30
Terrestrial laser scanning of the main reflector of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation University of Bonn

of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

Terrestrial laser scanning of the main reflector of the Effelsberg 100 m radio telescope

Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation

University of Bonn

Page 2: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

2

Motivation

• Geodesists are interested in gravitationally induced path length variations at different elevation angles

• Astronomers are interested in surface quality

Manufacterer‘s model at 70° elev., Courtesy N. Junkes

Page 3: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

3

Principles of terrestrial laser scanners

N.B.: Size of footprint depends on angle of incidence 1/cos γ for γ = 70° factor of 3

Panorama scanner

Page 4: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

4

Scanning of radio telescopes

Page 5: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

5

Scanning project 2010

Leica HDS 6100 Terrestrial Laser Scanner − Scanning in 7 elevations: 90°, 75°, 60°, 45°, 30°, 15°, 7.5° − Duration: 30 Min per elevation angle − Spacial resolution: 8 mm x 8 mm (at distance of 50 m) − Ca. 370 Mio. points per Elevation = 1.11 x 109 observations − Point precision (s = 30 - 50m): 5 – 8 mm − Size of laser spot (foortprint)

− 9.6 mm/30 m − 14 mm/50 m

Page 6: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

6

Scanning 2010

Page 7: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

7

Data decimation

Constant angular increments lead to inhomogeneous point densities overweighting of central area lead to wrong estimates if deformations present in this area

Original point density

Homogeneous point density

Page 8: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

8

Least squares adjustment

Parameters of rotation paraboloid

With transformations

Parameters of rotational paraboloid

• Outer 10m ring not used for parameter estimation (unreliable)

• Outlier elimination (distance threshold) • Adjustment with Gauß-Helmert-Model • Cluster,130 GB memory, 4 h per elevation

Page 9: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

9

Focal length results

Reduced point density

Full point density

Empirical focus optimization

Page 10: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

10

Individual data points

W = C - O 54 lines 1 pt/64 mm2

Page 11: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

11

Micro surfaces

Page 12: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

12

Spline approximations

Page 13: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

13

Comparisons

Holography at 32° Courtesy A. Kraus

Scanning at 30°

Page 14: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

14

2013 Scanning Project

Leica Scan Station P20 − Scanning in 7 elevations: 90°, 75°, 60°, 45°, 30°, 15°, 7.5° − Duration: 15 Min per elevation angle − Spacial resolution: 6 mm x 6 mm (at distance of 50 m) − Ca. 500 Mio. points per Elevation = 1.5 x 109 observations − Point precision (s = 30 - 50m): 2 – 4 mm − Size of laser spot (foortprint)

− 8,8 mm/30 m − 12.8 mm/50 m

Page 15: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

15

Scanning after sunset

Page 16: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

16

Page 17: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

17

7.5° Elevation

Page 18: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

18

Raw results

a) Scanner has instrumental errors

b) Estimation of form paramaters depends on data density

Page 19: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

19

Results after calibrations

- Data density - Horizontal collimation

error - Trunnion axis error - Vertical index error - Eccentricities of

graduated circles - Eccentricities of axes

Page 20: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

20

Focal lengths of 2010 and 2013

dashed = 2010, grey = 2013 raw, black = 2013 corrected

Page 21: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

21

Reflectivity

Page 22: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

22

Radial residuals I

Page 23: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

23

Radial residuals II

Page 24: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

24

Elev. 60°, Panel 800

Page 25: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

25

Residuals at elevation 60°

Panel 60 Panel 800

Page 26: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

26

Panel segmentation

Page 27: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

27

Panels at 7.5° elevation

Page 28: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

28

Panels at 7.5° elevation

Page 29: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

29

Panels at 90° elevation

Page 30: of the Effelsberg 100 m radio telescope - INAF · of the Effelsberg 100 m radio telescope Axel Nothnagel, Christoph Holst Institute of Geodesy and Geoinformation . University of Bonn

30

Summary and Conclusions

• Terrestrial laser scanning has potential for detecting telescope deformations

• Terrestrial laser scanners (TLS) have dominant systematic errors, which need to be calibrated/corrected for

• Position of TLS is important (near primary focus) • Data analysis for radio telescopes requires sophisticated

pre-processing steps