28
EU Project No. 611019 On chip integration of piezolectric nanowires C. Sturm 1 , A. Shkurmanov 1 , J. Volk 2 , I. Lukács 2 , N.Q. Khánh 2 and M. Grundmann 1 EUROSENSORS XXX in Budapest, Hungary September 07 th 2016 1 Universität Leipzig, Leipzig, Germany 2 MTA EK MFA, Budapest, Hungary

On chip integration of piezolectric nanowires - piezomat.eu · EU Project No. 611019 On chip integration of piezolectric nanowires C. Sturm1, A. Shkurmanov1, J. Volk2, I. Lukács2,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

EU Project No. 611019

On chip integration of

piezolectric nanowires

C. Sturm1, A. Shkurmanov1, J. Volk2,

I. Lukács2, N.Q. Khánh2 and M. Grundmann1

EUROSENSORS XXX in Budapest, Hungary

September 07th 2016

1 Universität Leipzig, Leipzig, Germany2 MTA EK MFA, Budapest, Hungary

Growth of ZnO Nanowires

2

Growth of ZnO Nanowires

3

excellent trade-off between

simplicity and control

can be grown catalyst free

self organized growth

high growth temperatures

University of Leipzig

Growth of ZnO Nanowires

4

excellent trade-off between

simplicity and control

can be grown catalyst free

self organized growth

high growth temperatures

easy to carry out

growth at room temperature

University of Leipzig MTA EK MFA

5

Nanowires grown by Pulsed Laser Deposition

Pulsed Laser Deposition -

Experimental Setup

6

use high pressure pulsed laser deposition

transport gas

inlet (Ar)

quarz tube

heater

substrate

target

plasma plume

KrF excimer laser

2.5µm

no metal catalyst required

on sapphire substrates high density ( > 10µm-2)

high density not always desired, e.g. growth of nanostructures

Manipulation of the

nanowire density

7

use catalytic metal nanoparticles, e.g. gold

selective growth of nanowires

low yield of nanowires

supports diffusion of metal particles into the nanowire

1µm

A. Rahm et al., Appl. Phys. A 88, 31 (2007)

Manipulation of the

nanowire density

8

use catalytic metal nanoparticles, e.g. gold

use ZnO seed layer

low yield of nanowires

supports diffusion of metal particles into the nanowire

properties of the nanowires can be controlled by

the ZnO seed layer

sapphire ZnO

standard

PLD

high

pressure

PLD

5µm

B. Cao et al., J. Mater. Chem. 20, 3848 (2010)

Manipulation of the

nanowire morphology

9

doping of the seed layer change ➡ control of:

density and optimum growth temperature

nanowire diameter

1µm

Zn0.965Al0.035O

T = 950°C

1µm

Zn0.965Al0.035O

T = 700°C

~ 80 nm ~ 30 nm

1µm

Zn0.99Ga0.01O

T = 400°C

< 7 nm

successful growth of ultrathin nanowires ( < 7 nm)

400 500 600 700 800 900 10001

10

100

1000 7GZO

3.5GZO

2GZO

1GZO

pure

1AZO

2AZO

3.5AZO

7AZO

Dia

me

ter

[nm

]

Temperature [°C]

5µm

Manipulation of the

nanowire morphology

10

doping of the seed layer change ➡ control of:

density and optimum growth temperature

nanowire diameter and length

successful growth of ultrathin nanowires ( < 7 nm)

nanowire growth at T = 400°C

1µm

Zn0.99Ga0.01O

T = 400°C

< 7 nm400 500 600 700 800 900 100010

100

1000 7GZO

3.5GZO

2GZO

1GZO

pure

1AZO

2AZO

3.5AZO

7AZO

Le

ng

th [n

m]

Temperature [°C]

Orientation of the

Nanowires

11

use pre-structured substrates

10µm 3µm

r-facet

SiO2

c-facet

r-facet

r-plane sapphire

SiO2 c-facet

A. Shkurmanov et al., AIP Advances (accepted)

selective growth of nanowires

orientation of nanowires can be adjusted

substrate provided by:

F. Tendille, P. De Mierry (CNRS-CRHEA) and G. Feuillet (CEA/LETI)

Orientation of the

Nanowires

12

use pre-structured substrates

10µm 3µm

r-facet

SiO2

c-facet

r-facet

r-plane sapphire

c-facet

selective growth of nanowires

orientation of nanowires can be adjusted

r-plane sapphire

substrate provided by:

F. Tendille, P. De Mierry (CNRS-CRHEA) and G. Feuillet (CEA/LETI)

A. Shkurmanov et al., AIP Advances (accepted)

Nanowire Heterostructures

13

0.02 mbar O2

T = 650°C

100 mbar Ar

T = 600°C

0.002 mbar O2

T = 150°C

shell heterostructures

3 step process:

Nanowire Heterostructures

Coating

14

3.20

3.25

3.30

3.35

3.40

E (

eV

)

shell heterostructures

e.g. Bragg layers:

R. Schmidt-Grund et al., phys. stat. sol (A) 247, 1351 (2010)

T. Michalsky et al., Eur. Phys. J. Appl. Phys. 74, 30502

Nanowire Heterostructures

Coating

15

axial quantum wells shell heterostructures

e.g. Bragg layers:

C. Czekalla et al., Nanotechnology 19, 115202 (2008)

16

Nanowires grown by Wet Chemical Growth

Experimental

17

strategy:

• spincoating

and patterning

of the resist

• hydrothermal growth

• Zn(NO3)2, (CH2)6N4

• catalyst free

• t = 2 – 12h / T = 85 – 95°C

• lift-off

Nanowire Growth

18

crystalline quality

R. Erdélyi et al., Cryst. Gr. & Des. 11, 2515 (2011)

crystalline quality of the seed layer determines

nanowire alignment

Nanowire Growth

19

highly uniform arrays of nanowires on ZnO single crystaldensity: ~5.000 – 50.000 dpi

Rod length: L= 500 nm-3 m

Inter-rod distance: = 150–600 nm

Rod diameter: D= 65-350 nm

20

Nanowires for Fingerprint Sensing

Sensor: Idea

21

two strategies for fingerprint sensing

bottom-bottom-contacted

(bending)

top-bottom-contacted

(compression)

non-conductive seed layer

bottom electrode

conductive seed layer

top and bottom electrode

Nanowires for fingerprint

sensing - bending

22

growth on structured chips (fabricated by MFA)

substrate: sapphire and Si wafer

substrate

ZnO seed layer

PLD

deposition

structuring

Nanowires for fingerprint

sensing - bending

23

Si wafer before dicing Interconnects Fine lines for 8x8 array10µm

growth on structured chips (fabricated by MFA)

substrate: sapphire and Si wafer

number of NW 8 8

NW diameter 400 nm

contacts per NW 2

resolution 5080

Nanowires for fingerprint

sensing - bending

24

3” sapphire wafer

6 µm

growth on structured chips (fabricated by MFA)

use sapphire and Si wafer

3” silicon wafer

growth of vertical aligned nanowires

Nanowires for fingerprint

sensing - bending

25

6 µm

Double sided electrical contacts

Mechanical robustness is to be improved

polymer encapsulation is needed (next talk)

Nanowires for fingerprint

sensing - compression

26

metal lines

SiO2

GZO

growth on structured chips

(fabricated by CEA)

Nanowires for fingerprint

sensing - compression

27

40µm 10µm 1µm

growth of vertical aligned nanowires

metal lines

SiO2

GZO

growth on structured chips

Summary

28

growth of ZnO NWs by PLD and WCG

properties of the NWs can be controlled

on chip integration is possible

Thank you for your attention