1
4.�Relay�Optics�from�Nasmyth�to�Heterodyne�Receivers�[6] -�3�cryostats ����6�recievers�installed -�Observation�modes ����9�ways�we�will�be ����able�to�choose -�Switching�receivers ����using�a�mechanism�as ����shown�in�Fig.�4�lower, ����with�2�wire�grids,�a�plane ����mirror,�and�void�space 2.�Optical�Design�(to�Nasmyth) -�Ritchey-Chrétien�system ����two�hyperboloid�mirrors�(PM,�SM)� ����and�correcting�mirror�(TM) -�Wide�Field-of-View ����F/6,�1�degree�at�1.5�THz�(Nasmyth) NRO�UM�2014� Overview�of�Antarctica�10�m�THz�Telescope�Optics H.�Imada 1 ,�T.�Tsuzuki 2 ,�T.�Nitta 2 ,�M.�Nagai 1 ,�M.�Seta 1 ,�K.�Asakura 1 ,�Y.�Onodera 1 ,�M.�Sugaya 1 ,�Y.�Sekimoto 2 ,�N.�Nakai 1 ,�N.�Kuno 1 , S.�Kitamoto 1 ,�K.�Kobayashi 1 ( ��1 University�of�Tsukuba,� 2 NAOJ) ����We�have�a�plan�to�construct�a�10-m�THz�telescope�in�Antarctica�and�show�an�overview�briefly.�Meteorological�and�optical�environments�in�Antarctica,�opti- cal�systems�of�our�telescope�are�shown.�Ritchey-Chrétien�system�and�free-form�mirrors�are�adopted�to�aquire�a�wide�field-of-view.�To�study�feasibility�to� manufacture,�we�have�made�a�brief�error�budget�and�investigated�whether�to�satisfy�it�with�regard�to�primary�mirror�panels�and�relay�optics�mirrors. 1.�Science�goal ��There�are�many�galaxies�called�SMGs�that�cannot�be�observed�at�vis- ible�light,�but�can�only�be�observed�at�sub-mm.�SMGs�and�more�distant� galaxies�are�expected�to�be�most�luminous�in�THz�band.�Developing�a� THz�telescope�(400�GHz�-�1.5�THz)�with�wide�field-of-view,�it�allows�us� to�survey�a�whole�sky�and�to�detect�a�number�of�unknown�galaxies. 3.�Relay�Optics�from�Nasmyth�to�Radio�Camera�[5] -�Convert�F/6�to�F/1 ����four�free-form�mirrors�and�one ����alumina�lens -�Wide�Field-of-View ����F/1,�1�degree�at�850�GHz�(at�detectors) references [1]�H.�Okita,�Ph.D.�dissertation,�Tohoku�University,�Feb.�2014.�[2]�Data�provided�by�H.�Okita,�NAOJ.�[3]�S.�Takahashi,�et�al.,��JARE�Data�Reports.� Meteorology,�vol.�36,�pp.�1–416,�Mar.�2004.�[4]�S.�Ishii,�et�al.,�Polar�Science,�Vol.�3,�pp.�213–221,�August�2010.�[5]�Tsuzuki�et�al.,�Journal�of� Astronomical�Telescope�Instruments,�and�Systems,�2014�(submitted).�[6]M.�Sugaya,�Master's�thesis,�University�of�Tsukuba,�Feb.�2014.�[7]�Y.� Onodera,�Master's�thesis,�University�of�Tsukuba,�Feb.�2014.�[8]�K.�Asakura,�Bachelor's�thesis,�University�of�Tsukuba,�Feb.�2014. 5.�brief�error�budget ��Wavefront�errors�for�radio�camera�are�roughly�assigned�as�shown�in� Table�1�(see�also�Fig.�2�and�3).�Thermal�and�gravitational�deformation� for�PM�panels�are�permitted�at�most�~�8�um.�4.5�um�for�relay�optics� requires�deviation�of temperature�less�than 1�℃. 6.�Deformation�of�PM�panels ����PM�is�composed�of�90�Al�panels�[7].�Optimizing� thickness�of�panels,�and�positions�and�widths�of� ribs,�wavefront�errors�will�be�less�than�12.6�um.� The�details�are�as�follows: ����gravitational�deformation�3.8�um ����thermal�deformation��������3.4�um ����thermal�gradient��������������5.6�um�→�rss�7.6�um other�componets: ����manufacturing�errors�������2.9�um ����misalignment�������������������9.6�um�→�rss�12.6�um 7.�Two�receiver�cabins�thermal�design -�Specifications�for�two�cabins�(radio�camera�and�heterodyne�receivers) Conclusion We show environments in Antarctica, the optical systems of our tel- escope, and feasibility to manufacture partly. It seems to be possible to manufacture at present but very difficult, we guess. After this, we will investigate mirrors not evaluated here and supporting structures. 0 1 2 3 4 5 6 7 8 9 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 percent temperature [deg.] winter Gaussian summer all season (a) (b) (c) (d) (e) (f) 2.�Dome�Fuji�Station ��Dome�Fuji�Station�is�located�about�1000�km�inland�(a)�and�at�an�alti- tude�of�about�3800�m.�An�annual�mean�temperature�is�about�-54�de- grees�Celsius�and�a�minimum�is�about�-80�℃.�Wind�is�calm�(b).�Dome� Fuji�Station�is�one�of�the�most�adquate�site�to�observe�sub-mm�and� THz�wave�(f). ave. 5.8 m/s at 10 m high 0.3�m 9.5 m 12.0 m 15.8 m 0.0 m at 220 GHz at 220 GHz (a)�Location�of�Dome�Fuji�Station.�(b)�Wind�speed�histogram.�(c)�Monthly�mean�temperature� [1].�red:�at�0.3�m�high,�blue:�at�9.5�m�high,�green:�at�12.0�m�high,�black:�15.8�m�high,�and� back:�at�0.0�m.�(d)�Mean�temperature�gradient�between�15.8�m�and�12.0�m�against�that�be- tween�9.5�m�and�0.3�m.�The�feature�encircled�appears�when�the�temperature�at�0.3�m�is�less� than�-55�℃.�[2]�(e)�Temperature�histogram.�red�cross:�May�to�Sep.,�blue:�Oct.�to�Apr.,� magenta:�all�season,�and�green:�Gaussian�fitting�for�winter�with�a�mean�of�-65�℃�and�a� deviation�of�5�℃.�[3]�(f)�Optical�depth�at�220�GHz.�[4] Strehl�ratio�map Spot�diagram Fig.�2����Layout�of�optical�design.�Primary�mirror� (PM)�and�Secondary�mirror�(SM)�are�hyperboloid.� Tertiary�mirror�(TM)�is�equipped�on�EL�axis�and� switches�from�one�focus�to�the�other. Strehl�ratio�map Spot�diagram 0.0 0.8 1.0 Fig.�3����Layout�of�the�relay�optics�to�the�radio� camera.�It�is�composed�of�four�free-form�mirrors� and�an�alumina�lens.�The�mirros�and�lens�are� optimaize�at�850�GHz�[5]. lens Radio Camera Cabin 4.8m(W),4.0m(H),3.0m(D) Heterodyne Cabin 3.4m(W),2.0m(H),2.1m(D) Receiver Room Compressor Room Air Circulation Receiver Radio Wave Compres- sor Optical System RadioWave Exhaust Take Cold Air CABIN Fine adjustment of temperature usingheater Width Height Steel: Insulation: Steel 0.1mm:to be calculate:0.1mm InsulatingWall Cam 53 W/(mK) Emissivity 0.35 0.028 W/(mK) Cabin�temp. 0�℃�in�all�seasons to�reduce�a�thermal�flow�into�receivers,� to�run�instruments�normally Temp.�deviation ±�1�℃ to�reduce�mirror�deformation Source�of�heat exhaust�heat�of�instruments to�save�energy Air�flowing�into� cabins hot�exhaust�from�instruments� mixed�with�outside�cold�air Structure�of�wall two�sheets�of�steel�and� a�Styrofoam�insulation See�Fig.�6 -�Thermal�model ����Table�3,�Fig.�6,�and�7�show� thermal�models�considered.� 3�cases�are�demonstrated: 1)�radio�camera�cabin ����in�summer�[8], 2)�radio�camera�cabin ����in�winter�[8], 3)�heterodyne�receiver ����cabin�in�winter�[6]. Fig.�6��Structure�of�insu- lating�wall Table�2��Specification Table�3��Parameters Fig.�7�(above)��Schematic�illustration�of�re- ceiver�cabins.�Hot�exhaust,�mainly�from�com- pressor,�is�used�to�keep�the�inside�tempera- ture�at�about�0�℃.� Fig.�8�(right)��Thermal�flow�through�the�insu- lating�wall.�The�upper�part�represents�the� case�of�1),�the�middle�the�case�of�2),�the� lower�the�case�of�3). -�Results�(Fig.�8) ����*�Radio�camera�cabin:�30�mm�insulation�can�keep�the�inside�temper- ������ature�0�℃�in�winter.�Thus�the�thickness�of�50mm�is�adopted.�A� ������maximum�of�surplus�internal�heating�is�7.2�kW�in�summer,�and� ������1200�m 3 /h�cold�air�is�needed�to�mix�the�hot�exhaust�with. ����*�Heterodyne�receiver�cabin:�A�maximum�of�surplus�internal�heating� ������is�1.7�kW�in�winter,�and�115�m 3 /h�cold�air�is�needed.�100�mm�insu- ������lation�can�keep�the�inside�temperature�0�℃�in�winter. ����*�The�solar�radiation�changes�quickly.�There�is�a�difference�of�0.2�kW� ������between�heat�flows�from�the�rooms�with�the�solar�radiation�and� ������without�it.�60�kJ�are�required�to�change�the�room�temperature�by ������1�℃.�Thus�timescale�is�about�300�sec.�(=�60�kJ/0.2�kW). Radio�camera�cabin Heterodyne�receiver�cabin parameters�to�be�calculated thickness�of�insulator,�tempera- ture�of�two�sheets�of�steel fixed�parameters cabin�temp. outside�temp. wind�speed insulator conductivity thichness emissivity snow temp. solar�radiation amount�of�heat� from�instruments temperature�of�outside�steel -20�℃�(summer),�-80�℃�(winter) 0�℃�(all�seasons) -60�℃�(winter) 1�m/s�(summer),�5�m/s�(winter) natural�convection 12�kW�(summer),�0�kW�(winter) 0�kW�(winter) 8.1�kW 2.3�kW 0.028�W/m/K 53�W/m/K 0.1�mm 0.5�mm 0.35 0.2 not�to�be�considered 99�mm - EM1 Nasmyth Fig.�4��Heterodyne�receiver�cabin�[6].�(left)� Schematic�illustration.�There�are�two�ellipti- cal�mirrors�after�the�Nasmyth�focus.�(right)� Layout�of�the�relay�optics�to�Heterodyne� receivers.�(lower)�A�rotatble�mechanism�to� switch�over�to�another�receiver. EM2 cryostat INSIDE OUTSIDE INSULATING WALL RoomTemp.:0 Wind :0m/s Radio Camera Summer Midnight Sun Outside Temp.:-20 Wind :1m/s Outside Temp.:-80 Wind :5m/s Outside Temp.:-60 Wind :0m/s 0.13kW:Convection Convection:3.6kW 3.6kW:Radiation 1.1kW:Radiation 0.45kW:Radiation Conduc- tion 12kW:Solar radiation 9.1kW:Convection 2.5kW: sConvection Convection:0.74kW 0.58kW 3.6kW 0.74kW Internal Heating:8.1kW Radio Camera Winter Polar Night Heterodyne Winter Polar Night Internal Heating:8.1kW Internal Heating:2.3kW Conduc -tion Conduc -tion RoomTemp.:0 Wind :1m/s RoomTemp.:0 Wind :1m/s -16.3 -0.3 -1.5 0.0 -79.7 -59.2 0.58kW a Assumingthis temperature is same as roomtemperature. Nasmyth focus 1000�mm M1 M2 M3 M4 PM���������SM���������TM�������M1-M4������lens���������WE Strehl ratio 12.6�um���5.8�um����3.2�um����4.5�um����4.5�um��17.4�um������0.7 Table 1 Wavefront errors (WE) at 1.5 THz 0.0 5.0 unit:�um Fig.5�(upper)�Structure�of� ribs.�(lower)�Gravitational� deformation.

Overview of Antarctica 10 m THz Telescope Opticsnroum/html/2014/data/poster/P30...Convection:0.74kW 0.58kW 3.6kW 0.74kW Internal Heating:8.1kW RadioCamera Winter PolarNight Heterodyne

  • Upload
    lyquynh

  • View
    215

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Overview of Antarctica 10 m THz Telescope Opticsnroum/html/2014/data/poster/P30...Convection:0.74kW 0.58kW 3.6kW 0.74kW Internal Heating:8.1kW RadioCamera Winter PolarNight Heterodyne

3.18 10 m

– 37 –

4.�Relay�Optics�from�Nasmyth�to�Heterodyne�Receivers�[6]-�3�cryostats����6�recievers�installed-�Observation�modes����9�ways�we�will�be����able�to�choose-�Switching�receivers����using�a�mechanism�as����shown�in�Fig.�4�lower,����with�2�wire�grids,�a�plane����mirror,�and�void�space

2.�Optical�Design�(to�Nasmyth)-�Ritchey-Chrétien�system����two�hyperboloid�mirrors�(PM,�SM)�����and�correcting�mirror�(TM)-�Wide�Field-of-View����F/6,�1�degree�at�1.5�THz�(Nasmyth)

NRO�UM�2014�

Overview�of�Antarctica�10�m�THz�Telescope�OpticsH.�Imada1,�T.�Tsuzuki2,�T.�Nitta2,�M.�Nagai1,�M.�Seta1,�K.�Asakura1,�Y.�Onodera1,�M.�Sugaya1,�Y.�Sekimoto2,�N.�Nakai1,�N.�Kuno1,

S.�Kitamoto1,�K.�Kobayashi1(��1University�of�Tsukuba,�2NAOJ)

����We�have�a�plan�to�construct�a�10-m�THz�telescope�in�Antarctica�and�show�an�overview�briefly.�Meteorological�and�optical�environments�in�Antarctica,�opti-cal�systems�of�our�telescope�are�shown.�Ritchey-Chrétien�system�and�free-form�mirrors�are�adopted�to�aquire�a�wide�field-of-view.�To�study�feasibility�to�manufacture,�we�have�made�a�brief�error�budget�and�investigated�whether�to�satisfy�it�with�regard�to�primary�mirror�panels�and�relay�optics�mirrors.

1.�Science�goal��There�are�many�galaxies�called�SMGs�that�cannot�be�observed�at�vis-ible�light,�but�can�only�be�observed�at�sub-mm.�SMGs�and�more�distant�galaxies�are�expected�to�be�most�luminous�in�THz�band.�Developing�a�THz�telescope�(400�GHz�-�1.5�THz)�with�wide�field-of-view,�it�allows�us�to�survey�a�whole�sky�and�to�detect�a�number�of�unknown�galaxies.

3.�Relay�Optics�from�Nasmyth�to�Radio�Camera�[5]-�Convert�F/6�to�F/1����four�free-form�mirrors�and�one����alumina�lens-�Wide�Field-of-View����F/1,�1�degree�at�850�GHz�(at�detectors)

references[1]�H.�Okita,�Ph.D.�dissertation,�Tohoku�University,�Feb.�2014.�[2]�Data�provided�by�H.�Okita,�NAOJ.�[3]�S.�Takahashi,�et�al.,��JARE�Data�Reports.�Meteorology,�vol.�36,�pp.�1–416,�Mar.�2004.�[4]�S.�Ishii,�et�al.,�Polar�Science,�Vol.�3,�pp.�213–221,�August�2010.�[5]�Tsuzuki�et�al.,�Journal�of�Astronomical�Telescope�Instruments,�and�Systems,�2014�(submitted).�[6]M.�Sugaya,�Master's�thesis,�University�of�Tsukuba,�Feb.�2014.�[7]�Y.�Onodera,�Master's�thesis,�University�of�Tsukuba,�Feb.�2014.�[8]�K.�Asakura,�Bachelor's�thesis,�University�of�Tsukuba,�Feb.�2014.

5.�brief�error�budget��Wavefront�errors�for�radio�camera�are�roughly�assigned�as�shown�in�Table�1�(see�also�Fig.�2�and�3).�Thermal�and�gravitational�deformation�for�PM�panels�are�permitted�at�most�~�8�um.�4.5�um�for�relay�optics�requires�deviation�oftemperature�less�than1�℃.

6.�Deformation�of�PM�panels����PM�is�composed�of�90�Al�panels�[7].�Optimizing�thickness�of�panels,�and�positions�and�widths�of�ribs,�wavefront�errors�will�be�less�than�12.6�um.�The�details�are�as�follows:����gravitational�deformation�3.8�um����thermal�deformation��������3.4�um����thermal�gradient��������������5.6�um�→�rss�7.6�umother�componets:����manufacturing�errors�������2.9�um����misalignment�������������������9.6�um�→�rss�12.6�um

7.�Two�receiver�cabins�thermal�design-�Specifications�for�two�cabins�(radio�camera�and�heterodyne�receivers)

Conclusion We show environments in Antarctica, the optical systems of our tel-escope, and feasibility to manufacture partly. It seems to be possible to manufacture at present but very difficult, we guess. After this, we will investigate mirrors not evaluated here and supporting structures.

0

1

2

3

4

5

6

7

8

9

-90 -80 -70 -60 -50 -40 -30 -20 -10 0

perc

ent

temperature [deg.]

winterGaussiansummer

all season

(a) (b) (c)

(d) (e) (f)

2.�Dome�Fuji�Station��Dome�Fuji�Station�is�located�about�1000�km�inland�(a)�and�at�an�alti-tude�of�about�3800�m.�An�annual�mean�temperature�is�about�-54�de-grees�Celsius�and�a�minimum�is�about�-80�℃.�Wind�is�calm�(b).�Dome�Fuji�Station�is�one�of�the�most�adquate�site�to�observe�sub-mm�and�THz�wave�(f).

ave. 5.8 m/sat 10 m high

0.3�m

9.5 m

12.0 m15.8 m

0.0 m

at 220 GHz at 220 GHz

(a)�Location�of�Dome�Fuji�Station.�(b)�Wind�speed�histogram.�(c)�Monthly�mean�temperature�[1].�red:�at�0.3�m�high,�blue:�at�9.5�m�high,�green:�at�12.0�m�high,�black:�15.8�m�high,�and�back:�at�0.0�m.�(d)�Mean�temperature�gradient�between�15.8�m�and�12.0�m�against�that�be-tween�9.5�m�and�0.3�m.�The�feature�encircled�appears�when�the�temperature�at�0.3�m�is�less�than�-55�℃.�[2]�(e)�Temperature�histogram.�red�cross:�May�to�Sep.,�blue:�Oct.�to�Apr.,�magenta:�all�season,�and�green:�Gaussian�fitting�for�winter�with�a�mean�of�-65�℃�and�a�deviation�of�5�℃.�[3]�(f)�Optical�depth�at�220�GHz.�[4]

Strehl�ratio�map Spot�diagram

Fig.�2����Layout�of�optical�design.�Primary�mirror�(PM)�and�Secondary�mirror�(SM)�are�hyperboloid.�Tertiary�mirror�(TM)�is�equipped�on�EL�axis�and�switches�from�one�focus�to�the�other.

Strehl�ratio�map Spot�diagram0.0

0.8

1.0

Fig.�3����Layout�of�the�relay�optics�to�the�radio�camera.�It�is�composed�of�four�free-form�mirrors�and�an�alumina�lens.�The�mirros�and�lens�are�optimaize�at�850�GHz�[5].

lens

RadioCameraCabin:4.8m(W),4.0m(H),3.0m(D)HeterodyneCabin:3.4m(W),2.0m(H),2.1m(D)

Receiver Room

Compressor Room

Air Circulation

ReceiverRadioWave

Compres-sor

Optical System RadioWave

Exhaust

TakeColdAir

CABIN

Fineadjustment oftemperatureusingheater

Width

Height

Steel: Insulation: Steel0.1mm:tobecalculate:0.1mm0.5mm: 99mm :0.5mm

InsulatingWall

CameraHeterodyne

53W/(mK)

Emissivity0.35

0.028W/(mK)

Sheet1

ページ 1

Cabin�temp. 0�℃�in�all�seasonsto�reduce�a�thermal�flow�into�receivers,�

to�run�instruments�normally

Temp.�deviation ±�1�℃ to�reduce�mirror�deformation

Source�of�heat exhaust�heat�of�instruments to�save�energy

Air�flowing�into�cabins

hot�exhaust�from�instruments�mixed�with�outside�cold�air

Structure�of�walltwo�sheets�of�steel�and�a�Styrofoam�insulation

See�Fig.�6

-�Thermal�model����Table�3,�Fig.�6,�and�7�show�thermal�models�considered.�3�cases�are�demonstrated:1)�radio�camera�cabin����in�summer�[8],2)�radio�camera�cabin����in�winter�[8],3)�heterodyne�receiver����cabin�in�winter�[6].

Fig.�6��Structure�of�insu-lating�wall

Table�2��Specification

Table�3��Parameters

Fig.�7�(above)��Schematic�illustration�of�re-ceiver�cabins.�Hot�exhaust,�mainly�from�com-pressor,�is�used�to�keep�the�inside�tempera-ture�at�about�0�℃.�Fig.�8�(right)��Thermal�flow�through�the�insu-lating�wall.�The�upper�part�represents�the�case�of�1),�the�middle�the�case�of�2),�the�lower�the�case�of�3).

-�Results�(Fig.�8)����*�Radio�camera�cabin:�30�mm�insulation�can�keep�the�inside�temper-������ature�0�℃�in�winter.�Thus�the�thickness�of�50mm�is�adopted.�A�������maximum�of�surplus�internal�heating�is�7.2�kW�in�summer,�and�������1200�m3/h�cold�air�is�needed�to�mix�the�hot�exhaust�with.����*�Heterodyne�receiver�cabin:�A�maximum�of�surplus�internal�heating�������is�1.7�kW�in�winter,�and�115�m3/h�cold�air�is�needed.�100�mm�insu-������lation�can�keep�the�inside�temperature�0�℃�in�winter.����*�The�solar�radiation�changes�quickly.�There�is�a�difference�of�0.2�kW�������between�heat�flows�from�the�rooms�with�the�solar�radiation�and�������without�it.�60�kJ�are�required�to�change�the�room�temperature�by������1�℃.�Thus�timescale�is�about�300�sec.�(=�60�kJ/0.2�kW).

Sheet1

ページ 1

Radio�camera�cabin Heterodyne�receiver�cabin

parameters�to�be�calculated

thickness�of�insulator,�tempera-ture�of�two�sheets�of�steel

fixed�parameters

cabin�temp.

outside�temp.

wind�speed

insulator

conductivity

thichness

emissivity

snow

temp.

solar�radiation

amount�of�heat�from�instruments

temperature�of�outside�steel

-20�℃�(summer),�-80�℃�(winter)

0�℃�(all�seasons)

-60�℃�(winter)

1�m/s�(summer),�5�m/s�(winter) natural�convection

12�kW�(summer),�0�kW�(winter) 0�kW�(winter)

8.1�kW 2.3�kW

0.028�W/m/K

53�W/m/K

0.1�mm 0.5�mm

0.35

0.2not�to�be�considered

99�mm-

3.12 6 9 2

EM1

Nasmyth

3.14 2

Fig.�4��Heterodyne�receiver�cabin�[6].�(left)�Schematic�illustration.�There�are�two�ellipti-cal�mirrors�after�the�Nasmyth�focus.�(right)�Layout�of�the�relay�optics�to�Heterodyne�receivers.�(lower)�A�rotatble�mechanism�to�switch�over�to�another�receiver.

EM2 cryostat

INSIDE OUTSIDEINSULATINGWALL

RoomTemp.:0Wind:0m/s

RadioCameraSummer

Midnight Sun

OutsideTemp.:-20Wind:1m/s

OutsideTemp.:-80Wind:5m/s

OutsideTemp.:-60Wind:0m/s

0.13kW:Convection

Convection:3.6kW

3.6kW:Radiation

1.1kW:Radiation

0.45kW:Radiation

Conduc-tion

12kW:Solar radiation

9.1kW:Convection

2.5kW:sssssssConvection

Convection:0.74kW

0.58kW

3.6kW

0.74kWInternal

Heating:8.1kW

RadioCameraWinter

Polar Night

HeterodyneWinter

Polar Night

InternalHeating:8.1kW

InternalHeating:2.3kW Conduc

-tion

Conduc-tion

RoomTemp.:0Wind:1m/s

RoomTemp.:0Wind:1m/s -16.3-0.3

-1.5

0.0

-79.7

-59.2

0.58kW

a Assumingthistemperatureissameasroomtemperature.

3mirrors-polynomial-20130914_50deg_almina_nonflat_131022_2_3_jump_last2_display.zmxコンフィグレーション 1 / 1

3D レイアウト

8

Nasmythfocus

1000�mm

M1

M2M3

M4

Sheet1

ページ 1

PM���������SM���������TM�������M1-M4������lens���������WEStrehlratio

12.6�um���5.8�um����3.2�um����4.5�um����4.5�um��17.4�um������0.7

Table 1 Wavefront errors (WE) at 1.5 THz

5.45: 1 2

5.46: 2

90

5.47:2

5.46

5.3.4

30m

m1.05

µm

1.9µm

30m

m19.23

kg4

kg

20m

m1.13

µm

40µm

,50

µm

10m

m1

kg90

90kg

30m

mB

5.5×10

4m

m2

4.5×10

4m

m2

915.47: 2 5.46

5.3.4

30 mm 1.05 µmµm 30 mm 19.23 kg

4 kg

20 mm1.13 µm 40 µm, 50 µm

10 mm1 kg 90 90 kg

30 mmB 5.5×104 mm2

4.5×104 mm2

91

0.0

5.0unit:�um

Fig.5�(upper)�Structure�of�ribs.�(lower)�Gravitational�deformation.