of the quality of the gaseous molecules possessing body. In thermodynamic system temperature is proportional to the amount of gas . The average particlevelocity of a gas is inversely proportional to the value of the thermal energy . The temperature isproportional to the average velocity of the particles .10. TEMPERATURE WHICH HAVE NO PARTICLE MOTION : 273 C -273 K 0 K 0 C.11. HELPS CALCULATE AVERAGE SPEED PARTICLE : Classical mechanics Statisticalmechanics Quantum physics Differential calculus .12. HOW IS THE THERMAL ENERGY OF A GAS ? With the sum of the kinetic energy of itsparticles. With the sum of the average speed of its particles. With the sum of each heat fractionpossessing its particles. With the sum of potential and kinetic energy of its particles .13 . WHAT IS REAL ? A GREATER POTENTIAL ENERGY HIGHER TEMPERATURETHERMAL ENERGY MAKES THE INCREASE YOUR BODY MOLECULAR MOTION . Theatoms A BODY A 90 VEOLCIDAD MEDIA ARE HIGHER THAN THOSE TO 30 C. HEATMAKES THE UNDERLYING ANY BODY TEMPERATURE .

  • 8/11/2019 Guia Examen Ingles Sept2014

    28/71

    GUA DE EXAMEN DE INGLS

    14 . WHAT IS TRUE ? INTENSIVE ONE SIZE DOES NOT DEPEND ON THE NUMBER OFTHE SUBSTANCE . THERMAL ENERGY OF A GAS DEPENDS ON ITS INTERNALENERGY PARTICLES . PROPORTIONAL TO THE TEMPERATURE IS ISSUED FOR ABODY HEAT TO ANOTHER . ADIABATIC SYSTEM RECEIVES THE HEAT , WORK, BUTNO MATTER.15 . It is an intensive quantity : HEAT TEMPERATURE THERMAL ENERGY AMOUNT OFGAS .16 . CONDITIONS UNDER WHICH THE THERMAL ENERGY OF A GAS CAN BECOME ANORIGINAL DOUBLE DIRECTION: THE NUMBER IS THE SAME TEMPERATURE .THERMAL ENERGY IS THE SAME . THE AMOUNT OF HEAT IS TWICE . IF THENUMBER OF MOLECULES OF DOUBLES .

    17 . IT IS AN EXTENSIVE PROPERTY : HEAT THERMAL ENERGY AMOUNT OF GROUNDTEMPERATURE .18 . IF TWO SYSTEMS WITH DIFFERENT THERMODYNAMIC TEMPERATURE COMESIN CONTACT , THEN YOU GET A SPEED BETWEEN THE TWO SYSTEMS MEDIAMOLEULAR Danro PLACE TO A TEMPERATURE OF BALANCE. THERE IS A TRANSFERFROM THE BODY TEMPERATURE HOTTER THE COLD TO GETTING MORE quilibrio .MASS AMOUNT IS TO GET A REDUCA TEMPERATURE AND GROUND BALANCED .TEMPERATURE SYSTEM WITH HEAT MAY BE IMPOSED ON SMALL HEAT.19 . WHAT IS THE HEAT ? MAGNITUDE IS A MEASURING THE DEGREE OFMOLECULAR MIXING . IT IS A DIMENSION OF ANY BODY IS EXPOSED TO A SOURCEOF HEAT. It is THERMAL ENERGY IN TRANSIT . Interconvertibility SUBJECT IS ENERGYand vice versa .

    1. QU ESTUDIA LA TERMODINMICA? Estudia las relaciones entre la energa trmica,el calor y la temperatura. Estudia las relaciones entre los procesos termodinmicosisobricos, isocricos y adiabticos. Estudia la circulacin de la energa y la relacin entrela energa y el movimiento. Estudia al calor, al trabajo y la materia interactuando con eluniverso2. QU ES UN SISTEMA TERMODINMICO? Porcin del espacio limitada por unafrontera permeable, que es motivo de estudio. Porcin del espacio ambiental que tienecontacto directo con la energa, el calor y el trabajo realizado fuera de l. Porcin delambiente del universo limitado por una superficie adiabtica. Porcin del espacio limitadapor una superficie lmite real, donde se situa la materia, objeto de nuestro estudio.

    3. CUL SERA LA FRMULA DEL UNIVERSO? Sistema termodinmico + medioexterno Sistema termodinmico + Sistema PVT Sistema termodinmico + energa Materia+ energa.

    4. ES UN EJEMPLO DE SISTEMA TERMODINMICO 2 kg de oro fundido en unacaldera a 2000C. 1 kg de Fe seccionado en 200 partes. 200g de agua en estado slido.Calor especfico de una sustancia slido dentro de un calormetro.

    5. CMO SE OBTIENE LA VELOCIDAD MEDIA DE LAS PARTCULAS DE UN

  • 8/11/2019 Guia Examen Ingles Sept2014

    29/71

    GUA DE EXAMEN DE INGLS

    GAS IDEAL? Sumando las energa cinticas de cada partcula. Sumando las velocidades decada partcula y dividindo el valor entre el nmero de partculas. Determinado la cantidadde energa que recibe cada partcula. Determinando el valor del promedio de las energastrmicas de las partculas.

    6. CUL ES LA MANIFESTACIN MACROSCPICA DEL MOVIMIENTO DE LASMOLCULAS DE UN GAS? La energa trmica La velocidad media La termperatura Elcalor.7. TODAS LAS VELOCIDADES DE LAS MOLCULAS QUE COMPONEN UN GASIDEAL SON IGUALES? S NO.

    8. QU ES LA TEMPERATURA? Medida del nivel trmico de un gas, que tiene que vercon la velocidad media de las partculas. Medida del calor que genera un cuerpo. Medida dela velocidad media de las partuclas que componen un gas. Manifestacin trmica de latransferencia de calor.

    9. CUL ES VERDADERA? El calor es la manifestacin de la calidad de molculas queposee el cuerpo gaseoso. En sistema termodinmico la temperatura es proporcional a lacantidad de gas. La velocidad media de las partculas de un gas es inversamenteproporcional al valor de la energa trmica. La Temperatura es proporcional a la velocidadmedia de las partculas.

    10. TEMPERATURA EN LA QUE LAS PARTCULAS NO TIENEN MOVIMIENTO:273 C 0 K -273 K 0 C.

    11. NOS AYUDA A CALCULAR LA VELOCIDAD MEDIA DE LAS PARTCULAS: Lamecnica clsica La mecnica estadstica La fsica cuntica El clculo diferencial.12. CMO SE DETERMINA LA ENERGA TRMICA DE UN GAS? Con la sumatoriade las energa cinticas de sus partculas. Con la sumatoria de las velocidades medias de suspartculas. Con la sumatoria de cada fraccin de calor que poseen sus partculas. Con lasumatoria de la energa potencial y cintica de sus partculas.

    13. CUL ES VERDADERA? A MAYOR ENERGA POTENCIAL MAYORTEMPERATURA LA ENERGA TRMICA HACE QUE EL CUERPO AUMENTE SUMOVIMIENTO MOLECULAR. LOS ATMOS QUE FORMAN UN CUERPO A 90CTIENEN UNA VEOLCIDAD MEDIA MAYOR QUE LOS QUE ESTN A 30C. ELCALOR HACE QUE EL CUERPO SE FUNDA A CUALQUIER TEMPERATURA.

    14. CUL ES VERDADERA? UNA MAGNITUD INTENSIVA NO DEPENDE DE LACANTIDAD DE LA SUSTANCIA. LA ENERGA TRMICA DE UN GAS DEPENDEDE LA ENERGA INTERNA DE SUS PARTCULAS. LA TEMPERATURA ESPROPORCIONAL AL CALOR EMITIDO DE UN CUERPO A OTRO. EL SISTEMAADIABTICO RECIBE CALOR, TRABAJO PERO NO MATERIA.

  • 8/11/2019 Guia Examen Ingles Sept2014

    30/71

    GUA DE EXAMEN DE INGLS

    15. ES UNA MAGNITUD INTENSIVA: EL CALOR LA ENERGA TRMICA LATEMPERATURA LA CANTIDAD DE GAS.

    16. BAJO QUE CONDICIN LA ENERGA TRMICA DE UN GAS PUEDE LLEGARA SER EL DOBLE DE UNA SITUACIN INICIAL: LA CANTIDAD DETEMPERATURA ES LA MISMA. LA ENERGA TRMICA ES LA MISMA. LACANTIDAD DE CALOR ES EL DOBLE. SI LA CANTIDAD DE MOLCULAS DEDUPLICA.17. ES UNA PROPIEDAD EXTENSIVA: EL CALOR LA ENERGA TRMICA LACANTIDAD DE MASA LA TEMPERATURA.

    18. SI DOS SISTEMAS TERMODINMICOS CON DIFERENTE TEMPERATURA,ENTRAN EN CONTACTO, ENTONCES: SE OBTIENE UNA VELOCIDAD MEDIAMOLEULAR ENTRE AMBOS SISTEMAS DANRO LUGAR A UNA TEMPERATURADE EQUILIBRIO. HAY UNA TRANSFERENCIA DE TEMPERATURA DESDE LOSCUERPOS MS CALIENTES A LOS MS FRIOS HASTA LLEGAR AL QUILIBRIO.LA CANTIDAD DE MASA SE REDUCA HASTA OBTENER UNA TEMPERATURA YMASA EQUILIBRADA. LA TEMPERATURA DEL SISTEMA CON MAYO CALOR SEIMPONEN SOBRE EL DE MENOR CALOR.

    19. QU ES EL CALOR? ES UNA MAGNITUD QUE MIDE EL GRADO DEAGITACIN MOLECULAR. ES UNA DIMENSIN DE CUALQUIER CUERPO QUEEST EXPUESTO A UNA FUENTE DE CALOR. ES LA ENERGA TRMICA ENTRANSITO. ES LA INTERCONVERTIBILIDAD DE MATERIA EN ENERGA YVISCEVERSA.

    THERMODYNAMICS BASIC QUESTIONS

    1. THERMODYNAMICS STUDY WHAT ? Studies the relationship between thermal energy, heatand temperature. Study the relationships between isobaric thermodynamic processes , isochoric andadiabatic . Study the movement of energy and the relationship between energy and movement.

    Study heat, work and matter interacting with the universe.2 . WHAT IS A THERMODYNAMIC SYSTEM ? Limited portion of the space by a porous border, which is being studied . Portion of environmental space that has direct contact with the energy ,heat and work done outside it. Limited portion of the environment by an adiabatic surface universe.Limited portion of the space for a real boundary surface, where matter , object of our study islocated.

  • 8/11/2019 Guia Examen Ingles Sept2014

    31/71

    GUA DE EXAMEN DE INGLS

    3 . WHAT WOULD BE THE FORMULA OF THE UNIVERSE ? + Midrange externalthermodynamic thermodynamic PVT System System System + energy + matter + thermodynamicenergy.

    4 . IT IS AN EXAMPLE OF THERMODYNAMIC SYSTEM 2 kg of molten gold in a furnace at2000 C. 1 kg of Fe sectioned into 200 parts . 200g of solid water . Specific heat of a solidsubstance in a calorimeter.

    5 . HOW IS THE AVERAGE SPEED OF A PARTICLE GAS IDEAL ? Adding the kinetic energyof each particle. Summing the speed of each particle , and dividing the value by the number ofparticles. Determined the amount of energy received by each particle. Determining the value of theaverage thermal energy of the particles.

    6. WHAT IS THE PROTEST MOVEMENT MACROSCOPIC MOLECULES OF A GAS ? Thethermal energy Mean Speed The Heat termperature .

    7. ALL SPEEDS ? MOLECULES COMPRISING AN IDEAL GAS ARE EQUAL ? YES NO.

    8. WHAT IS THE TEMPERATURE ? As the temperature level of a gas , which is about theaverage speed of the particles. Measurement of body heat generated . Measurement of the averagevelocity of the gas comprising partuclas . Demonstration of thermal heat transfer .

    9. WHAT IS REAL ? Heat is the statement of the quality of the gaseous molecules possessing body. In thermodynamic system temperature is proportional to the amount of gas . The average particlevelocity of a gas is inversely proportional to the value of the thermal energy . The temperature isproportional to the average velocity of the particles .

    10. TEMPERATURE WHICH HAVE NO PARTICLE MOTION : 273 C -273 K 0 K 0 C.

    11. HELPS CALCULATE AVERAGE SPEED PARTICLE : Classical mechanics Statisticalmechanics Quantum physics Differential calculus .

    12. HOW IS THE THERMAL ENERGY OF A GAS ? With the sum of the kinetic energy of itsparticles. With the sum of the average speed of its particles. With the sum of each heat fraction

    possessing its particles. With the sum of potential and kinetic energy of its particles .

    13 . WHAT IS REAL ? A GREATER POTENTIAL ENERGY HIGHER TEMPERATURETHERMAL ENERGY MAKES THE INCREASE YOUR BODY MOLECULAR MOTION . Theatoms A BODY A 90 VEOLCIDAD MEDIA ARE HIGHER THAN THOSE TO 30 C. HEATMAKES THE UNDERLYING ANY BODY TEMPERATURE .

  • 8/11/2019 Guia Examen Ingles Sept2014

    32/71

    GUA DE EXAMEN DE INGLS

    14 . WHAT IS TRUE ? INTENSIVE ONE SIZE DOES NOT DEPEND ON THE NUMBER OFTHE SUBSTANCE . THERMAL ENERGY OF A GAS DEPENDS ON ITS INTERNALENERGY PARTICLES . PROPORTIONAL TO THE TEMPERATURE IS ISSUED FOR ABODY HEAT TO ANOTHER . ADIABATIC SYSTEM RECEIVES THE HEAT , WORK, BUTNO MATTER.

    15 . It is an intensive quantity : HEAT TEMPERATURE THERMAL ENERGY AMOUNT OFGAS .

    16 . CONDITIONS UNDER WHICH THE THERMAL ENERGY OF A GAS CAN BECOME ANORIGINAL DOUBLE DIRECTION: THE NUMBER IS THE SAME TEMPERATURE .THERMAL ENERGY IS THE SAME . THE AMOUNT OF HEAT IS TWICE . IF THENUMBER OF MOLECULES OF DOUBLES .

    17 . IT IS AN EXTENSIVE PROPERTY : HEAT THERMAL ENERGY AMOUNT OF GROUNDTEMPERATURE .

    18 . IF TWO SYSTEMS WITH DIFFERENT THERMODYNAMIC TEMPERATURE COMESIN CONTACT , THEN YOU GET A SPEED BETWEEN THE TWO SYSTEMS MEDIAMOLEULAR Danro PLACE TO A TEMPERATURE OF BALANCE. THERE IS A TRANSFERFROM THE BODY TEMPERATURE HOTTER THE COLD TO GETTING MORE quilibrio .MASS AMOUNT IS TO GET A REDUCA TEMPERATURE AND GROUND BALANCED .

    TEMPERATURE SYSTEM WITH HEAT MAY BE IMPOSED ON SMALL HEAT.

    19 . WHAT IS THE HEAT ? MAGNITUDE IS A MEASURING THE DEGREE OFMOLECULAR MIXING . IT IS A DIMENSION OF ANY BODY IS EXPOSED TO A SOURCEOF HEAT. It is THERMAL ENERGY IN TRANSIT . Interconvertibility SUBJECT IS ENERGYand vice versa .

  • 8/11/2019 Guia Examen Ingles Sept2014

    33/71

    GUA DE EXAMEN DE INGLS

  • 8/11/2019 Guia Examen Ingles Sept2014

    34/71

    GUA DE EXAMEN DE INGLS

    WHEN ANSWERING THIS GUIDE PLEASE HAVE IN CONSIDERATION THAT THEREAL EXAM CONTAINS ONLY ONE ARTICLE, AND 20 TO 25 QUESTIONS AS WELLAS AN ESSAY SECTION WHERE YOU WILL HAVE TO WRITE ABOUT A TOPICRELATED TO THE CARREER YOU STUDY.

    Answer the questions according to the reading passage.

    Stonehenge Monument

    Stonehenge is an ancient monument situated about ten miles north of Salisbury in England. It was

    built about 4500 years ago, but by whom and for what purpose remains a mystery. The buildersmust have known of geometry. They may have been influenced by the Mycenaeans, whosearchitecture was similar. Some of the stones must have been brought from West Wales, over 135miles away. These stones weigh more than fifty tons. They may have been brought on rafts androllers. Experts say that it must have taken 1500 men more than five years to transport them.Stonehenge was probably built in three stages. First, settlers from continental Europe built a templefor sun worship. Later the "Beaker" people added the stone circles. Finally, people of the WesseCulture transformed Stonehenge into an observatory. They could calculate the exact time ofMidsummer and Midwinter and of equinoxes.

    1. We understand from the passage that the construction of the Stonehenge ----.

    A) began 135 miles away from Salisbury

    B) is thought to have taken place in more than one stage

    C) was first documented by the Mycenaeans

    0) is not a mystery that needs to be solved

    E) was completed in less than five years

    2. It is pointed out in the reading that the Stonehenge ----.

    A) was built by the Mycenaeans, who were very advanced in geometryB) probably has religious origins, possibly for worship of the sun

    C) had no astrological purposes

    D) was erected thousands of years ago in West Wales

    E) is still used to calculate the changes of the seasons

  • 8/11/2019 Guia Examen Ingles Sept2014

    35/71

    GUA DE EXAMEN DE INGLS

    3. According to the passage, there is no certainty about ----.

    A) where the Stonehenge was built

    B) what kind of stones were used in the construction of the Stonehenge

    C) how to calculate the exact time of Midsummer and Midwinter and ofequinoxes

    D) how the stones used in the construction of the Stonehenge weretransported

    E) whether some of the stones are in position to reflect the movements of the sun and themoon

    CORRECT ANSWERS ARE:

    1.B

    2.B

    3.D

    Write in your own words about what you just read.

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

  • 8/11/2019 Guia Examen Ingles Sept2014

    36/71

    GUA DE EXAMEN DE INGLS

    _________________________________________________________________________

    ________________________________________________________________________

  • 8/11/2019 Guia Examen Ingles Sept2014

    37/71

    GUA DE EXAMEN DE INGLS

    Is Too Much Togetherness Annoying?

    I've heard of the problems, newly retired men and their wives face because of too much

    togetherness. And I was always amused, the way they so often get on each other's nerves. I never

    thought I'd face such a problem, but it's been two months now, and matters around are pretty bad. I

    ran out of patience. As soon as our son, Mike, leaves home, Dave busies himself by following me

    around, inquiring into my household routines. I have tried to interest him in any number of

    activities, with little success. "What you really need is a job "I told him, knowing he would never be

    able to find one at this age. You'd think that someone with so much intelligence, someone I truly

    love, would not be totally annoying when faced with a change in routine.

    1. The author says that before she faced the same thing, ----.

    A) she always belittled couples who tended to be nagging at each other

    all the time

    B) she hardly believed that retirement could reverse nice relations in a

    marriage

    C) her husband always seemed to be a potential problem for their happy

    family

    D) she couldn't understand how much happiness her husband's retirement

    would bring

    E) she knew exactly which problems were waiting for them

    2. As it is said in the passage, she cannot help getting nervous at her husband ----.

    A) who is constantly trying to intervene in her house-hold affairsB) who needs to rest now, which he really deserves after years of working

    C) because he is an intelligent man and loving husband

    D) although she loves Dave who hates being hurt

    E) for the fact that he couldn't get accustomed to living idly

  • 8/11/2019 Guia Examen Ingles Sept2014

    38/71

    GUA DE EXAMEN DE INGLS

    3. The writer is surprised to see that ----.

    A) her husband is very helpful

    B) she will not have to bare her fussy husband any more

    C) she will be counting the days to sen d Mike to school

    D) she loves him more than she thought

    E) change of routine affects someone so much

    CORRECT ANSWERS ARE:

    1.B

    2.A

    3.E

    Write in your own words about what you just read.

    ________________________________________________________________________________

    ________________________________________________________________________________________________________________________________________________________________

    _____________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    _________________________________________________________________________

    ________________________________________________

  • 8/11/2019 Guia Examen Ingles Sept2014

    39/71

    GUA DE EXAMEN DE INGLS

    Wembley Stadium

    Wembley Stadium (or simply Wembley) is a football stadium located in Wembley, north westLondon, which opened in 2007 on the site of the old Wembley stadium. The 90,000 capacity venueis second largest stadium in Europe, and serves as England's national stadium. It is the home venueof the England national football team, and hosts the latter stages of the top level domestic club cupcompetition, the FA Cup