60
Optomechanics with Blue Detuning Klemens Hammerer Centre for Quantum Engineering and Space-Time Research Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational Physics (AEI) Summer School on Optomechanics – Les Houches – Aug 2015

Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

Optomechanics with Blue Detuning

Klemens Hammerer

Centre for Quantum Engineeringand Space-Time Research

Leibniz University HannoverInstitute for Theoretical Physics

Institute for Gravitational Physics (AEI)

Summer School on Optomechanics – Les Houches – Aug 2015

Page 2: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

2

Optomechanics in 1920s

Page 3: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

3

Gedankenexperiment #1: Heisenberg microscope

Heisenberg, The Physical Principles of the Quantum Theory, 1930

uncertainty in Compton recoil

Page 4: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

4

Standard Quantum Limit in Position Sensing

free mass

measure position to precision

momentum has uncertainty

uncertainty in position at later time

amplitude

phase

measurement back action

observed in cavity optomechanical system: Purdy et al, Science 339, 801 (2013)

Page 5: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

5

Gedankenexperiment #2: Optical Cooling of Mirror & its Quantum Limits

“On the development of our conception regarding the nature and constitution of radiation.”

Talk at “81st meeting of the Society of Natural Scientists and Medics” Salzburg 1909

Page 6: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

6

Doppler shift of reflected wave

force due to momentum transfer on mirror

Radiation provides friction

Gedankenexperiment #2: Optical Cooling of Mirror & its Quantum Limits

for power

Page 7: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

7

Doppler shift of reflected wave

force due to momentum transfer on mirror

Radiation provides friction

limitation is given by (quantum) fluctuations of EM field subject to Plancks law

Gedankenexperiment #2: Optical Cooling of Mirror & its Quantum Limits

for power

temperature

Doppler cooling

observed in cavity optomechanical system (with resolved sideband cooling):Chan Nature 478, 89 (2011), Teufel, Nature 475, 359 (2011).

Page 8: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

8

Quantum effects so far in optomechanics (incl. μw electromechanics)

» ground state cooling

» Quantum coherent coupling

» ponderomotive squeezing

» back action noise in position sensing

» quantum coherent state transfer

» optomechanical entanglement

» feedback control within decoherence time

» Quantum squeezing of motion

Chan Nature 478, 89 (2011).Teufel, Nature 475, 359 (2011).

Safavi-Naeini, Nature 500, 185 (2013).Brooks, Nature 488, 476 (2012).

Purdy, Science 339, 801 (2013).

O’Connell, Nature 464, 697 (2010)Palomaki, Nature 495, 210 (2013)

Palomaki, Science 342, 710 (2013)

Roukes, Schwab (2005)

KH, Science 342 702 (2013)

Verhagen, Nature 482, 63 (2012).

Wilson, arXiv:1410.6191 (2014)

Wollman, arXiv:1507,01662 (2015)

Page 9: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

9

Optomechanical systems

radiation pressure interaction

Page 10: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

Optomechanical systems

LIGO – Laser Interferometer Gravitational Wave Observatory

D. Bowmeester, Santa Barbara/Leiden

up to

Page 11: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

Mechanical SystemsCoupled to Light

Quantum OptomechanicsM. Aspelmeyer, F. Marquardt, T. Kippenberg,RMP, arXiv:1303.0733

Macroscopic Quantum Mechanics: Theory and Experimental Conceptsof OptomechanicsY. ChenJ Phys. B 46 104001 (2013)

Quantum Optomechanics - throwing a glanceM. Aspelmeyer, S. Groeblacher, KH, N. KieselJOSA B 27, A189 (2010)

Page 12: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

12

Optomechanical systems

radiation pressure interaction

for

M. Aspelmeyer, F. Marquardt, T. Kippenberg, RMP, arXiv:1303.0733

example:

Page 13: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

13

effective coupling strength

number of circulating photons

Optomechanical systems

for

linearized radiation pressure interaction

for 1mW and 1 MHz line width

strong coupling & normal mode splitting

Page 14: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

14

Optomechanical Cooperativity

condition for quantum coherent dynamics:

large optomechanical cooperativity

Page 15: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

15

Quantum effects so far in optomechanics (incl. μw electromechanics)

» ground state cooling

» Quantum coherent coupling

» ponderomotive squeezing

» back action noise in position sensing

» quantum coherent state transfer

» optomechanical entanglement

» feedback control within decoherence time

» Quantum squeezing of motion

Quantum Effects in Optomechanics

Chan Nature 478, 89 (2011).Teufel, Nature 475, 359 (2011).

Safavi-Naeini, Nature 500, 185 (2013).Brooks, Nature 488, 476 (2012).

Purdy, Science 339, 801 (2013).

O’Connell, Nature 464, 697 (2010)Palomaki, Nature 495, 210 (2013)

Palomaki, Science 342, 710 (2013)

Verhagen, Nature 482, 63 (2012).

Wilson, arXiv:1410.6191 (2014)

Wollman, arXiv:1507,01662 (2015)

Page 16: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

16

Optomechanical “Phase Diagramm”

C. Genes, D. Vitali et al. Phys. Rev. A 77, 033804 (2008)

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

unstable

unstable

stable

couplingstrength

detuning

cooperativity

1

2

5

10

Page 17: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

17

Resonant Drive: Position Sensing

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

couplingstrength

detuning

cooperativity

1

2

5

10

measurement back action: Purdy, Science 339, 801 (2013).

“QuantumNon-Demolitioninteraction”

Page 18: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

18

Red Detuned Drive: Optomechanical Cooling

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

couplingstrength

detuning

cooperativity

1

2

5

10

ground state cooling

Chan Nature 478, 89 (2011)Teufel, Nature 475, 359 (2011)

Page 19: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

19

Blue Detuned Drive

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

couplingstrength

detuning

cooperativity

1

2

5

10

?

Page 20: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

20

Resonant interaction is entangling

Compare to parametric down-conversion in nonlinear optics:

Blue detuned drive: Optomechanical Heating

pump

Ou, Pereira, Kimble, Peng,PRL 68, 3663 (1992)

opticalmode

opticalmode

opticalmode

Page 21: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

21

Digression: Two Mode Squeezing

Squeezed states of two modes

each mode looks like it was in a thermal state

overall state is pure with corresponding wave function

Page 22: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

22

Digression: EPR Correlations

for infinite squeezing this corresponds to the ideal EPR state

Center of mass position and relative momentum take sharp values

for two mode squeezed states with finite squeezing limit for uncorrelated states in ground state

Page 23: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

23

Digression: Entanglement

Two mode squeezed states are entangled: cannot be written as product state

a mixed states is entangled if it can not be written as a mixture of product states

general EPR entanglement criterion for two modes

for Gaussian states this is necessary & sufficient (slightly generalized)

a state is entangled if

limit for uncorrelated states in ground state

Duan PRL (2000)Simon PRL (2000)

Page 24: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

24

Drive on upper sideband creates entanglement

Problem: System is dynamically unstable for blue detuned drive

use a pulsed drive: solve scattering problem

Blue detuned drive unstable regime

Sebastian G. Hofer, Witlef Wieczorek, Markus Aspelmeyer, KHPhys. Rev. A 84, 052327 (2011) O. Romero-Isart et al., Physical Review A 83, 013803 (2011)

noise

optically induced damping and frequency shifty

Page 25: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

25

Pulsed Generation of Entanglement

integrate for pulse suration

central frequency at upper sideband

assuming

weak thermal decoherence

sideband resolved limit for suppression of Anti-Stokes scattering

weak coupling: adiabatic elimination of cavity mode (avoid memory effects)

Sebastian G. Hofer, Witlef Wieczorek, Markus Aspelmeyer, KHPhys. Rev. A 84, 052327 (2011)

Page 26: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

26

will generate photons at cavity frequency in precise temporal mode

input-output relations for scattered pulse

squeezing parameter

Pulsed Generation of Entanglement

two mode squeezed state!

mode profile

Page 27: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

27

Pulsed Generation of Entanglement

EPR variance, taking into account initial thermal occupation of mirror

if

large EPR squeezing requires large cooperativity:

for pulse length

squeezing parameter

for

Sebastian G. Hofer, Witlef Wieczorek, Markus Aspelmeyer, KHPhys. Rev. A 84, 052327 (2011)

Page 28: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

28

drive system on first red sideband:

mechanical state is swapped to light

entanglement preparation and verification:

measure EPR quadratures of 1st and 2nd pulse and correlate

Verification of entanglement

Palomaki, Nature 495, 210 (2013)

time

Precoolingon red sideband

entangling pulseon blue sideband

readout pulseon red sideband

entanglement

red out

1st pulse

2nd pulse

mec

Sebastian G. Hofer, Witlef Wieczorek, Markus Aspelmeyer, KHPhys. Rev. A 84, 052327 (2011)

Page 29: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

29

mw optomechanical system:

Experiment by Lehnert group

Entangling mechanical motion with microwave fieldsT. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert

Science 342 6159 (2013)

news & views:KH, Science 342 6159 (2013)

Einstein-Podolsky-Rosen variance:

Page 30: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

30

Optomechanical Entanglement

Two-mode squeezed (Gaussian), entangled state of a macroscopic (micron-sized) mechanical oscillator and a travelling pulse of (mw) light

Page 31: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

31

quantum effects so far…

– demonstrate large cooperativity

– rely on linear dynamics

– use homodyne detections

– preserve Gaussian states

– therefore, have an equivalent classical interpretation (with some level of noise)

Quantum Optomechanics

Page 32: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

32

Galland, Sangouard, Piro, Gisin, Kippenberg, PRL 112, 143602 (2014)

Optomechanical Entanglement

Two-mode squeezed (Gaussian), entangled state of a macroscopic (micron-sized) mechanical oscillator and a travelling pulse of (mw) light

detection of single photon projects mechanical oscillator in single phonon Fock state

Page 33: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

33

Photon-Counting in Electro-Mechanics

qubit cavity

Lecocq, arXiv: 1409.0872

qubittransition

frequency

photonnumberin cavity

Page 34: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

34

Photon-Counting in Electro-Mechanics

qubit cavity

Lecocq, arXiv: 1409.0872

qubittransition

frequency

photonnumberin cavity

0 1 2 3 4

Page 35: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

35

Photon-Counting in Electro-Mechanics

qubit cavity

Lecocq, arXiv: 1409.0872

qubittransition

frequency

photonnumberin cavity

+ measurement of qubit in e0 1 2 3 4

Page 36: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

36

Galland, Sangouard, Piro, Gisin, Kippenberg, PRL 112, 143602 (2014)

Optomechanical Entanglement

Two-mode squeezed (Gaussian), entangled state of a macroscopic (micron-sized) mechanical oscillator and a travelling pulse of (mw) light

detection of single photon projects mechanical oscillator in single phonon Fock state

Page 37: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

37

Bell Inequality for Binary Observables

source of entangled systems A & B

CHSH Inequality (implied by realism & locality)

For two (effective) spin ½ systems in singlet state:

rules out (realism and locality)

Page 38: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

38

Add coherent amplitude before detection

define the binary observable

Binary Observable for Bosonic Modes

no click

click!no click

Banaszek, PRL 82, 2009 (1999)

Page 39: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

39

Bell Inequality in Optomechanics

0) Initialization of mechanics in ground state by red sideband cooling

1) Optomechanical entanglement by blue sideband pulse

2) Displacement by amplitude α & photon counting

3) Swap of mechanical state to photons by red sideband pulse

4) Displacement by amplitude β & photon counting

Repeat for various measurement setting α and β and infer

S.G. Hofer, K.W. Lehnert, KH, arXiv:1506.08097V. Caprara Vivoli, T. Barnea, C. Galland, N. Sangouard, arXiv:1506.06116

Page 40: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

40

Realization in Electro-Mechanics

qubit cavity

Lecocq, arXiv: 1409.0872

optomechanical master equation for cascaded cavity setup:

S.G. Hofer, K.W. Lehnert, KH, arXiv:1506.08097

Page 41: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

41

Bell Inequality in Optomechanics

cooperativity

Bellviolation

transmittivity

For parameters of: T. A. Palomaki, Science 342 6159 (2013) with solid (dashed)

Includes thermal decoherence, finite detection efficiency, transmission lossesS.G. Hofer, K.W. Lehnert, KH, arXiv:1506.08097

Page 42: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

42

Beyond pulsed entanglement: Continuous Drive on Blue Sideband

• Nonlinear quantum equations of motion

• consider corresponding nonlinear classical nonlinear dynamics

+ noise

+ noise

Experiment:Anetsberger, Nat. Phys. (2009)

Theory:Marquardt, Ludwig, see RMP, arXiv:1303.0733

Page 43: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

43

Limit Cycles

• Classical equations of motion

• slowly varying amplitude

solution

intensity

Marquardt, Ludwig…RMP, arXiv:1303.0733

off resonant terms

Page 44: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

44

Limit Cycles

• mechanical amplitude

• nonlinear optical damping

classical:Marquardt, Ludwig…RMP, arXiv:1303.0733

quantum:J. Qian, A. Clerk, KH, F. Marquardt, PRL 109, 253601 (2012)N. Lörch, J. Qian, A. Clerk, F. Marquardt, KH, arXiv:1310.1298, PRX (2014)

Page 45: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

45

Quantum Theory of Limit Cycles

• Radiation pressure Hamiltonian is nonlinear

For sufficiently strong coupling per single photon g0 the dynamics will be Non-Gaussian.

• Do Non-Gaussian features persist in steady state? Negative Wigner Functions?

Master Equation

thermal contact

cavity decaydriving field

Page 46: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

46

Quantum Mechanical Steady State

• Solve master equation for steady state

for (rather extreme) parameters

• Wigner function

detuning

Qian, Clerk, KH, MarquardtPRL 109, 253601, 2012

A

Page 47: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

47

Quantum Mechanical Steady State

• Solve master equation for steady state

for (rather extreme) parameters

• Wigner function

detuning

Qian, Clerk, KH, MarquardtPRL 109, 253601, 2012

B

Page 48: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

48

Quantum Mechanical Steady State

• Solve master equation for steady state

for (rather extreme) parameters

• Wigner function

detuning

C

Qian, Clerk, KH, MarquardtPRL 109, 253601, 2012

Page 49: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

49

Quantum Mechanical Steady State

• Solve master equation for steady state

for (rather extreme) parameters

• Wigner function

detuning

Qian, Clerk, KH, MarquardtPRL 109, 253601, 2012

D

Page 50: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

50

Quantum Mechanical Steady State

• Wigner functions

• Phonon number and Fano factorNegativeWigner

functions

co

olin

gh

eatin

g

Qian, Clerk, KH, MarquardtPRL 109, 253601, 2012

Page 51: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

51

Laser theory approach provides Fokker-Planck equation for mechanical oscillator

Can exhibit sub-Poissonian phonon statistics & negative Wigner functions

Limit Cycles in the Quantum Regime

Oscillation amplitude r

dam

pin

gdiff

usio

n

J. Qian, A. Clerk, KH, F. Marquardt, PRL 109, 253601 (2012)N. Lörch, J. Qian, A. Clerk, F. Marquardt, KH, PRX 4, 011015 (2014)

Page 52: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

52

Optomechanical Entanglement

Two-mode squeezed (Gaussian), entangled state of a macroscopic (micron-sized) mechanical oscillator and a travelling pulse of (mw) light

Page 53: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

53

Use for Quantum Teleportation

feedback

VB Aentangled

Bell measurementfeedback

Bennett PRL 1993

continuous variables:Braunstein, Kimble PRL 2003

Vaidman PRL 2003

Sebastian G. Hofer, Witlef Wieczorek, Markus Aspelmeyer, KHPhys. Rev. A 84, 052327 (2011)

Page 54: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

54

Time Continuous Bell Measurements & Teleportation

continuous wave drive on upper sideband, continuous Bell measurement & (stabilizing) feedback?

Page 55: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

55

“time continuous quantum remote control”

Time Continuous Teleportation in Optomechanics

cooperativity

6dB inputsqueezing

Gaussian input

mechanical squeezing:• parametric drive• reservoir engineering• QND probeVitali, Clerk, MarquardtBraginsky, Aspelmeyer,Schwab, Nunnenlamp…

Hofer, Vasilyev, Aspelmeyer, KH, PRL 111, 170404 (2013)Hofer, KH PRA 91, 033822 (2015)

Page 56: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

56

Time Continuous Entanglement Swapping in Optomechanics

EPR squeezinglog negativity

generates deteriministic, stationary entanglement

Hofer, Vasilyev, Aspelmeyer, KH, PRL 111, 170404 (2013)Hofer, KH PRA 91, 033822 (2015)

cooperativity

Page 57: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

57

Time Continuous Entanglement Swapping in Optomechanics

EPR squeezinglog negativity

generates deteriministic, stationary entanglement tolerant to losses and finite detection efficiency

transmissivity

Hofer, Vasilyev, Aspelmeyer, KH, PRL 111, 170404 (2013)Hofer, KH arXiv:1411.1337

cooperativity

Page 58: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

58

Time Continuous Entanglement Swapping in Optomechanics

10 m prototype @ AEI

Michelson interferometer!

in context of GWD setups:Y. Chen, PRL 100 013601 (2008)

Hofer, Vasilyev, Aspelmeyer, KH, PRL 111, 170404 (2013)Hofer, KH arXiv:1411.1337

Page 59: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

59

Summary

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

couplingstrength

detuning

cooperativity

1

2

5

10

coolingstate swap

position sensingforce sensing

measurement back action

heatingentanglementFock state preparationBell testsquantum control via measurement & feedbacknonclassical limit cycle states

Page 60: Optomechanicswith Blue Detuning - cQOM · Macroscopic Quantum Mechanics: Theory and Experimental Concepts of Optomechanics Y. Chen J Phys. B 46 104001 (2013) Quantum Optomechanics-throwing

former members:

Niels Loerch (Basel)

Sergey Tarabrin

Andre Xuereb (Malta)

Albert EinsteinInstitute

Institute forTheoretical Physics

Centre for Quantum Engineering and Space-

Time Research

Group:

Sebastian Hofer

Ondrej Cernotik

Alexander Roth

Jonas Lammers

Marius Schulte

Hashem Zoubi

Klemens Hammerer

Thank you!

Support through:DFG (QUEST, GRK 1991)EC (MALICIA, iQUOEMS)Vienna (WWTF)

optomechanical transducerCollaborators on optomechanics

Konrad Lehnert (JILA)Philipp Treutlein (Basel)Peter Zoller (Innsbruck)Eugene Polzik (Copenhagen)Florian Marquardt (Erlangen)Ash Clerk (McGill)Roman Schnabel (Hamburg)Farit Khalili (Moscow)Markus Aspelmeyer (Vienna)Klaus Hornberger (Duisburg)