70
Overview of Overview of the MARSIS Active the MARSIS Active Ionospheric Sounder: Ionospheric Sounder: Data and Results Data and Results D. D. Morgan, D. A. Gurnett, D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner, A. J. Kopf, F. Jaeger, A. J. Kopf, F. Jaeger, F. Duru F. Duru

Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Embed Size (px)

Citation preview

Page 1: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Overview of Overview of the MARSIS Active the MARSIS Active Ionospheric Sounder:Ionospheric Sounder:

Data and ResultsData and Results

D. D. Morgan, D. A. Gurnett, D. D. Morgan, D. A. Gurnett,

R. L. Huff, D. L. Kirchner,R. L. Huff, D. L. Kirchner,

A. J. Kopf, F. Jaeger, A. J. Kopf, F. Jaeger,

F. Duru F. Duru

Page 2: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Science Objectives

Characterize the response of the Martian ionosphere to various inputs:

• Solar EUV intensity

• Energetic particles

• Areodetic effects (seasons, latitude, local time)

• Crustal magnetc fields

• Solar wind

Page 3: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Targets of Opportunity

• Spacecraft local electron density

• Magnetic field

• Absorption of surface reflection (indicator of energetic particles)

• Multiple ionospheric reflection (indicator of plasma trapped in crustal magnetic field cusps)

• Upper layers of ionosphere

Page 4: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Radar Reflections from the Ionosphere

Gurnett et al.2005, Science.

Page 5: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Solar wind on the ionosphere.

Page 6: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS)

• Time resolution = 91.4 μs ~ ±6.8 km

• Frequency resolution ≈10 kHz

• 80 delay time bins to 7.5 ms

• 160 frequency bins to 5.5 MHz

Page 7: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

An Ionogram

Duru et al., 2008, SWIM, San Diego

Page 8: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

1.25 ms

28.5 nTFor electrons B=1/28Tc

Akalin et al., 2008, SWIM, San Diego

Page 9: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

MARSIS MARSIS Active Ionospheric Sounder:Active Ionospheric Sounder:

Processing of Ionospheric Sounding TracesProcessing of Ionospheric Sounding Traces

Page 10: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 11: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 12: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 13: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Ionogram inversion

• Time delay equation:

pe s ,( )

20

pe s,

2

1 ( )

jz f f

j

j

dzt

c f z f

Page 14: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Inverting the delay time equation: lamination method (Jackson, 1969)

• Assume fpe is monotonic function of range z

• Assume horizontal stratification • Break into segments at instrument frequencies• Chose integrable functional form:

pe pe, 1( ) ( ) exp( )j jf z f z z

Page 15: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Inverting (continued)

• Invert:

• Change variables

• Integrate

pe pe

pe 1 s, 1

( ) ( )1 1ln ln

( )j j j j

f z f zz

f z f

pe,

pe, 1

pedelay, delay, , 1/22

1 1pe pe s,

pe, s, pe, 1 s,

1pe, s, pe, 1 s,

2

1

1 1 1 1 /1ln

1 1 / 1 1 /

i

i

j j f

j i j fi i

i j

ji j i j

i i i j i j

dft t

c f f f

f f f f

c f f f f

Page 16: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 17: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 18: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 19: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

P-03-14

D. D. Morgan, D. A. Gurnett, D. L. Kirchner, J. L. Fox, E. Nielsen, J. J. Plaut, G. Picardi

MARSIS MARSIS Active Ionospheric Sounding Active Ionospheric Sounding

ResultsResults

Page 20: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 21: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 22: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 23: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Procedure for using individual fits to Chapman model

• Order samples by some parameter, e. g., , Time, F10.7, etc.

• Place samples in bins of 100

• Take the average

Page 24: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

1.39 AU < R < 1.48 AU14 Aug. 2005 – 31 Jan. 2007

1.38 AU < R < 1.42 AU16 Feb. 2007 – 31 Jul. 2007

1.57 AU < R < 1.67 AU31 Jan. 2006 – 16 Feb. 2007

Page 25: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 26: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 27: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 28: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Conclusions (Morgan et al., 2008, accepted, J. Geophys. Res.)

• d ln n0/d ln F10.7 = 0.31 ± 0.04, compared to Hantsch and Bauer (1990): 0.36Fox and Yeager(2006): 0.29 – 0.41 for 60° ≤ χ ≤ 90°

Breus et al. (2004): 0.37• n0 varies between 1.4 to 1.8 x 105 cm-3, nearly constant with solar

zenith angle and latitude• h0 varies between 110 and 140 km, falls off at χ > 60° due to

oblique insolation but increases toward poles near summer solstice

• H ~11 km for 0 < χ < 40°, increases to 15 km (270 K, 1.39 AU < R < 1.48 AU, late southern

summer) 14 km (250 K, 1.57 AU < R < 1.67 AU, northern summer) 17 km (310 K, 1.38 AU < R < 1.42 AU, southern summer)

• SEPs are associated with Δ n0/ n0 of +6%, +Δ h0 of 3 km, ΔH of 7 km (??)

Page 29: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 30: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Morgan, D. D., D. A. Gurnett, D. L. Kirchner, J. L. Fox, E. Nielsen, and J. J. Plaut, Variation of the Martian ionospheric election density from Mars Express radar soundings, J. Geophys. Res., doi:10.1029/JA013313, accepted, 2008.

Page 31: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Investigation on the Magnetic Field Draping Near Mars from MARSIS

F. Akalin1, D. A. Gurnett1, T. F. Averkamp1, D. L. Kirchner1, R. Modolo1, G. Chanteur2, M. H. Acuna3, J. E.

P. Connerney3, J. R. Espley3, N. F. Ness4

1University of Iowa, Iowa City, IA 52240, USA2CETP-IPSL, 10-12 Avenue de l’Europe, 78140 Velizy, France

3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 4Inst. For Astrophysics and Computational Science, Catholic University of

America, Washington, DC 20064, USA

Page 32: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

OUTLINE

• Electron cyclotron echoes and how they are produced.

• Comparison of electron cyclotron echoes to Cain et al. model

1-Calculating the induced draped field vector

2-Determining MPB using electron number density and magnetic field

• Statistics of all the magnetic field measurements without crustal field

Page 33: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

1.25 ms

28.5 nTFor electrons B=1/28Tc

Page 34: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Gurnett et al. [2005]

Page 35: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Electron Cyclotron Echoes, Video/Audio

Page 36: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

1 2

1

2

Bx=18.54±0.96 nTBy=-16.22±0.58 nTBz=-7.11±1.02 nT

Bx=11.59±0.91nTBy=4.64±0.92 nTBz=9.27±0.78 nT

Page 37: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

B(ρ)=(By2+Bz

2)1/2

Page 38: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 39: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 40: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 41: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 42: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 43: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,
Page 44: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Conclusion

Limit of detectability of magnetic field by MARSIS, on dayside, coincides roughly with induced magnetosphere boundary.

Page 45: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

F. Duru, D. A. Gurnett, D. D. Morgan, R. Modolo,

A. F. Nagy, D. Najip and J. D. Winningham

Chapman Conference on Solar Wind Interactions with Mars, Jan. 24, 2008, San Diego

Electron Densities and the Boundary Between the Ionosphere and the Solar Wind at Mars from Local

Electron Plasma Oscillations

Page 46: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Duru, F., D. A. Gurnett, D. D. Morgan, R. Modolo, A. F. Nagy, and D. Najib, Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations, J. Geophys. Res., accepted, 2008.

Page 47: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

MARSIS on MEX(Mars Advanced Radar for Subsurface and Ionospheric

Sounding) Low-frequency radar sounder

used for sounding of the ionosphere as well as subsurface sounding.

Consists of: An antenna subsystem, 40 m tip to tip dipole antenna, 7 m monopole antenna, a radio frequency subsystem, a digital electronic subsystem.

Radar soundings are performed by transmitting a short pulse of radio waves at a fixed frequency, and then measuring the time delay of the returning echo.

MARSIS also measures local electron density from the excitation of local electron plasma oscillations.

Page 48: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

An Ionogram

Page 49: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Local Electron Densities As the transmitter steps in frequency strong local electrostatic

oscillations, called Langmuir waves are excited, when f = fp.

The local electron plasma frequency can be used to obtain the electron density.

ne = (fp/8980)2 cm-3, where fp is in Hz.

One of the advantages of this method is that the electron densities can be measured at very high altitudes, where remote soundings are not obtained.

This study is done at the altitudes between 275 km and 1300 km.

Page 50: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Electron Plasma Oscillation Harmonics The excitation of electron plasma oscillations by the sounder

transmitter creates harmonics of the local electron plasma frequency which are seen as closely spaced vertical lines in the upper left corner of the ionograms.

This is because, with voltage amplitudes on the antenna much greater than the power supply voltage in the preamplifier, the received waveforms are usually severely clipped.

In many cases, the fundamental of the electron plasma frequency cannot be observed, since it is below the lower limit of the frequency of the receiver. However, it can still be determined from the spacing of the harmonics which occur at higher frequencies.

Page 51: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Measurement Technique

Page 52: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Possible Effect of Temperature

For Te = 5000 K, no = 10 cm-3, λDe = 1.5 m.

ω2 = ω2pe[1 + 3λ2

Dek2]

λDe = 6.9 √(Te/no)

k = 2π / λ

The wavelength excited is approximately the length of the antenna, λ ~ 40 m.

For these parameters 3λ2Dek2 ~ 0.176, which is negligible.

Page 53: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Why are Plasma Oscillations Sometimes not Detected?

Low electron density (n < 10 cm-3)

If the electron density is too low, such as in the solar wind, the frequency is below the low frequency limit of the instrument (100 kHz).

Landau damping

If the temperature is high, such as in the solar wind, kλDe ≥ 1, then Landau damping prevents the detection of the wave.

High flow velocity

If the velocity of the plasma is high, such as in the solar wind, the wave packet will be carried away before it can be detected by the antenna. (VSW > ~160 km/s.)

Page 54: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

When the flow speed is high:

Page 55: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

The Local Electron Density for a Full Pass

Page 56: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Another Pass: Lots of Fluctuations

Page 57: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Percentage of the Ionograms with Plasma Oscillations (Introduces Sampling Bias)

Page 58: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Measured Electron Density Profiles

Page 59: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Electron Density Profiles Corrected for Sampling Bias

Page 60: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Median Electron Density Versus SZA

Page 61: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Electron Density Versus SZA at the peak in the Electron Density Profiles

Gurnett et al., 2005

Page 62: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

The importance of Plasma flow at High Altitudes (Ma et al., 2004)

Page 63: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Plasma Flow Simulations

A 3D Hybrid simulation model (Modolo et al., 2005). - A fluid description for the electrons and a fully kinetic

description for the ions. - Particles and fields are treated self-consistently. - Particles are represented by a set of macro-particles, which

obey the laws of motion of physical particles.

A 3-D Magnetohydrodynamic (MHD) model (Ma et al., 2004). - Four species, high resolution model. - Ideal MHD equations are used to define electrons, ions and

their motion.

Page 64: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Comparison of Data and Simulations

Page 65: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Does the Disappearance of Plasma Oscillations Correspond to the Ionopause?

The fact that the electron plasma oscillations appear and disappear suddenly through a given pass, can be used to obtain the boundary between the ionosphere of Mars and shocked solar wind (ionopause).

o Plasma oscillations disappear as the spacecraft goes to high altitudes.

o Disappearance of the plasma oscillations can be explained by the high temperatures, high flow velocities, and low electron densities in the magnetosheath.

Page 66: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Joint plot: Aspera-3 and MARSIS

Page 67: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Comparison with Magnetic Pileup Boundary (MPB)

Page 68: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Comparison with Solar Wind Speed Simulations

Page 69: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

Summary and Conclusions

Over 500 passes are studied and electron density profiles are obtained between 275 and 1300 km and 10o and 140o.

Individual passes have highly fluctuating profiles. There is an exponential relationship between the median electron

density and the altitude. The median electron density is almost constant on the dayside. It

decreases dramatically around the terminator. Our data are consistent with the MHD and Hybrid simulation models

and also with the inversion data. The data are highly variable at a given SZA or altitude. The fact that the electron plasma oscillations start and end suddenly

through a given pass, can be used to identify the ionopause. On the dayside, the data from MARSIS are compared to ASPERA-3

ELS data. They agree 93 % of the time. On the dayside, the boundary where the plasma oscillations disappear

is in agreement with the MPB. The boundary deviates from MPB on the nightside.

Page 70: Overview of the MARSIS Active Ionospheric Sounder: Data and Results D. D. Morgan, D. A. Gurnett, R. L. Huff, D. L. Kirchner, R. L. Huff, D. L. Kirchner,

From Transient layers in the topside ionosphere of Mars, A. J. Kopf, D. A. Gurnett, D. D. Morgan, and D. L. Kirchner, Submitted to GRL, June 2008.