38
Partikeldagarna, Göteborg 21 September 2007 LHC: Status and Plans Lyn Evans

Partikeldagarna , Göteborg 21 September 2007

  • Upload
    ferris

  • View
    28

  • Download
    0

Embed Size (px)

DESCRIPTION

LHC: Status and Plans. Lyn Evans. Partikeldagarna , Göteborg 21 September 2007. Schematic layout of the LHC. Circumference26.7km Beam energy at collision7TeV Beam energy at injection0.45TeV Dipole field at 7 TeV8.33T Luminosity10 34 cm -2 .s -1 - PowerPoint PPT Presentation

Citation preview

Page 1: Partikeldagarna , Göteborg 21 September 2007

Partikeldagarna, Göteborg 21 September 2007

LHC: Status and PlansLyn Evans

Page 2: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 2

Schematic layout of the LHC

Page 3: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 3

Main parameters of LHC (p-p)

• Circumference 26.7 km• Beam energy at collision 7 TeV• Beam energy at injection 0.45 TeV• Dipole field at 7 TeV 8.33 T• Luminosity 1034 cm-2.s-1

• Beam current 0.56 A• Protons per bunch 1.1x1011

• Number of bunches 2808• Nominal bunch spacing 24.95 ns• Normalized emittance 3.75 m• Total crossing angle 300 rad• Energy loss per turn 6.7 keV• Critical synchrotron energy 44.1 eV• Radiated power per beam 3.8 kW• Stored energy per beam 350 MJ• Stored energy in magnets 11 GJ• Operating temperature 1.9 K

Page 4: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 4

Descent of the last magnet, 26 April 2007

30’000 km underground at 2 km/h!

Page 5: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 5

Cross-section of LHC cryodipole

Page 6: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 6

Dipole magnetic flux plot

Page 7: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 7

Critical current density of technical superconductors

Page 8: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 8

Bending strength of dipoles

10.07

10.09

10.11

10.13

10.15

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Magnet progressive number

Int t

rans

f fun

c (T

m/k

A)

-40

-20

0

20

40

Uni

ts

Firm 1

Firm 2

Firm 3

AT-MAS

Cold mass

upper limit for single magnet (3 sigma)

lower limit for single magnet (3 sigma)

Page 9: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 9

Field errors in dipole production: b3

-10

-5

0

5

10

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Magnet progressive number

b3 in

teg

ral (

units

)

Firm 1

Firm 2

Firm 3

Cold mass

upper limit for systematic

lower limit for systematic

AT-MAS & MTM

Cro

ss-s

ecti

on

2

Cross-section 3

Page 10: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 10

Field orientation in dipoles

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Collared coil progressive number

Tw

ist

inte

gral

of

mai

n fie

ld a

ngle

Firm 1Firm 2Firm 3

AT-MAS

upper limit for single magnet

lower limit for single magnet

Cold mass all positions (mrad)

Page 11: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 11

Systematic field errors in dipoles

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

Targets

Measured

Cold mass - systematic vs targets

a3 a4

b2 a

pert

ure

1

b2 a

pert

ure

2

b2 b

oth

aper

ture

s

b4 a

pert

ure

1

b4 a

pert

ure

2

b4 b

oth

aper

ture

s

a2 a5

AT-MAS-6

-4

-2

0

2

4

6

9

Targets

Measured

b3b5

b7

AT-MAS

Page 12: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 12

Random field errors in dipoles

0.0

0.5

1.0

1.5

2.0

1

Type R

Type L

Targets

AT-MAS

Cold mass - random (r.m.s) vs targets

L B BdL b2 b3 b4 b5 b7a2 a3 a4 a5

units/10 units

Page 13: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 13

Dipole-dipole interconnect

Page 14: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 14

Dipole-dipole interconnect: electrical splices

Page 15: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 15

DFBAO in Sector 7-8

Page 16: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 16

Magnet interconnections

Page 17: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 17

Specific heat of LHe and Cu

0,00001

0,0001

0,001

0,01

0,1

1

10

100

0 1 2 3 4 5Temperature [K]

Spe

cific

hea

t [J

/g.K

]

LHeCu

Page 18: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 18

Equivalent thermal conductivity of He II

0

500

1000

1500

2000

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

T [K]

Y(T

) ±

5%

T

K T,q q Y T

dT

dX

q

Y(T)

q in W / cm

T in K

X in cm

2.4

3.4

2

OFHC copper

Helium II

Page 19: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 19

Phase diagram of Helium

1

10

100

1000

10000

1 10

T [K]

P [k

Pa]

SOLID

HeII HeI

CRITICAL POINT

GAS

l line

Saturated He II

Pressurized He II

Page 20: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 20

Linear heat exchanger

Page 21: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 21

Sector 7-8 cooldown

Page 22: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 22

Courtesy F.Bordry

Page 23: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 23

Tracking between the three main circuits of sector 78

Courtesy F.Bordry

2ppm

Page 24: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 24

Arc plug-in module at warm temperature

Page 25: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 25

Arc plug-in module at working temperature

Page 26: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 26

Module with installation compression tooling

Page 27: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 27

RF bellows in the 1700 interconnections

Page 28: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 28

Transmitter prototype

Page 29: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 29

Transmitter prototype

Page 30: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 30

The electron cloud effect

Page 31: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 31

Simulated heat load as a function of SEY

Page 32: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 32

Energy stored in the accelerator beam, as a function of beam momentum. At less than 1% of nominal intensity LHC enters new territory.

Stored energy density as a function of beam momentum. Transverse energy density is a measure of damage potential and is proportional to luminosity.

Beam momentum & stored energy of colliders

Page 33: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 33

Transverse emittances from 3 different bunch intensities (72 bunches)

Page 34: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 34

Conclusions

The LHC design has integrated more than 30 years of accumulated

knowledge of the behaviour of beams in hadron storage rings. The various

correction systems will be adequate to stabilise the beams up to and beyond

design luminosity.

The one new effect is the electron cloud which may be the limiting factor in

pushing the luminosity well above the design value. This will depend on the

efficiency of scrubbing that can be achieved.

The rate of increase in luminosity will be governed by our ability to protect the

machine and detectors and of the detectors to cope with it.

Page 35: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 35

CERN accelerator complex

Page 36: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 36

Upgrade components

PSB

SPSSPS+

Linac4

LPSPL

PS

LHC / SLHC DLHC

Out

put e

nerg

y

160 MeV

1.4 GeV4 GeV

26 GeV50 GeV

450 GeV1 TeV

7 TeV~ 14 TeV

Linac250 MeV

LPSPL: Low PowerSuperconducting Proton Linac (4 GeV)

PS2: High Energy PS(~ 5 to 50 GeV – 0.3 Hz)

SPS+: Superconducting SPS(50 to1000 GeV)

SLHC: “Superluminosity” LHC(up to 1035 cm-2s-1)

DLHC: “Double energy” LHC(1 to ~14 TeV)

Proton flux / Beam power

PS2

PSB

SPSSPS+

Linac4

LPSPL

PS

LHC / SLHC DLHC

Out

put e

nerg

y

160 MeV

1.4 GeV4 GeV

26 GeV50 GeV

450 GeV1 TeV

7 TeV~ 14 TeV

Linac250 MeV

LPSPL: Low PowerSuperconducting Proton Linac (4 GeV)

PS2: High Energy PS(~ 5 to 50 GeV – 0.3 Hz)

SPS+: Superconducting SPS(50 to1000 GeV)

SLHC: “Superluminosity” LHC(up to 1035 cm-2s-1)

DLHC: “Double energy” LHC(1 to ~14 TeV)

Proton flux / Beam power

PS2

Page 37: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 37

Layout of the new injectors

SPS

PS2

SPL

Linac4

PS

Page 38: Partikeldagarna , Göteborg 21 September 2007

L. Evans – EDMS document 867980 38

Upgrade of LHC insertions

Intermediate (2012-2013) upgrade of the two high-

luminosity insertions using existing NbTi cable from dipole

production. Seed money expected from Brussels but

construction funds to be found.

Possible further upgrade to IE35 (2016-2018) using

advanced superconductor. Many ideas but luminosity

lifetime will be a problem.