43
Monolithic Integration of Chip-scale Photonic Networks in Si-CMOS Mark Beals MIT Microphotonics Center Microphotonics Center Spring Meeting April 29, 2008

Monolithic Integration of Chip-scale Photonic Networks in

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Monolithic Integration of Chip-scalePhotonic Networks in Si-CMOS

Mark BealsMIT Microphotonics Center

Microphotonics Center Spring MeetingApril 29, 2008

Acknowledgements

This work was sponsored by: Defense Advanced Research Projects Agency's (DARPA) EPIC and

UNIC programs supervised by Dr. Jagdeep Shah under contract no.HR0011-05-C-0027

- Andy Pomerene, Dan Carothers, Jim Beattie, Tim Conway, JosephGunta, Matthew Gregory, Craig Hill, Tom McIntyre, Vu A. Vu of BAESystems

- Douglas Gill, Sanjay Patel, Mahmud Rasras, Kun-Yi Tu, Y K Chen,Alice White of Alcatel Lucent Bell Laboratories

- Michael Watts, Sandia National Labs- Jim Psota, Jonathan Eaststep, Jason Miller, and Prof. Anant Agarwal

MIT CSAIL- Donghwan Ahn, Ching-yin Hong, Jifeng Liu, Jurgen Michel, Dan

Sparacin, Rong Sun, and Prof. Lionel Kimerling MIT EMat & MPC

Outline

Si CMOS Platform Photonic materials

- Silicon- Germanium

Active photonic devices- Detectors- Modulators

Chip-scale Photonic Network Summary

RF ChannelizerElements for EPIC Technology

Functional Elements• Optical power source• Signal Encoding• Signal Routing• MUX/DEMUX• Channel Tuning• Signal decoding

Photonic Devices- Mode transformer- Modulator- Waveguides- Splitters, Combiners

– MMI– Directional Couplers

Optical Channellizer

Modulator

Filter n

Detector

Detector

TIA

TIA

LASER

DRIVER

Input: RF Signal

Full Spectrum300 MHz to >10 GHz

TUNING

Filter 1

Mul

ti-m

ode

Inte

rfero

met

ricS

plitt

erEPIC

Output: to Signal

Processing

- Filters– Resonators– Phase shifters

- Photodiode

Electronic Devices• Modulator Driver• Phase Shifter

Control• TIA

Silicon:Materials Platform for Photonics

Potential– Dense E-P integration with CMOS– Leverage from silicon processing

infrastructure– Very low cost integration– High volume production– New applications with E-P convergence

Barriers– Light sources– Packaging and interconnection

infrastructure

Has potential to provide the majority of low-costphotonic interconnects in the medium to long term

ICE Sept. 2000

CMOS Device Fabrication

CMOS Logic Platform− Technology Insertion node: ≤180nm− Bulk Silicon substrate, 150mm− Transistor gate: Vdd: ≤1.8V , <3.3V− Device Isolation: STI− Global Planarization: CMP− 193nm DUV Lithography− Salicide contacts− Contacts & Vias: W− IMD: SiO2

− Interconnect: AlCu

• PMD – SiO2, Planarized1.0µm

1.1µm

CMOS FET & Interconnect

• Silicon Substrate p-• Gate, S/D junctions

• Metal – AlCu,Local interconnectlevels 1-4

• IMD – SiO2, Planarized

• Contacts – W studs

• Vias – W studs

900

<550<450

*Salicide spike anneal 1050°C

750*• Salicide, Ti, Co

Monolithic Integrationof Photonics in CMOS

Target Areas for Integration FEOL/PMD*

− Shared area with FET’s BEOL – Interconnect*

− Tlimit <450 °C Hybrid integration

− 3D Interconnect stack− Chip backside attach

Si FET

900

<550<450

750*

Si CMOS

SiGe

FEOL

Photonic Integration Scenarios

Bulk Si SOI

SiGe

BEOL

Bulk Si or SOI

Integration Challenges• Circuit Performance• Thermal budget management• cross contamination• Yield• Reliability• Cost

Outline

Si CMOS Platform

Photonic Materials- Silicon

- Germanium

Active photonic devices- Detectors

- Modulators

Chip-scale Photonic Network

Summary

Lower transmission loss can be achievedat low confinement, but requires a largermodal volume

TE Polarization – E field ContoursSi Core, SiO2 Cladding

For minimal size, waveguides shouldbe designed for maximumconfinement, but restricted to single-mode cutoff

HIC Waveguides : Mode Size

Simulated with FIMMWAVE0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Core: 200x200 nm2

5.0

z - u

m

x - um

Core: 200x500 nm2

neff=2.365, Γ=0.716

neff=1.473, Γ=0.044

SOI waveguides achieved 0.35 dB/cmtransmission loss

• No bulk absorption, lowest loss• High Temperature tolerance− seed for EPI films: Ge, SiGe

PECVD silicon waveguides, highly confinedachieved state of the art ~4dB/cm loss

• Low temperature PECVD film <450°C• Integration in metal interconnect

Global & Local Optical Interconnect using DUV Photolithography

1520 1540 1560 1580 1600 1620 1640

0.0

0.5

1.0

1.5

2.0

2.5

18

0 d

eg

ree

Be

nd

Lo

ss (

dB

/cm

)

Wavelength (nm)

r = 1 um r = 2 um r = 3 um r = 5 um r = 10 um

Silicon Core Waveguide Materials

SOI Silicon WaveguidesSOI Silicon Waveguides

αα- Silicon Waveguides- Silicon Waveguides

Optical Interconnect

Low Loss SOI Waveguides at STI Level

SOISilicon

BOX

Xtal-Silicon

CVD-SiN/SiO2

Silicon

Edge View

BOX

CVD-SiO2

1. Pad Ox & nitride as hardmask2. RIE Etch – oxide*3. RIE Etch - silicon4. Resist Strip

1. 3X SC1 Wet Etch- Dilute HF- NH4OH:H2O2:H2O- Dilute HF

2. Sidewall Liner Oxidation

Waveguide SmoothingSTI/Channel Waveguide Etch Lower ILD & Initial Top Clad

1. CVD Oxide Deposition2. Oxide CMP

Silicon

Edge View

BOX

Xtal-Silicon

Following n-well & p-well implants:

Resist

*Greater process reproducibility and uniformity using channel waveguides vs ridgeLeverages existing STI process with compatibility post etch wet cleans

New: 2nd Level Coupled Waveguides in PMD

Silicon

SOI BOX Xtal-Silicon

PECVD-SiO2

Deposit Oxide & Silicon Films- PECVD Oxide Deposition 200nm

- Vertical coupling spacer- PECVD α-silicon deposition 200nm- Resist coat, expose, develop

α-Silicon

After transistor polysilicon gate formation,sidewall spacer, ldd & HALO implants:

Silicon

BOX Xtal-Silicon

PECVD-SiO2

Etch waveguide & top clad- Silicon RIE- Resist Strip- HDP Oxide deposition

Silicon

BOX Xtal-Silicon

PECVD-SiO2

Prep for next step- CMP to thickness

Resist

Active Photonic Materials

Ge Detector Designs

• Graded buffer layer growth+ Low dislocation density (~106 cm-1)- Thick buffer (1µm) – difficult integration- Absorption in buffer leads to diffusion tail- Integration with waveguides difficult

• GeOI+ Very low dislocation density- Requires ultra-thin SOI or wafer bonding- Integration with waveguides difficult

Samavedam, et al.

Koester, et al.

• Ge-directly-on-Si+ Flexible growth conditions+ SOI compatible+ Easy integration with waveguides- Dislocation density ~ 107 cm-1

Ge Growth and Dislocation Reduction

A. LuanDeposit flat Ge epilayer on Si by

a two-step CVD process.

10µm

10 cycles

Annealing process results indislocation free mesas

10µmGe SiO2

1 cycleCyclic thermal annealing, 900°C – 700°C

550C - Islanding

A. Single Step Growth

50 nmGe

Si1. Low temp <360°C amorphous Ge film2. 700°C EPI Ge growth

B. Two Step Growth

Ge Processing for Active Photonic Devices

Ge Growth on Si• Temperature 700C, 4.5h• Growth Rate = 2.4 nm/min• Roughness < 4nm rms

UHV-CVD EPI Ge & SiGe Films

AFM of as grown Ge Film

RIE Patterned Ge− Ge growth, blanket− Patterned Ge etch− Oxide Fill− CMP

Ge “Damascene”− Oxide deposition− Oxide trench etch− Ge Trench Fill− CMP Planarization

Two Processes for CMOS FEOL Integration

Ge SiO

Si

Ge SiO

Si

Outline

Si CMOS Platform Photonic Materials

- Silicon- Germanium

Active photonic devices- Detectors- Modulators

Chip-scale Photonic Network Summary

Ge Detector Design ComparisonDiscrete – Free Space

Vertical pin Ge DiodeLarger Area: 10 um x 70 um, - greater capacitanceThickness: t = 2.3 um - longer transit time- absorption length in line with ECapacitance: 40 - 50 fF

λ

n- p+

Ge

i

Waveguide Integrated

Vertical pin Ge DiodeSmaller Area: 0.5 um x 25 um- smaller capacitanceThickness: t = 0.6 um- shorter carrier transit time- Absorption length independent of thicknessCapacitance: 5 - 10 fF

Ge

n-

p+

λ

t = lα t ≠ lα

la

Freespace” Ge Diode Performance

600 800 1000 1200 1400 1600 1800

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Ideal Responsivity

Resp

onsi

vit

y (

A/W

)

Wavelength (nm)

-2V 0V

0.01 0.1 1 10-3

-2

-1

0

f3dB

=8

.5G

Hz

0 1 2 3 40

2

4

6

8

10

3dB

Ban

dw

idth

(G

Hz)

Reverse Bias (V)No

rmal

ized

Res

po

nse

(d

B)

Frequency (GHz)

Liu et al., Appl. Phys. Lett. 87, 103501-1-3 (2005)

• Diode size: 10 x 70 µm, • Ge thickness: 2.3µm• Broad detection spectrum of 650-1605nm • Internal efficiency > 90%

- 650-1340nm• Bandwidth: 8.5 GHz @ 1040nm• Low voltage operation at ~1V can be achieved

Bottom Coupled Ge Photodetector

Bottom coupled SOI silicon inputwaveguide

Electrical isolation of contactregions in SOI

Top n+ polysi electrode

Selective, trench grown Ge

• SOI Substrate- Si crystal waveguide- BOX lower cladding

• Ge (or SiGe) trench growth• Planarized• Multi-level interconnect

Lower p+ contacts in SOI Sip

n

λ

GeSOI Si

a-Si

Bottom Coupled Ge-0.8% Si pin Detector

1480 1500 1520 1540 1560

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

20 µm

5 µm

Res

po

nsi

vit

y (

A/W

)

Wavelength (nm)1000 1500 2000

0.0

2.0m

4.0m

6.0m

8.0m

0.01 0.1 1 10-30

-25

-20

-15

-10

-5

0

RF

res

ponse

(dB

)

Frequency (GHz)Photo

resp

onse

(V

)

Time (psec)

D. Ahn, MITLEOS 2006

3dB Bandwidth ~1.5 GHz- RC delay limited- High series resistance of

device contacts

Direct bandgap forGe-0.8% Si is 1520nm

Butt Coupled Butt Coupled GeGe Devices Devicesw/Vertically Coupled Si Multilevel Waveguidesw/Vertically Coupled Si Multilevel Waveguides

Edge ViewSilicon

Waveguides & Vertical Coupler

α-Silicon

SOI BOX

xtal-SiliconCVD-SiO2

Side View

λ in λ out

SiGe

Ge growth, CMP & Top electrode

verticalcoupler

buttcoupler

p+ region

n+ region

• SOI Substrate- Low loss si waveguides- Device isolation

• Multi- level waveguides• Vertical I/O couplers• Through device butt couplers

•Center guided mode• Selective, trench grown SiGe EPI• Multi-level interconnect

Vertical I/O couplers

n+ contact

p+ contacts

SiGe

p

n

λ

λ

Butt coupler

Edge View

Contacts & Interconnect

p+ region

n+ region

0.6um

Si WG Vertical CouplersSi WG Vertical CouplersBottom SOIwaveguidetaper

Taper tip width

Taper Length

Top a-Siwaveguide taper

SOI Oxide

a-Si

Loss per coupler: ~0.14 dB TE

1480 1500 1520 1540 15600.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6-60

-50

-40

-30

-20

Detector bandwith>4.5GHz

Roll off due to thelimitation of TIA

RF

Pow

er

(dB

m)

RF Frequency (GHz)

Re

spo

nsi

vity

(A

/W)

Wavelength (nm)1480 1500 1520 1540 1560 1580

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Ideal Responsivity

Re

sp

on

siv

ity (

A/W

)

Wavelength (nm)

a-Si waveguide butt-coupled 50µm SiGe detector

Butt coupled detector performance improvement

Without improved coupler

With improved coupler

y = -0.1408x - 31.703

R2 = 0.9977

-33.8

-33.6

-33.4

-33.2

-33

-32.8

-32.6

-32.4

5 6 7 8 9 10 11 12 13 14 15

Number of couplers

Insert

ion

lo

ss (

dB

)

45um long, 250 nm wide tip

Wavelength (nm)

Phase 1 Phase 2

Bottom Coupled Bottom Coupled GeGe Photodetector Photodetector

Silicon

Edge View

SOI BOX

Ldd p-implant

Lower p-type electrode

- ldd implant p-type- FET’s & Ge lower electrode- 1E19/cm3 concentration

…. Finish FET implants- Thin oxide deposition- Salicide contact mask- Cobalt sputter- Salicide formation – spike anneal

Salicide contact

After STI Etch/waveguide formation &FET fabrication:

- CMP to thickness

Silicon

Side View

BOX

a-Silicon

Deposit & pattern si waveguide- Deposit 200nm oxide spacer- Deposit 200nm PECVD a-silicon- Resist pattern

- Silicon removed in trench area

Resist

Oxide

Silicon

Side View

BOX

a-Si

- Deposit 200nm oxide spacer- Deposit 200nm PECVD a-silicon- Resist pattern

- Silicon removed in trench area- PECVD Oxide deposition ~350nm- CMP to thickness – 600nm - PECVD nitride dep – 100nm

OxideOxide

Set Ge Trench Thicnkness

Butt Coupled Butt Coupled SiGeSiGe Devices DevicesUsing Vertically Coupled Si Multilevel WaveguidesUsing Vertically Coupled Si Multilevel Waveguides

- Deposit 200nm oxide spacer- Deposit 200nm PECVD a-silicon- Resist pattern

- Silicon removed in trench area- PECVD Oxide deposition ~350nm- CMP to thickness – 600nm - PECVD nitride dep – 100nm

Silicon

Side View

BOX

a-Si

OxideOxide

Tapered Vertical Couplers

Silicon

Side View

BOX

a-Si

- Deposit 200nm oxide spacer- Deposit 200nm PECVD a-silicon- Resist pattern

- Silicon removed in trench area- PECVD Oxide deposition ~350nm- CMP to thickness – 600nm - PECVD nitride dep – 100nm- Ge trench mask- RIE oxide etch

Trench Open

Silicon

Side View

BOX

a-Si

- Wet etch trench clean- Selective UHVCVD Ge (Ge-Si) EPI- Ge CMP, stop on SiN

Selective Ge (Ge-Si) Trench Fill

0.6um

GeGe Vertical Vertical p-i-np-i-n Top Electrode Fabrication Top Electrode Fabrication

SOISilicon

Edge View

BOX

CVD-SiO2

Upper n-type electrode-PECVD a-si – 100nm-n-type ldd implant -1E19/cm3 concentration-(no mask required)-Top Ge electrode pattern-a-silicon etch

1.0um

Implanted n-typePECVD-a-Si

SOISilicon

Edge View

BOX

Complete PMD

-HDPCVD SiO2-Oxide CMP

HDPCVD-SiO2

Contacts & First Metal

- Oxide Contact etch- W CVD film- W CVD- Metal One sputter- Metal One Etch

Silicon

Edge View

BOX

AlCu M1

p+ region

n+ region

W

GeGeGe

All Fundamental Photonic Components have been defined within 600nm of the silicon surface

Waveguide integration:- Transit time decoupled from RC

Flat responsivity from 1470-1570 nm- 80 µm-long Ge device

High 1 A/W responsivity at full BW:- RCdevice = 12 ps

Dark current: 0.2nA at full BW bias (1V)

SOI Silicon Butt CoupledSiGe Photodetector (0.7-0.8% Si)

-3 -2 -1 0 1 2 31p

10p

100p

1n

10n

100n

1!

10!

I (A

)

Voltage (V)

Lengh=50 µmWidth=0.6 µmThickness=0.4 µmC = 8 fF

1480 1500 1520 1540 15600.0

0.2

0.4

0.6

0.8

1.0

1.2

Res

pons

ivity

(A/W

)

Wavelength (nm)1 2 3 4 5 6

-60

-55

-50

-45

-40

-35

-30

-25

-20

Detector bandwith>4.5GHz

Roll off due to thelimitation of TIA

RF

Pow

er

(dB

m)

RF Frequency (GHz)

CT2W

SiGe

BOXSOI

a-Si (n+)

HDP Top Oxide

p+

WCT1

Al/Cu

Detector-WaveguideIntegration Overview

0.6x50 µm22x20 µm25x10 µm2Size

Best – High power,Through coupling

Poor – Improvedresponsivity needed

Good – Topcoupled SiN WG

Performance

8 fF11 fF14 fFCapacitance

0.2nA@-1V5µA@-1V60 [email protected] current atoperation

>4.5 GHz2.0 GHz7.2 GHzBandwidth

1.0 A/W0.22 A/W>1.0 A/WResponsivity

Butt-coupled (SOI)Bottom-coupled(SOI)

Top- coupled

Flat response in broad wavelength range of 1480-1580nm

Silicon Micro-ring Modulator

1.5 Gbit/s using RZ pattern

• Lowest power consumptionreported to date.• Less than 0.3V and µA current

needed for complete modulationin DC.

• In AC, 3.3Vpp and 1mA currentwere used.

• 12.5 Gb/s recently reported

Diameter = 12 μm

Width = 450nm

Gap = 200nm

M. Lipson, Cornell

EA Modulator: Franz-Keldysh Effect

1400145015001550160016501700-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 !"="(100kV/cm)-"(10kV/cm)

!"/"(0)

Wavelength (nm)

0.5% 0.6% 0.7% 0.75% 0.8% 0.9% 1.0% 1.1%

Linear Electro-Optic Effect for Ge on Si Δn(E), Δα(E) Ge-on-Si: comparable to InP

Strong F-K Effect strain reduces separation between Eg

Γ and EgL

⇒ F-K regime in low absorption background Large Bandwidth

covers C-Band with little performance variations

Eg

With Electric Field

Without Electric Field

α

ϖ�Eg

With Electric Field

Without Electric Field

α

ϖ�

Working regime

GeSi EA Modulator (Ge-0.8%Si)

Increased electric field will deepen FK oscillations and increase spacing between peaks 70% modulation depth achieved with 40kV/cm electric field at 1560nm

- Modulation depth vs. electric field at 1560nm agrees with theoretical analysis.- Modulation depth limited by large series resistance from first processing run

1460 1480 1500 1520 1540 1560 1580-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Rel

ativ

e Tr

ansm

issi

on C

hang

e

Wavelength (nm)

Calculation 8 kV/cm Calculation 40 kV/cm

0 10 20 30 40 50 60 70 800

20

40

60

80

100

Experimental, Lot 032 (new) Experimental, Lot 350 (old)

Mod

ulat

ion

Dep

th (%

)

Electric Field (kV/cm)

Calculated

a. ) FK Simulations b. ) EA Modulator measured response c. ) Modulation Depth

Si SiGeSi

Thermo-optic Phase ShiftersThermo-optic Phase Shifters

Thermo Optic Phase Shifters- HDP CVD Oxide Deposition

- 2.0 um overall height- Oxide CMP- Polysilicon deposition- Heater pattern- Cobalt sputter- Salicide formation

SiGe

SiGe p-i-n Device Filter & Waveguides

BEOL Interconnect

SiGe

M1

SiGe p-i-n Device Filter & Waveguides

- Oxide spacer- Contact etch- W CVD fill- W CMP- BEOL POR

Salicide

W

Narrow, Tunable Filter Channels in SOI

Single design can work for all channels!

-40

-30

-20

-10

0

Tra

nsm

itta

nce

(d

B)

193.420193.416193.412193.408

Frequency (THz)

f0

f0+2.5 GHzf0-2.5 GHz

Fabricated in BAE Systems siliconCMOS foundry

Demonstrated fully tunable, integrated optical filters with fine passbandresolution (1 GHz) and excellent out of band rejection (>25 dB)

In !=0.5R1 R2

R3 R4

!=0.5In !=0.5R1 R2

R3 R4

!=0.5

-40

-30

-20

-10

0

Tra

nsm

itta

nce

(d

B)

193.44193.43193.42193.41193.40193.39

Frequency (THz)

1550.2 1550.1 1550.0 1549.9 1549.8

Tuned

output

Tuned

output

Tuned

output

Tuned

output

Passive output(as fabricated)

Passive output(as fabricated)

4th Order Filter

New Process Steps for“CMOS Front End” Photonic Integration

SiGe

M1

M2

M3

Deposited Si waveguide

LV

Via 2

Via 1

Contacts

SOI Waveguide

• Waveguide routing in SOI• SOI BOX optical isolation− Si wafer: Oxide filled trench optical

isolation, extension of STI• Planarized deposited waveguides &

cladding• Trench filled & planarized EPI SiGe growth• n+ Top polysilicon electrode implant &

patterning• Thermally tunable elements

Polysilicon top SiGe electrodeSiGe Detector/Modulator

Metal 1

Metal 2

Metal 3

p+ implant (ldd)

n+ implant (ldd)

SiGe p-i-n Device Filter & Waveguides

Outline

Si CMOS Platform

Photonic Materials- Silicon

- Germanium

Active photonic devices- Detectors

- Modulators

Chipscale Photonic Networks

Summary

The Future of MulticoreNumber of cores will double every 18 months

‘05 ‘08 ‘11 ‘14

64 256 1024 4096

‘02

16AcademiaIndustry 16 64 256 10244

But, wait a minute…•Performance?

•Power Efficiency?•Programming?

Anant Agarwal, MIT’02 MIT RAW

6.8 GOPs at 425 MHz

Performance Challenge:The Interconnect

BUS

pc

pc

pc

Bus Multicore

s s s s

pc

pc

pc

pc

Ring Multicore

pc

s

pc

s

pc

s

pc

s

pc

s

pc

s

pc

s

pc

s

pc

s

Mesh Multicore

25

Anant Agarwal, MIT

Processor architecture• “transistors are free”• “memory is free”• can bandwidth be free? Anant Agarwal

Photonic Intrachip Communications

• Tiles can directly communicate with any other tile• Broadcasts require just one send• No complicated routing on network required• Tile resources only used when performing communication

(unlike mesh approach)

Photonic Channel Architecture

tile #1 receiving tile

Transmission of words using 1-bit waveguides

tile #3

FIFO

32

ProcessorCore

FIFO

sending tile receiving tile

flip-flop flip-flop

filter

photodetector

filter/modulator

modulatordriver

data waveguide

transimpedanceamplifier

multi-wavelength source waveguide

Transmission of 1 bit from one tile to another

FIFO

32

ProcessorCore

FIFO

FIFO

FIFO

Processor Core

• 32-bit data words transmitted acrossseveral parallel waveguides

• Each tile contains a set of receive filtersand a FIFO buffer for every sender

• Data is buffered at receiver until neededby the processing core

• Receiver can screen data by sender(i.e. wavelength) or message type

• Each tile sends data using a differentwavelength no contention

• Data is sent once, any or all tiles canreceive it efficient broadcast

• Transimpedance amplifier (TIA) is notneeded beyond 65 nm process node

Communications Performance• On-chip Optical Communications Network

– Bisection Bandwidth (BB): TBW = 2.5Tb/s (300fJ/bit)– Receive-Weighted BB (bursts): RBW = 161Tb/s (5fJ/bit)– Total Latency: 3ns (gate delay + propagation delay)

• Electrical Mesh Network (64 core)(Four 64-bit (256-bit total), bidirectional networks, 1 GHz)

– Bisection bandwidth (BB): 64 bits x 2 x √64 x 1 GHz x 4 = TBW = 4 Tb/s– Receive-Weighted BB: RBW = 4 Tb/s– Total Latency: 1 ns (min), 8 ns (avg), 16 ns (max)– Energy: 94 fJ/bit (min), 752 fJ/bit (avg), 1.5 pJ/bit (max)– Note: Modestly scalable and difficult to program

• Electrical bus (unscalable)– 256-bit bus at 1GHz– Bisection bandwidth (BB): 256 x 1GHz = 0.25 Tb/s– Does not scale to more than 8 or 16 cores

Optical has 4x better latency, 40x better (receive-weighted) bandwidth, 5x betterenergy

Combine the best of electrical and optical technologies– Electrical mesh network for short-distance, point-to-point communication– Optical ANET for long-distance and broadcast/multicast communication– Aggregate bisection bandwidth: 2.5 Tb/s + 4 Tb/s = 6.5 Tb/s– Aggregate RWBB: 161 Tb/s + 4 Tb/s = 165 Tb/s

Optical Performance Summary (64 cores, 1GHz)

pcs

pc

s

pcs

pc

s

Chipscale Photonic Network Vision

The Optical Processor InterconnectCore: contains a single processor with FPURegion: collection of 1-64 cores that share the same optical resources

• OpNET: Broadcast network: optical broadcast-and-select network, low-latency, contention-free

• ENET: Mesh network: scalable electrical meshnetwork for short-distance, pt-to-pt comm.

• Broadcast Computing Vision– communication-centric on-chip computing– energy efficient on-chip computing– fast, contention-free optical broadcasts– high performance with easy programming– scalable to 1000’s of cores

• Challenges– monolithic, high density E-P integration– optical power capacity– core-to-network interface– efficient new multicore programming model

• Optical Performance (64 to 4096 cores)– 132 to 5000 Tb/s receive-weighted

bisection bandwidth– up to 45x faster computation– up to 9x better power efficiency– reduced off-chip memory accesses– “Optical BW”: one send can replace 64

point-to-point messages

DRAMDRAM

DRAMDRAM

I/O

ENET OpNET0

OpNET1

I/O I/O

I/O

Conquering the Last Centimeter

• Integration creates a circuit function.– not customized perfect devices

• A microphotonic circuit contains replicated circuitelements on a standard platform.– materials, processes, design and fab tools

Has potential to provide the majority of low-costphotonic interconnects in the medium to long term

Silicon Microphotonics is the only option for continuedexponential increase in chip performance.

The Philosophy

Thank You