Parameter estimation using third-order cumulants for INAR(p) processes

Embed Size (px)

DESCRIPTION

It is proposed a new estimation method for the parameter of an INAR(p) process based on third-order cumulants.Note that this estimation method does not assume any particular discrete distribution of the countingseries and of the innovation process. The results of a Monte Carlo study to investigate and compare theperformance of the estimator are presented and the method is applied to a set of real data.

Citation preview

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Parameter estimation using third-ordercumulants for INAR(p) processes

    Isabel Silva1 Maria Eduarda Silva2,3

    1Departamento de Engenharia Civil and CEC, Faculdade de Engenharia da Universidade do Porto

    2Faculdade de Economia da Universidade do Porto

    3Unidade de Investigao Matemtica e Aplicaes (UIMA), Universidade de Aveiro

    Workshop on Integer-valued Time Series Modelling (WINTS09)

    WINTS09 1 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Contents

    Introduction High-order statistics INteger-valued AutoRegressive (INAR) process

    Parameter estimation based on third-order cumulants Cumulant third-order characterization of INAR(p) processes Estimation using cumulant Third-Order Recursion equation

    Monte Carlo results and application to real data

    Final remarks

    WINTS09 2 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    High-Order Statistics (HOS)Moments and cumulants of order higher than two

    Introduction WINTS09 3 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    High-Order Statistics (HOS)Moments and cumulants of order higher than two

    Lack of Gaussianity and/or non-linearity

    Introduction WINTS09 3 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    High-Order Statistics (HOS)Moments and cumulants of order higher than two

    Lack of Gaussianity and/or non-linearity

    Notation:{Xt} : kth-order stationary stochastic process

    X(s1, . . . ,sk1) : kth-order joint moment of Xt,Xt+s1 , . . . , Xt+sk1function of k1 variables (s1, . . . ,sk1 R)

    X = E[Xt], X(s1, . . . ,sk1) = E[XtXt+s1 . . .Xt+sk1 ]

    CX(s1, . . . ,sk1) : kth-order joint cumulant of Xt,Xt+s1 , . . . , Xt+sk1function of k1 variables (s1, . . . ,sk1 R)

    the coefficient of 12 . . .k in the Taylor series expansion (about (0, . . . ,0)) ofthe cumulant generating function of Xt,Xt+s1 , . . . , Xt+sk1

    Introduction WINTS09 3 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    High-Order Statistics (HOS)Relations between joint moments and joint cumulants [Leonov and Shiryaev (1959)]CX = E[Xt] = XCX(k) = X(k)X2 = R(k), k ZCX(k,m) = X(k,m)X

    (X(k)+ X(m)+ X(km)

    )+2X3, k,m Z

    Introduction WINTS09 4 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    High-Order Statistics (HOS)Relations between joint moments and joint cumulants [Leonov and Shiryaev (1959)]CX = E[Xt] = XCX(k) = X(k)X2 = R(k), k ZCX(k,m) = X(k,m)X

    (X(k)+ X(m)+ X(km)

    )+2X3, k,m Z

    Symmetry properties [Mendel (1991)]

    CX(m) = CX(m), m > 0CX(m,n) = CX(n,m) = CX(n,mn) = CX(nm,m), m,n > 0

    n

    m

    0

    Introduction WINTS09 4 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    INteger-valued AutoRegressive processes

    INAR(p) [Latour (1998)]

    Xt = 1 Xt1 +2 Xt2 + +p Xtp + et

    Introduction WINTS09 5 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    INteger-valued AutoRegressive processes

    INAR(p) [Latour (1998)]

    Xt = 1 Xt1 +2 Xt2 + +p Xtp + et

    0 i < 1, i = 1, . . . ,p1, and 0 < p < 1, such that pk=1 k < 1 thinning operation [Steutel and Van Harn (1979); Gauthier and Latour (1994)]

    i Xti = Xtij=1 Yi,j, for i = 1, . . . ,p{Yi,j} (counting series): set of i.i.d. non-negative integer-valued r.v. withE[Yi,j] = i,Var[Yi,j] = 2i and E[Y3i,j] = i{et} (innovation process): sequence of i.i.d. non-negative integer-valued r.v.(independent of {Yi,j}) with E[et] = e,Var[et] = 2e and E[e3t ] = e

    Introduction WINTS09 5 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    INteger-valued AutoRegressive processes

    INAR(p) [Latour (1998)]

    Xt = 1 Xt1 +2 Xt2 + +p Xtp + et

    0 i < 1, i = 1, . . . ,p1, and 0 < p < 1, such that pk=1 k < 1 thinning operation [Steutel and Van Harn (1979); Gauthier and Latour (1994)]

    i Xti = Xtij=1 Yi,j, for i = 1, . . . ,p{Yi,j} (counting series): set of i.i.d. non-negative integer-valued r.v. withE[Yi,j] = i,Var[Yi,j] = 2i and E[Y3i,j] = i{et} (innovation process): sequence of i.i.d. non-negative integer-valued r.v.(independent of {Yi,j}) with E[et] = e,Var[et] = 2e and E[e3t ] = e

    Usually: Poisson INAR(p) process with binomial thinning operation

    Introduction WINTS09 5 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Cumulant third-order characterization of INAR(p) processes

    [Silva and Oliveira (2004, 2005) and Silva (2005)]CX(0,0) = pi=1 pj=1 pk=1 ijk X(i j, i k)+3pi=1 pj=1 ji2X(i j)+ e

    +3(eX)pi=1 pj=1 ijX(i j)+3X(eX)pi=1 i2 +23X6eX2 pi=1 i3e(e2 +2e )+ X pi=1 (i3ii23i )

    CX(0,k) = pi=1 iCX(0,k i), k > 0

    CX(k,k) = pi=1 pj=1 ijCX(k i,k j)+pi=1 i2CX(k i), k > 0

    CX(k,m) = pi=1 iCX(k,m i), m > k > 0

    Parameter estimation based on third-order cumulants WINTS09 6 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Cumulant third-order characterization of INAR(p) processes

    [Silva and Oliveira (2004, 2005) and Silva (2005)]CX(0,0) = pi=1 pj=1 pk=1 ijk X(i j, i k)+3pi=1 pj=1 ji2X(i j)+ e

    +3(eX)pi=1 pj=1 ijX(i j)+3X(eX)pi=1 i2 +23X6eX2 pi=1 i3e(e2 +2e )+ X pi=1 (i3ii23i )

    CX(0,k) = pi=1 iCX(0,k i), k > 0

    CX(k,k) = pi=1 pj=1 ijCX(k i,k j)+pi=1 i2CX(k i), k > 0

    CX(k,m) = pi=1 iCX(k,m i), m > k > 0

    INAR processes have a non-linear structure

    1st and 2nd order cumulants are not sufficient to describe dependence structure

    Parameter estimation based on third-order cumulants WINTS09 6 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Cumulant third-order characterization of INAR(p) processes

    Cumulant Third-Order Recursion (TOR) equation [Silva (2005)]

    CX(k,m)p

    i=1

    iCX(i k, im) = (k)p

    i=1

    i2CX(im), 0 k m,m 6= 0

    where (a) ={

    1 if a = 0,0 otherwise,

    is the Kronecker delta function

    Parameter estimation based on third-order cumulants WINTS09 7 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Cumulant third-order characterization of INAR(p) processes

    Cumulant Third-Order Recursion (TOR) equation [Silva (2005)]

    CX(k,m)p

    i=1

    iCX(i k, im) = (k)p

    i=1

    i2CX(im), 0 k m,m 6= 0

    where (a) ={

    1 if a = 0,0 otherwise,

    is the Kronecker delta function

    ~w CX(k,k) = CX(0,k)

    C3,X =

    CX(0,0) CX(1,1) CX(p1,p1)CX(0,1) CX(0,0) CX(p2,p2)

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    CX(0,p1) CX(0,p2) CX(0,0)

    1

    2.

    .

    .

    p

    =

    CX(0,1)CX(0,2)

    .

    .

    .

    CX(0,p)

    = c3,X

    Parameter estimation based on third-order cumulants WINTS09 7 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Estimation using cumulant TOR equation

    {X1, . . . ,XM,XM+1, . . . ,X2M, . . . ,X(B1)(M+1), . . . ,XN=BM}

    Parameter estimation based on third-order cumulants WINTS09 8 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Estimation using cumulant TOR equation

    {X1, . . . ,XM 1st block

    ,XM+1, . . . ,X2M 2nd block

    , . . . ,X(B1)(M+1), . . . ,XN=BM Bth block

    }

    B blocks of M observations each

    {X(1)1 , . . . ,X(1)M

    1st block

    ,X(2)1 , . . . ,X(2)M

    2nd block

    , . . . ,X(B)1 , . . . ,X(B)M

    Bth block

    }

    Parameter estimation based on third-order cumulants WINTS09 8 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Estimation using cumulant TOR equation

    {X1, . . . ,XM 1st block

    ,XM+1, . . . ,X2M 2nd block

    , . . . ,X(B1)(M+1), . . . ,XN=BM Bth block

    }

    B blocks of M observations each

    {X(1)1 , . . . ,X(1)M

    1st block

    ,X(2)1 , . . . ,X(2)M

    2nd block

    , . . . ,X(B)1 , . . . ,X(B)M

    Bth block

    }

    For each block: X(i) = 1M

    M

    j=1

    X(i)j

    C(i)X (k,k) =1M

    Mkj=1

    (X(i)j X

    (i))(

    X(i)j+kX(i))2

    , k = 0, . . . ,p1

    C(i)X (0,k) =1M

    Mkj=1

    (X(i)j X

    (i))2(

    X(i)j+kX(i)), k = 1, . . . ,p

    Parameter estimation based on third-order cumulants WINTS09 8 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Estimation using cumulant TOR equation

    Overall third-order cumulant estimators:

    CX(k,k) =1B

    B

    i=1

    C(i)X (k,k), k = 0, . . . ,p1

    CX(0,k) =1B

    B

    i=1

    C(i)X (0,k), k = 1, . . . ,p

    Parameter estimation based on third-order cumulants WINTS09 9 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Estimation using cumulant TOR equation

    Overall third-order cumulant estimators:

    CX(k,k) =1B

    B

    i=1

    C(i)X (k,k), k = 0, . . . ,p1

    CX(0,k) =1B

    B

    i=1

    C(i)X (0,k), k = 1, . . . ,p

    To solve the system of linear equations in order to the coefficients

    CX(0,0) CX(1,1) CX(p1,p1)CX(0,1) CX(0,0) CX(p2,p2)

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    CX(0,p1) CX(0,p2) CX(0,0)

    1

    2.

    .

    .

    p

    =

    CX(0,1)CX(0,2)

    .

    .

    .

    CX(0,p)

    Parameter estimation based on third-order cumulants WINTS09 9 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Estimation using cumulant TOR equation

    Overall third-order cumulant estimators:

    CX(k,k) =1B

    B

    i=1

    C(i)X (k,k), k = 0, . . . ,p1

    CX(0,k) =1B

    B

    i=1

    C(i)X (0,k), k = 1, . . . ,p

    To solve the system of linear equations in order to the coefficients

    CX(0,0) CX(1,1) CX(p1,p1)CX(0,1) CX(0,0) CX(p2,p2)

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    CX(0,p1) CX(0,p2) CX(0,0)

    1

    2.

    .

    .

    p

    =

    CX(0,1)CX(0,2)

    .

    .

    .

    CX(0,p)

    e = X(

    1p

    i=1

    i

    ), 2e = VpX

    p

    i=1

    2i , Vp = R(0)p

    i=1

    i R(i)

    Parameter estimation based on third-order cumulants WINTS09 9 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    To examine the small sample properties of the proposed estimation method

    To compare its performance with other methods: YW, CLS, WHT and LS_HOS

    Monte Carlo results and application to real data WINTS09 10 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    To examine the small sample properties of the proposed estimation method

    To compare its performance with other methods: YW, CLS, WHT and LS_HOS

    1000 realizations of Poisson INAR(p) processes, with binomial thinning operation,for several orders, sample sizes and parameter values

    Monte Carlo results and application to real data WINTS09 10 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    To examine the small sample properties of the proposed estimation method

    To compare its performance with other methods: YW, CLS, WHT and LS_HOS

    1000 realizations of Poisson INAR(p) processes, with binomial thinning operation,for several orders, sample sizes and parameter values

    Sample properties of the cumulant TOR estimatorThe sample bias, variance and mean square error decrease as the sample size (ofthe block) increases Distribution is consistent and symmetric

    Monte Carlo results and application to real data WINTS09 10 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    To examine the small sample properties of the proposed estimation method

    To compare its performance with other methods: YW, CLS, WHT and LS_HOS

    1000 realizations of Poisson INAR(p) processes, with binomial thinning operation,for several orders, sample sizes and parameter values

    Sample properties of the cumulant TOR estimatorThe sample bias, variance and mean square error decrease as the sample size (ofthe block) increases Distribution is consistent and symmetricFor small sample size: evidence of departure from symmetry in the marginaldistributions, specially for values of the parameter near the non-stationary region

    Monte Carlo results and application to real data WINTS09 10 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    To examine the small sample properties of the proposed estimation method

    To compare its performance with other methods: YW, CLS, WHT and LS_HOS

    1000 realizations of Poisson INAR(p) processes, with binomial thinning operation,for several orders, sample sizes and parameter values

    Sample properties of the cumulant TOR estimatorThe sample bias, variance and mean square error decrease as the sample size (ofthe block) increases Distribution is consistent and symmetricFor small sample size: evidence of departure from symmetry in the marginaldistributions, specially for values of the parameter near the non-stationary region

    Coefficients underestimated; innovation parameter overestimated

    Monte Carlo results and application to real data WINTS09 10 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    To examine the small sample properties of the proposed estimation method

    To compare its performance with other methods: YW, CLS, WHT and LS_HOS

    1000 realizations of Poisson INAR(p) processes, with binomial thinning operation,for several orders, sample sizes and parameter values

    Sample properties of the cumulant TOR estimatorThe sample bias, variance and mean square error decrease as the sample size (ofthe block) increases Distribution is consistent and symmetricFor small sample size: evidence of departure from symmetry in the marginaldistributions, specially for values of the parameter near the non-stationary region

    Coefficients underestimated; innovation parameter overestimated

    Fixed M statistics measures decrease as B increases and vice-versa

    Monte Carlo results and application to real data WINTS09 10 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    TOR_1B TOR_2B TOR_4B TOR_1B TOR_2B TOR_4B2

    1

    0

    1

    2Bi

    as(

    1)

    TOR_1B TOR_2B TOR_4B TOR_1B TOR_2B TOR_4B2

    1

    0

    1

    2

    Bias

    (2)

    TOR_1B TOR_2B TOR_4B TOR_1B TOR_2B TOR_4B7

    0

    7

    Bias

    ()N=60 N=200

    Figure: Boxplots of the sample bias for the estimates obtained in 1000 realizations of 60 and 500 observations of theINAR(2) model: Xt = 0.6Xt1 +0.1Xt2 + et, where et Po(1).

    Monte Carlo results and application to real data WINTS09 11 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Monte Carlo results

    WHT CLS LS_HOS YW TOR_1B WHT CLS LS_HOS YW TOR_1B0.8

    0.4

    0

    0.4

    0.8Bi

    as(

    )

    WHT CLS LS_HOS YW TOR_1B WHT CLS LS_HOS YW TOR_1B5

    2.5

    0

    2.5

    5

    Bias

    ()(, )=(0.4, 3.0) (, )=(0.9, 3.0)

    Figure: Boxplots of the sample bias for the estimates obtained in 1000 realizations of 200 observations of the INAR(1)models: Xt = 0.4Xt1 + et and Xt = 0.9Xt1 + et, where et Po(1).

    Monte Carlo results and application to real data WINTS09 12 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Application to real data

    1920 1930 1940 1950 1960 1970 19815

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Num

    ber o

    f pla

    nts

    Figure: The number of Swedish mechanical paper and pulp mills, from 1921 to 1981 [Brnns (1995) and Brnns andHellstrm (2001)]

    Monte Carlo results and application to real data WINTS09 13 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Application to real dataSimple INAR(1)It is not assumed the Poisson distribution for the innovation process:

    X = 20.40 and S2 = 155.16

    Monte Carlo results and application to real data WINTS09 14 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Application to real dataSimple INAR(1)It is not assumed the Poisson distribution for the innovation process:

    X = 20.40 and S2 = 155.16

    Method e 2e x 2x MSECLS 0.9591 0.2017 15.2268 4.9279 192.2764 9.3254

    LS_HOS 0.9269 1.3635 19.2253 18.6516 145.4513 9.2997TOR_1B 0.9631 0.7518 14.7219 20.374 213.5073 8.9224

    Monte Carlo results and application to real data WINTS09 14 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Application to real dataSimple INAR(1)It is not assumed the Poisson distribution for the innovation process:

    X = 20.40 and S2 = 155.16

    Method e 2e x 2x MSECLS 0.9591 0.2017 15.2268 4.9279 192.2764 9.3254

    LS_HOS 0.9269 1.3635 19.2253 18.6516 145.4513 9.2997TOR_1B 0.9631 0.7518 14.7219 20.374 213.5073 8.9224

    Mean and variance of the estimated models: x =e

    1 and 2x =

    (1 )(e + 2e )(1 )2(1+ )

    Monte Carlo results and application to real data WINTS09 14 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Application to real dataSimple INAR(1)It is not assumed the Poisson distribution for the innovation process:

    X = 20.40 and S2 = 155.16

    Method e 2e x 2x MSECLS 0.9591 0.2017 15.2268 4.9279 192.2764 9.3254

    LS_HOS 0.9269 1.3635 19.2253 18.6516 145.4513 9.2997TOR_1B 0.9631 0.7518 14.7219 20.374 213.5073 8.9224

    Mean and variance of the estimated models: x =e

    1 and 2x =

    (1 )(e + 2e )(1 )2(1+ )

    MSE between the observations and the fitted models based on TOR_1B, LS_HOS andCLS estimates

    Monte Carlo results and application to real data WINTS09 14 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Application to real data

    1920 1930 1940 1950 1960 1970 19815

    10

    15

    20

    25

    30

    35

    40

    45

    50

    years

    Num

    ber o

    f pla

    nts

    real dataCLSTOR_1B

    Figure: The number of plants and the fitted values considering the TOR_1B and CLS estimatesMonte Carlo results and application to real data WINTS09 15 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Final remarks

    Advantage of HOS: capability to detect and characterize the deviations fromGaussianity and non-linearity of the processes

    Final remarks WINTS09 16 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Final remarks

    Advantage of HOS: capability to detect and characterize the deviations fromGaussianity and non-linearity of the processes

    INAR processes are non-Gaussian

    Parameter estimation method: Estimation using cumulant TOR equation

    Final remarks WINTS09 16 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Final remarks

    Advantage of HOS: capability to detect and characterize the deviations fromGaussianity and non-linearity of the processes

    INAR processes are non-Gaussian

    Parameter estimation method: Estimation using cumulant TOR equation

    The method does not assume any particular discrete distribution for the countingseries and for the innovation process

    Final remarks WINTS09 16 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Final remarks

    Advantage of HOS: capability to detect and characterize the deviations fromGaussianity and non-linearity of the processes

    INAR processes are non-Gaussian

    Parameter estimation method: Estimation using cumulant TOR equation

    The method does not assume any particular discrete distribution for the countingseries and for the innovation process

    Monte Carlo results: cumulant TOR estimates provides acceptable results, interms of sample bias, variance and mean square error

    Final remarks WINTS09 16 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    Final remarks

    Advantage of HOS: capability to detect and characterize the deviations fromGaussianity and non-linearity of the processes

    INAR processes are non-Gaussian

    Parameter estimation method: Estimation using cumulant TOR equation

    The method does not assume any particular discrete distribution for the countingseries and for the innovation process

    Monte Carlo results: cumulant TOR estimates provides acceptable results, interms of sample bias, variance and mean square error

    When used in the context of a non-Poisson real dataset the estimates that useHOS information provide a model with mean, variance and autocorrelationscloser to the sample values

    Final remarks WINTS09 16 / 17

  • I. Silva and M. E. Silva Parameter estimation using third-order cumulants for INAR(p) processes

    References

    BRNNS, K. (1995).Explanatory Variables in the AR(1) Count Data Model.Ume Economic Studies 381.

    BRNNS, K. and HELLSTRM, J. (2001).Generalized Integer-Valued Autoregression.Econometric Reviews 20 (4), 425-443.

    GAUTHIER, G. and LATOUR, A. (1994).Convergence forte des estimateurs des paramtres dunprocessus GENAR(p).Annales des Sciences Mathmatiques du Qubec 18,49-71.

    LATOUR, A. (1998).Existence and stochastic structure of a non-negativeinteger-valued autoregressive process.Journal of Time Series Analysis 19, 439-455.LEONOV, V.P. and SHIRYAEV, A.N. (1959).On a method of calculation of semi-invariants.Theory of Probability and its Applications (translated byBrown, J.R.) IV, pp. 319-329.

    MENDEL, J. M. (1991).Tutorial on higher-order statistics (spectra) in signalprocessing and system theory: theoretical results and someapplicationsProceedings of the IEEE 79, pp. 278-305.SILVA, I. (2005).Contributions to the analysis of discrete-valued timeseries.PhD Thesis. Universidade do Porto, Portugal.

    SILVA, M. E. and OLIVEIRA, V. L. (2004).Difference equations for the higher-order moments andcumulants of the INAR(1) model.Journal of Time Series Analysis 25, 317-333.SILVA, M. E. and OLIVEIRA, V. L. (2005).Difference equations for the higher-order moments andcumulants of the INAR(p) model.Journal of Time Series Analysis 26, 17-36.STEUTEL, F. W. and VAN HARN, K. (1979).Discrete analogues of self-decomposability and stability.The Annals of Probability 7, 893-899.

    References WINTS09 17 / 17