67
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-09-18 Observations in Lipid Membrane Systems Munro, Fay Munro, F. (2015). Observations in Lipid Membrane Systems (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27158 http://hdl.handle.net/11023/2468 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca

Observations in Lipid Membrane Systems

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Observations in Lipid Membrane Systems

University of Calgary

PRISM: University of Calgary's Digital Repository

Graduate Studies The Vault: Electronic Theses and Dissertations

2015-09-18

Observations in Lipid Membrane Systems

Munro, Fay

Munro, F. (2015). Observations in Lipid Membrane Systems (Unpublished master's thesis).

University of Calgary, Calgary, AB. doi:10.11575/PRISM/27158

http://hdl.handle.net/11023/2468

master thesis

University of Calgary graduate students retain copyright ownership and moral rights for their

thesis. You may use this material in any way that is permitted by the Copyright Act or through

licensing that has been assigned to the document. For uses that are not allowable under

copyright legislation or licensing, you are required to seek permission.

Downloaded from PRISM: https://prism.ucalgary.ca

Page 2: Observations in Lipid Membrane Systems

   

UNIVERSITY  OF  CALGARY            

Observations  in  Lipid  Membrane  Systems      by        

Fay  Elizabeth  Munro      

A  THESIS  

SUBMITTED  TO  THE  FACULTY  OF  GRADUATE  STUDIES    

IN  PARTIAL  FULFILMENT  OF  THE  REQUIRMENTS  FOR  THE  INTERDISCIPLINARY    

DEGREE  OF  MASTER  OF  SCIENCE  

 GRADUATE  PROGRAM  IN  CARDIOVASCULAR  AND  RESPIRATORY  SCIENCES  

     

CALGARY,  ALBERTA        

SEPTEMBER,  2015        

©FAY  ELIZABETH  MUNRO  2015  

Page 3: Observations in Lipid Membrane Systems

  ii  

 

Abstract  The  plasma  membrane  is  phase  separated  into  a  fluid  (Ld)  phase  and  a  more  

ordered  (Lo)  phase.  The  latter  exists  as  small  “rafts”  of  specific  lipid  composition  

containing  a  host  of  signaling  proteins.    Lipid  raft  theory  links  the  aggregation  of  

rafts  to  a  signaling  event.    In  its  current  iteration,  the  theory  is  incomplete,  as  it  does  

not  explain  how  rafts  form  and  how  they  aggregate  and  disperse  again.  These  

problems  are  addressed  when  the  membrane  is  viewed  as  a  critical  system.  

Previous  work  using  giant  plasma  membrane  vesicles  (GPMVs)  used  this  framework  

to  explain  the  dynamics  of  the  rafts.  We  intended  to  show  critical  behavior  as  a  

factor  for  cell  signaling.  Critical  behavior  was  not  easily  ascertained  and  further  

observations  were  made.    We  found  a  heterogeneous  population  with  respect  to  the  

behavior  of  the  vesicles.  We  categorized  these  observations  with  respect  to  the  

appearance  of  the  lipid  membrane  to  characterize  the  phenomenon.    

   

Page 4: Observations in Lipid Membrane Systems

  iii  

 

Acknowledgements  I  would  like  to  thank  my  supervisor,  Matthias  Amrein,  my  family,  the  Amrein  lab  and  my  committee.          

Page 5: Observations in Lipid Membrane Systems

  iv  

Table  of  Contents  Abstract  ........................................................................................................................................................................  ii  Acknowledgements  ...............................................................................................................................................  iii  Table  of  Contents  ....................................................................................................................................................  iv  List  of  Tables  and  Graphs  ....................................................................................................................................  v  List  of  Figures  ...........................................................................................................................................................  vi  List  of  Abbreviations  ...........................................................................................................................................  vii  

1   Introduction  .....................................................................................................................................  1  1.1   Overview  .............................................................................................................................................................  1  1.2   Plasma Membrane: A historical background  ...................................................................................  1  1.3   Lipid Rafts  .........................................................................................................................................................  2  1.4   Lipid raft theory  ..............................................................................................................................................  6  1.5   Lipid raft theory: shortcomings  ...............................................................................................................  8  1.6   A  New  Understanding  of  the  Plasma  Membrane  ...................................................................  10  1.7   General hypothesis  ......................................................................................................................................  13  

1.7.1   Specific Aim 1  ..................................................................................................................................  13  1.7.2   Specific Aim 2  ..................................................................................................................................  14  1.7.3   Specific Aim 3  ..................................................................................................................................  15  

2   Materials and Methods  .................................................................................................................  17  2.1   Materials  and  Methods:  .............................................................................................................................  17  2.1.1   Cell  Lines  ...........................................................................................................................................  17  2.1.2   Reagents  ............................................................................................................................................  17  2.1.3   Collection  of  GPMVs:  ....................................................................................................................  18  2.1.4   Imaging  ..............................................................................................................................................  19  2.1.5   Light  Microscopes  ...........................................................................................................................  19  2.1.6   Spectrofluorometer  ......................................................................................................................  21  

3   Results  .............................................................................................................................................  22  3.1   GPMV  Production  ......................................................................................................................................  22  3.2   Phase  Separation  ......................................................................................................................................  23  3.2.1   Static  Phase  Separation  ..............................................................................................................  24  3.2.2   Dynamic  Phase  Separation  ........................................................................................................  25  3.2.3   Critical  Phase  Separation  ...........................................................................................................  26  

3.3   Observations  of  Blebbing  .....................................................................................................................  28  3.3.1   Observations  of  Blebbing  –  Results  .......................................................................................  28  3.3.2   Observations  of  Blebbing  –  Discussion  ................................................................................  29  

3.4   Vibrations  .....................................................................................................................................................  33  3.4.1   Vibrations  -­‐  Results  ......................................................................................................................  33  3.4.2   Vibrations  –  Discussion  ..............................................................................................................  35  

3.5   Spectrofluorometer  .................................................................................................................................  37  4   Discussion  .........................................................................................................................................  39  Bibliography  .........................................................................................................................................  42  Appendices  ................................................................................................................................................................  47  Tables  ...........................................................................................................................................................................  47  Figures  .........................................................................................................................................................................  50  

   

Page 6: Observations in Lipid Membrane Systems

  v  

List  of  Tables  and  Graphs    Table  1.1  ………………………………………………………………………………………page  47  Graph  2.1  ………………………………………………………………………………………page  48  Graph  2.2  ………………………………………………………………………………………page  48  Graph  2.3  ………………………………………………………………………………………page  49  Graph  2.4  ………………………………………………………………………………………page  49                                                                                  

Page 7: Observations in Lipid Membrane Systems

  vi  

List  of  Figures  Figure  2.1  ………………………………………………………………………………………page  50  Figure  2.2  ………………………………………………………………………………………page  51  Figure  2.3  ………………………………………………………………………………………page  52  Figure  2.4  ………………………………………………………………………………………page  53  Figure  2.5  ………………………………………………………………………………………page  54  Figure  2.6  ………………………………………………………………………………………page  55  Figure  2.7  ………………………………………………………………………………………page  56  Figure  2.8  ………………………………………………………………………………………page  57  Figure  2.9  ………………………………………………………………………………………page  57  Figure  2.10  .……………………………………………………………………………………page  58  Figure  2.11  …………………………………………………………………………………….page  59        

 

 

 

 

 

 

 

 

 

 

 

           

Page 8: Observations in Lipid Membrane Systems

  vii  

 

List  of  Abbreviations  BCR – B cell Receptor

CalDAG-GEF - Calcium and Diacylglycerol regulated Guanine Nucleotide Exchange

Factor    

CTB  -­‐  Cholera  toxin  β  

D.C.  2.4  -­‐  Dendritic  cell  2.4    

DMSO  -­‐  Dimethyl  sulfoxide  

DPPC  -­‐  Dipalmitoylphosphatidylcholine  

DRM  -­‐  Detergent resistant membrane  

DTT  -­‐  Dithiothreitol  

ENTH  -­‐  Epsin  N-­‐terminal  domain  

GM1  -­‐  Glycosyl phosphatidylinositol  

GPMV  -­‐  Giant  plasma  membrane  vesicle  

HEPES  -­‐  4(2-­‐hydroxyethyl)-­‐1-­‐piperazineethanesulfonic  acid  

Ld  -­‐  Liquid  disordered  

Lo  -­‐  Liquid  ordered    

LPC  -­‐  Lysophosphatidylcholine  

MβCD  -­‐  Methyl-­‐beta-­‐cyclodextrin  

MSU  -­‐  Monosodium  urate  crystal    

PFA  -­‐  Paraformaldehyde  

PI-­‐4,5-­‐P2  -­‐  1,2-­‐Diacyl-­‐sn-­‐glycero-­‐3-­‐phospho-­‐(1-­‐D-­‐myo-­‐inositol  4,5-­‐bisphosphate)  

POPC  -­‐  1-­‐palmitoyl-­‐2-­‐oleoyl-­‐sn-­‐glycero-­‐3-­‐phosphocholine  

POPE/PE  -­‐  phosphatidylethanolamine  

Tc  -­‐  Critical  temperature  

TIRF  –  Total  internal  reflection  fluorescence  microscopy  

TCR  –  T  Cell  Receptor

Page 9: Observations in Lipid Membrane Systems

  1  

 

1 Introduction  

1.1 Overview This thesis aims to establish a novel view for lipid raft based plasma membrane

signaling. Currently, lipid rafts are thought to be small lipid domains with associated

lipid-raft proteins that exist in the plasma membrane. The coalescence of these rafts has

been associated with signaling events. The accumulation of signaling proteins is

understood to result from the accumulation of lipid rafts. The current lipid raft theory

does not explain how rafts would form and self-assemble into structures of the right size

and contain the right assortment of proteins. It also leaves unexplained why and how rafts

would dispel again after the signaling event. In this thesis, we pursued an alternate theory

for cell signaling, namely that critical behavior is an underlying feature of the plasma

membrane that is required for signaling.

1.2 Plasma Membrane: A historical background The understanding of the plasma membrane has evolved greatly since its

discovery. Robert Hooke was the first to describe a cell in 1665, and along with

discovering the cell; Hooke observed that the cell was a protoplasm enclosed within some

form of membrane. At the time, the only known function of the membrane was

encasement. It was not until 1925 when Groter and Grendal (1925) discovered that the

membrane consisted of lipids in a bilayer. Singer and Nicolson (1972) changed the

previous plasma membrane concept where the plasma membrane proteins lined the

exterior (Danielli & Davson, 1935) by conceptualizing the proteins of the plasma

membrane as being embedded within the two-dimensional fluid of the lipids. This model

changed how we view the plasma membrane, and is still used today as a simplistic model

Page 10: Observations in Lipid Membrane Systems

  2  

of basic membrane physiology. The proteins found in the plasma membrane are vital as

they provide a variety of functions for the cell, including providing membrane structure,

transporting specific molecules, and cell signaling. To understand this relationship

between lipid rafts and proteins, we must first assess the current understanding of the

lipid raft model.

1.3 Lipid Rafts Lipid rafts are dense regions on the outer leaflet on the plasma membrane

(Cooper, 2000). Lipid rafts are thought to be 50-100nm in diameter of highly ordered

and densely packed lipids and cholesterol. Rafts, known as the liquid ordered phase (Lo)

are floating in the fluid like ocean of disordered lipids (Ld) (Simons & Toomre, 2000).

The  Lo  phase  contains  a  higher  concentration  of  cholesterol  and  saturated  fatty  acid  

lipid  tails,  whereas  the  Ld  phase  has  a  lower  concentration  of  cholesterol  and  is  

higher  in  unsaturated  fatty  acid  lipid  tails  and  reduced  packing  (Simons  &  Toomre,  

2000).

Two separate parties independently observed the small domains on the plasma

membrane. The first observation came from Stier and Sackmann (1973), where they

described the cell membrane as a mosaic like structure where, ‘the enzyme system is

enclosed in a halo of rigid phospholipids’. The second important observation of

membrane domains was by Brown and Rose (Brown & Rose, 1992) where they observed

that certain membrane proteins were detergent resistant. Yu and colleagues (Yu,

Fischman, & Steck, 1973) had already established that when solubilizing cell membranes

with Triton X100, there was an insoluble fraction present, which was rich in

sphingolipids – known as the detergent resistant membrane (or DRM). Brown and Rose

Page 11: Observations in Lipid Membrane Systems

  3  

(1992) observed how certain membrane proteins can become detergent insoluble by

associating with these lipid domains. Specifically glycosyl phosphatidylinositol (GP1)

anchored proteins are associated with the DRM’s (Brown & London, 1997). These two

independent observations strongly suggested the presence of quasi-crystalline regions

present on the cell membrane and that these regions are associated with particular

proteins.

Lipid domains form due to the differences in the morphology of lipid shapes.

Lipid species have a certain affinity for certain other lipid species, whilst having a lower

affinity for other specific types of lipid species. For example, lipids of cylindrical shape

will prefer to orient themselves next to other lipids of cylindrical shape and form a planer

membrane. Likewise, cone shaped lipids will prefer other cone shaped lipids, and form a

micellular structure. Another example is the charge on the lipid species. Sackmann

(1994) describes the segregation of charged lipids, which forms small domains. These

small domains exhibit different local curvatures than that of the surrounding greater

domain.  

Phase separation will lead to domains that contain certain species of lipids,

opposed to the other domain that contains another lipid species. There are two known

contributors to the specific shape and size that lipid domains take on. Theses factors are

line tension, and dipole-dipole interactions. Brockman describes line tension (or

energy/unit length) and dipole interaction as responsible for the shape and distribution of

lipid domains, and it is the balance of two forces that creates these domains. There is a

line tension associated with the boundary line between the Lo and the Ld phases (Veatch

Page 12: Observations in Lipid Membrane Systems

  4  

& Keller, 2005). If line tension were the sole factor in domain size, the two domains

would fuse into one large domain.

Lipid  molecules  are  molecular  dipoles;  these  dipoles  will  be  aligned  with  

respect  to  each  other  due  to  the  packing  density.  The dipole interaction arises within

the lipid raft due to amphipathic nature of the membrane lipids being forced to assume a

parallel arrangement (Brockman, 1994). Line tension opposes the dipolar repulsion

resulting in the domains assuming a smaller dimension. Current understanding of lipid

rafts explains the size and shape of the rafts with this framework.

Sackmann argues that domain formation is essential for the stabilization of the

heterogeneous organization of the membrane, and that complete segregation of the

membrane would result in decay of the vesicles (1994). We have in fact also observed

this segregation and the decay of a vesicle into two vesicles due to this phenomenon. It is

likely that in a cell, the cytoskeleton stabilizes the plasma membrane’s unstable lipid

composition. Evidence of local changes in domain curvature can be observed in our data

(See Figure 2.7). This view of the formation of phase separation and the formation of

domains underlies a clearer understanding of how rafts form.

Due to the minute size and high mobility of lipid rafts within the membrane, lipid

rafts are difficult to observe experimentally. A pertinent observation of the size and

dynamics of lipid rafts is an experiment done by Pralle (2000), to better describe the size

and dynamics of lipid rafts. A laser trap was used to limit the movement of a styrene

bead bound to a raft protein (Pralle, Keller, Simons, & Horber, 2000). The position of the

protein/bead complex within the cell membrane affected the vibrational movement of the

complex as well as the local diffusion of the single membrane proteins. Using this

Page 13: Observations in Lipid Membrane Systems

  5  

technique, Pralle (2000), found that the lipid rafts were stable structures with

measurements of approximately 50 nm in size. The size of the domains could be

estimated from the viscous diffusion of a protein to get the diffusion constant. This

experiment also proved useful for giving a clear picture on the dynamics of the rafts and

the effect on raft proteins relative to the protein diffusion rate.

A hallmark of lipid rafts is their ability to include or exclude proteins based on

their affinity for the lipid raft area (Simons & Toomre, 2000). Both Brown and London

(1997) and Simons (Simons & Toomre, 2000) have observed that lipid rafts have the

ability to ‘sort’ proteins preferentially into the lipid rafts. Proteins are sorted in the lipid

rafts according to the size of the proteins hydrophobic region. Proteins with a larger

hydrophobic region will be preferentially sorted into the lipid raft area due to the

increased thickness of lipid rafts, to reduce hydrophobic mismatch (Cooper, 2000). There

are three different ways that proteins can be embedded in a lipid raft; proteins can have a

GP1 anchor into the raft, be directly inserted in the lipid raft via a hydrophobic α helix, or

by a palmitoyl anchor (Simons & Sampaio, 2000). Simons observed that

glycosylphosphatidylinositol (GP1) anchored proteins are favored in lipid rafts along

with, caveolins, flotillins, low molecular weight and heterotrimeric G proteins, src family

kinases, EGF receptors, platelet-derived growth factor receptors, endothelin receptors, the

phosphotyrosine phosphatase syp, Grb2, Shc, MAP kinase, protein kinase C and the P85

subunit of Phosphoinosoitol 3-kinase (Pike, 2003).

Tyrosine Kinases are an interesting case as their immediate function is explained

by their resonance within the lipid rafts. Tyrosine Kinases are lacking in catalytic activity

on their own, but upon ligand binding are induced to form a dimer, which is able to

Page 14: Observations in Lipid Membrane Systems

  6  

interact with cytosolic protein kinases (Lodish, Berk, & Zipurksky, 2000). These

receptors (possessing intrinsic enzymatic activity) are activated by binding of a ligand

(typically a dimer), leading to the dimerization of the receptor, resulting in kinase

activation (Lodish, Berk, & Zipurksky, 2000).

1.4 Lipid raft theory Earlier observations and knowledge of lipid rafts led Simons to the lipid raft

theory (2000). Simons postulated that lipid rafts played a key role in the cells’ ability to

mount a signaling event due to the high amount of signaling proteins that are present

within lipid rafts. Simons and Toomre stated in their paper (2000), that lipid rafts are

crucial for the activation of many signal transduction pathways.

Based on the literature, Simons drew the conclusion that lipid rafts must somehow

aggregate on the surface of the membrane for a signaling event to occur, and that some

agent, which drives this aggregation of lipid rafts would be a crosslinking protein. Lipid

rafts are concentrating platforms for individual receptors that are activated by their

respective ligand binding (2000). In order for a signaling activation, a number of

signaling molecules in their respective lipid rafts must come together and fuse such that

the signaling molecules are in close proximity to on another.

It is not currently known how many molecules must be phosphorylated in a

certain region of the plasma membrane for signal transduction to take place however,

there is evidence to suggest that higher amounts of proteins within a small aggregate

increases the baseline level of tyrosine phosphorylation (Kornberg, Earp, Turner, &

Juliano, 1991).

It has been described in the literature that treatment of the plasma membrane with

methyl-beta-cyclodextrin (MβCD) sequesters cholesterol and inhibits signaling by

Page 15: Observations in Lipid Membrane Systems

  7  

inhibiting the presence of lipid rafts (Ohtani, Irie, Uekama, Fukunaga, & Pitha, 1989)

(Simons & Toomre, 2000). We can conclude that for a successful signaling response, a

given region of the plasma membrane would have to possess a high concentration of the

targeted protein available for phosphorylation. Cell signaling events happen due to a

variety of different factors, but the signaling that occurs as a result of lipid raft activity

requiring a certain subset of proteins. When Simons formulated his lipid raft theory on

signaling, he was primarily interested in a mechanism, which explained the accumulation

of proteins that subsequently produced a signaling event in the cell.

Not all cell signaling is dependent on the phosphorylation of tyrosine kinases. In

recent years, it has been discovered that other proteins such as Calcium and

Diacylglycerol regulated Guanine Nucleotide Exchange Factor (CalDAG-GEF) have the

ability to act in a protein kinase fashion to recruit secondary messengers (Springett,

Kawasaki, & Springgs, 2004). Examples of this would be G protein signaling, integrin

binding, tyrosine kinase binding, and toll like receptor binding (See Table 1). Of these

signaling types, all require the presence of scaffolding, or a large accumulation of

proteins for the signaling to take place (Simons & Toomre, 2000) (Pike, 2003). It is

unknown how these signaling proteins accumulate, but Simons postulated that lipid rafts

would play a crucial role in the ferrying of these proteins to the required area on the cell

membrane for the signaling to take place.

This phenomenon was described in B-cell receptors. It has been shown that in

TCR (Harder & Kuhn, 2000) signaling and B-cell receptors (BCR) (Gupta & DeFranco,

2007) signaling that accumulation of membrane proteins can lead to a signaling event in

the cell. (See table 1 for a comprehensive list of signaling events where this occurs.) It

Page 16: Observations in Lipid Membrane Systems

  8  

has been well established that lipid rafts are implicated in this process of aggregation

(Simons & Toomre, 2000) (Pike, 2003).

1.5 Lipid raft theory: shortcomings Domains were understood to be a solid phase section of plasma membrane, which

sits separately from the surrounding fluid membrane. These sections of plasma

membrane are unable to fuse together. This would mean that the lipid phases would be

unable to accumulate together due to the intra domain dipole interactions present in the

lipid domains.

The many opponents to lipid raft theory argue against several key points.

Specifically, it is not known, how rafts form, nor how they would aggregate to produce a

signaling event. There is no knowledge of what determines the size of lipid rafts. Why

must lipid rafts begin very small and slowly grow into to a larger raft instead of

originating as the larger size? Researchers have also tried to reproduce raft domains of

defined size and other properties consistent with known features of rafts in model

membranes. Indeed, when synthesizing model membranes in practice, the size of the lipid

raft domains are highly variable depending on the purity of the system, the temperature,

proteins present etc. (Munro, 2003). In model membranes, the lipid raft domains will

attempt to group together or shrink depending on temperature changes, akin to

crystallization. There are no robust mechanisms to be found to explain the production or

accumulation of lipid rafts when reproduced in model systems (Munro, 2003). There

have been suggestions of a possible scaffolding protein, which would induce the

formation of the lipid raft scaffolding. However, this has been found to only exist in

specialized raft structures of clathrin and caveolin (Pike, 2003).

Page 17: Observations in Lipid Membrane Systems

  9  

A further criticism for lipid raft theory focuses on line tension. Line tension

should exist between the two Ld and the Lo phase domains. If there truly are two

different phases present, this should be observable and quantifiable in cells. As yet, line

tension has only been observed in model membranes. In Munro’s (2003) criticism of

lipid raft theory, he discusses how the domains disappear at physiological temperature in

vitro, and that lipid raft domain segregation has yet to be seen in vivo.

The accumulation of lipid rafts was postulated to occur via crosslinking proteins.

Lipid raft theory includes the mechanism of crosslinking (due to antibodies) as a

mechanism for the accumulation of lipid rafts (Simons & Toomre, 2000). However, cell

signaling can occur as a result of a variety of factors, not just the presence of an antibody

protein. In fact, most membrane receptor ligands are not antibodies, nor do they have

crosslinking abilities. An example of this is Monosodium Urate (MSU) crystals, which

are known for producing a signaling response from cells signaling linked to lipid raft

behavior (inhibited in the presence of MβCD) (Ng, et al., 2008). For this event there is

no known protein receptor, let alone crosslinking activity for MSU. Those opposed to, or

critical of lipid raft theory will point out that relying on crosslinking proteins as the sole

contributor to lipid raft accumulation is a major flaw in lipid raft theory. If the

accumulation of lipid rafts is only due to crosslinking proteins, then how can crystals

such as MSU induce a signaling event? Are there some undiscovered crosslinking

proteins that are causing signaling events? The answer is most likely no.

In summary, for cell signaling to take place, a mechanism must be in place that

does not require an exorbitant amount of energy for the signaling event to take place nor

should the mechanism depend on crosslinking. While the existence of liquid ordered

Page 18: Observations in Lipid Membrane Systems

  10  

domains is firmly established, the current Simons theory does not explain convincingly

how these domains reliably form, collect associated proteins and then aggregate into

larger platform upon signaling. Lipid raft theory therefore remains an unconvincing

concept in the scientific community.

1.6 A  New  Understanding  of  the  Plasma  Membrane  

While we do not dispute the presence of lipid rafts and their role in signaling, we

aim to refine the function and view of lipid rafts. The following sections explains a new

view of how lipid rafts evolve and how they dynamically change or adapt during

signaling, which reconciles the shortcomings of the lipid raft theory using experimental

observations. Ising devised a theory to describe two-dimensional critical systems.

Veatch and Keller employed this theory to assess whether the plasma membrane followed

the rules of a two-dimensional critical system. The two-dimensional Ising model (Ising,

1925) is based solely on intermolecular interactions. In our case, this model would be

referring to the adhesion among raft lipids, among non-raft lipids and among hetero-pairs,

and how these interactions are affected by temperature (Onsager, 1994). The Ising

formalism predicts small domains, the size of lipid rafts for the more condensed region

(Veatch, Cucuta, Honerkamp-Smith, D., & Baird, 2008).

In critical systems, different domains can coexist without line tension at the

critical temperature. Critical behavior is best known for materials such as water, CO2 or

O2. At their critical point (a material specific temperature and pressure) a distinct liquid

and gas phase no longer exist. As the substance approaches the critical point, densities of

its gas and liquid phases come closer and closer, and the interfacial energy between the

Page 19: Observations in Lipid Membrane Systems

  11  

phases approaches zero, until eventually there is a mixture of both phases wherein there is

no energy requirement to move between them.

Veatch and Keller described the plasma membrane as a critical system by

observations of line tension, domain formation and membrane dynamics using

fluorescence light microscopy (Veatch, Cucuta, Honerkamp-Smith, D., & Baird, 2008) to

detect minute fluctuations in the plasma membrane. This provides an elegant theoretical

and experimental framework to explain the nano-sized liquid ordered domains

(Honerkamp-Smith, et al., 2008). All cells contain a critical composition of lipids and

possess a miscibility critical point at the transition temperature. As the critical

temperature is reached, the near neighbor interactions between like and unlike domains

require less and less energy. There are increased lipid fluctuations and the line tension

between the Ld and the Lo domains dissipates (Veatch, Cicuta, Sengupta, Honerkamp-

Smith, Holowka, & Baird, 2008).

Veatch (2008) then used these characteristics of critical behavior to definitively

characterize it in membrane vesicles. To determine a vesicle as a critical system, the

calculation of line tension can be used according to the 2D Ising model (Ising, 1925).

Line tensions can be extracted from images of GPMVs and fitting the power spectrum of

boundary fluctuations in accordance to methods shown by (Veatch, Cucuta, Honerkamp-

Smith, D., & Baird, 2008). As line tension is a linear function of temperature, line tension

will intersect 0 at the critical Temperature (Tc). [λ≈λ0(Tc-T)/Tc, where Tc is the critical

temperature in Kelvin (Veatch, Cucuta, Honerkamp-Smith, D., & Baird, 2008)].

Page 20: Observations in Lipid Membrane Systems

  12  

With respect to signaling, we suggested that the significance of the critical

behavior is that even small perturbations in the plasma membrane can lead to local phase

segregation, without a large change in free energy encountered. The cell membrane is

operating at a temperature slightly above the Tc. When the cell membrane is locally

constrained in its movemen for example, this is akin to cooling the membrane locally

(due to environmental factors, such as MSU), the critical temperature is reached and

liquid ordered domain size increases. This is further explained by molecules within the

plasma membrane that move within the two-dimensional fluid as a product of thermal

motion. If the degree of freedom of the molecules now becomes limited, for example by

binding of a crystal or binding of a ligand to its receptor, the movement of the molecules

is limited akin to a local change in temperature. Lipid raft accumulation in an area could

thus be understood as a local cooling of the membrane leading to larger ordered domains.

Thus, one could easily imagine the formation of large signaling platforms as soon as the

membrane would be cooled to the Tc or below the Tc. By using the properties of the

critical system that Veatch and Keller have used, we had hoped to establish; what is a

critical system, and extrapolate this data such that we can observe changes in critical

behavior for cell signaling and observe a dependence of cell signaling on critical

behavior.

Raft proteins having an affinity for the higher density region of lipid rafts and

they become concentrated in this area, and thus, a signaling event would take place.

Because aggregates are able to form and dissipate easily in a critical system, such an

event is terminated rapidly as soon as the trigger is released.

Page 21: Observations in Lipid Membrane Systems

  13  

Critical behavior could explain the problem of the size of lipid rafts. Once lipid

rafts are disturbed, they segregate into larger domains. Lipid rafts could then return to

their smaller size when above the critical temperature. Secondly, this model addresses the

issue of crosslinking. In the two-dimensional Ising model (Ising, 1925), crosslinking is

not required to ‘stick’ the rafts together or fuse them. The system does not require a

crosslinking molecule to associate like molecules as it does in the earlier lipid raft theory.

It is not to say that crosslinking does not occur in our model, but it is not the only reliant

method for raft affinity. Lastly, the phase separation of the lipids is addressed with this

model. With latent energy of the phase change from Ld to Lo high in a non-critical

mixture, aggregation would be too costly energetically. In the critical system, there is no

energy cost to move between Ld and Lo.

In summary it is attractive to link specific elements of cell signaling on the

plasma membrane to critical behavior, the critical temperature and the presence of

signaling proteins that have an affinity for lipid rafts. Given the exactitude of the theory

of critical behavior this can be rigorously tested.

1.7 General hypothesis In this study we plan to investigate lipid sorting as an integral mechanism for cell

signaling. Our general hypothesis is that lipid sorting occurs in response to a local

trigger, akin to the local cooling of the membrane. We further hypothesize that the

signaling is able to occur because of the critical behavior of the membrane.

1.7.1 Specific Aim 1 Produce a membrane system that will allowed us to visualize isolated membrane

behavior, similar to those observations obtained by Veatch and Keller (2008).

Page 22: Observations in Lipid Membrane Systems

  14  

We created membrane blebs, GPMVs, which would then be used to observe

membrane behavior. These vesicles are blebbed off from Dendritic Cells (D.C. 2.4) and

thus are expected to be true representative of the plasma membrane that constitutes a

living cell.

Rational:

Model membranes can be produced to contain a vast array of lipid ratios. These

membranes can represent the membrane of a living cell, the surfactant of the lungs, or an

artificial membrane. Model membranes are useful in that they are able to represent a

mixture of lipids and cholesterol specified by the research work. For a membrane derived

from a real cell as used here, should allow one to study basic membrane function isolated

from the overall functions of the entire cell. The model membranes known as giant

plasma membrane vesicles (GPMVs) are created from blebs of D.C. 2.4 and are treated

with fluorescent membrane dyes. In the past, model membranes have been used to

examine lipid function and behavior, most notably by Israechvili (1980) in his landmark

paper on the structural properties and behaviors of lipid bilayers.

1.7.2 Specific Aim 2 We aimed to establish that the GPMVs created are critical systems. By

establishing that the membrane blebs are critical systems, we would be able to

demonstrate that the signaling events can be caused by the critical behavior of the lipids

and thereby build on and critique the current signaling theory.

Rational:

If we build on the knowledge already put forth by Veatch and Keller, cell-

signaling theory can stand on a new and robust set of well-established characteristics.

The model of a critical system explains the movements and evolutions of lipid rafts on

Page 23: Observations in Lipid Membrane Systems

  15  

the cell membrane. Applying these principals to a new theory on lipid raft function, we

can put forth a new conceptual mechanism for cell signaling.

Critical behavior can be analyzed by using microscopy to observe membrane

domain fluctuations that are representative of the critical system. To do this, the GPMVs

will be dyed with differing fluorescent dyes, in an effort to show the phase separation

between the Ld and the Lo domains. This establishes the phase change over a range of

temperatures and allows for determining if the system is indeed critical. The GPMVs

will be observed to determine the phase domains in the vesicles and the absence of line

tension at the critical temperature. Video data will be collected, and analysis performed

building on the previous work of Veatch (2008) to determine if the GPMVs are critical

systems.

In a critical system, line tension (λ) decreases to zero at the critical temperature.

To determine line tension of a system as it approaches Tc, the line tension of domains on

a GPMV can be measured by a spectrum of deviations from the radius (Honerkamp-

Smith, et al., 2008). Line tension decreases linearly to zero as the critical temperature is

reached. As line tension data is gathered, it can be fit to a linear slope to ensure data is in

keeping with a critical system.

Alternatively correlation length within the fluorescence images (fluctuations at

small temperature far above the Tc) can also be determined for a critical system,

according to Honerkamp-Smith (2008).

1.7.3 Specific Aim 3 Demonstrate lipid sorting in response to an external trigger (for example, the impact of an

MSU crystal).

Page 24: Observations in Lipid Membrane Systems

  16  

We hope to show that external triggers on the plasma membrane do not have to be

dependent on a receptor/ligand binding to induce cell signaling. We intend to prove that

the critical behavior of the plasma membrane is the crucial factor in a cell mounting a

signaling response, regardless of a specific receptor/ligand bond. We will test whether

changes in temperature can affect the ability of the plasma membrane to cluster lipid rafts

and signal, and thereby show that the plasma membrane behavior is the critical factor in

cell signaling.

Rational:

It has recently been observed that other non-ligand substances such as MSU are

able to induce a signaling response in cells via a lipid raft mediated mechanism (Ng, et

al., 2008). Although the mechanism for this signaling event is as of yet, unclear, it is our

aim to prove that this event, and all other lipid raft mediated events, are caused by the

aggregation of lipid rafts due to the critical nature of the lipid membrane. We intend to

build on this work by Veatch (2008), and demonstrate how lipid rafts are able to

accumulate and induce signaling not because of a crosslinking protein, but due to the

critical system nature of the plasma membrane.

The previous work of Ng (2008) is important in that it proves that signaling can

take place in the absence of a receptor ligand bond. We intend to take this concept one

step further and show a plausible mechanism for how such a signaling event could take

place, indeed how many signaling events can take place. Through experimentation we

intend to prove that signaling protein accumulation occurs due to minute changes in the

local environment of the plasma membrane, and not necessarily due to a receptor ligand

bond.

Page 25: Observations in Lipid Membrane Systems

  17  

2 Materials and Methods 2.1 Materials  and  Methods:  

2.1.1  Cell  Lines  D.C.  2.4  cell  line  was  donated  from  Kenneth  Rock  of  the  University  of  

Massachusetts  Medical  School.    D.C.  2.4  is  an  immortal  cell  line,  which  can  

effectively  adhere  to  the  glass  slides,  and  are  efficient  in  the  collection  of  blebs.        

  D.C.  2.  4  cells  were  cultured  in  6  well  plates  with  approximately  400,000  cells  

per  well  in  5GM  cell  media.  24  hours  after  seeding  the  plates,  cells  were  

prepared  for  GPMV  collection.      

2.1.2 Reagents  

2.1.2.1 Fluorophores:  Several  different  fluorophores  were  used  throughout  the  course  of  our  

experiments.    For  each  fluorophore  used  we  have  outlined  the  preparation  of  the  

fluorphore  and  the  procedure  used  for  dying  the  cells  prior  to  GPMV  collection.  

2.1.2.2 Fast  Dio:  Fast  Dilinoleyloxacarbocyanine  (Dio)  was  purchased  from  Life  Technologies.    

Fast  Dio  is  a  fluorescent  dye  that  labels  the  unsaturated  fatty  acid  tails  of  membrane  

lipids.    Fast  Dio  was  diluted  in  DMSO  to  1mM.    1uL  of  Fast  Dio  for  every  milliliter  of  

media  was  added  to  the  cells  10  minutes  prior  to  GPMV  collection.      

2.1.2.3 Bodipy  Cholesterol:  Bodipy  cholesterol  is  a  fluorescently  tagged  cholesterol  lipid  (which  occupies  the  

Lo  phase).    TopFluor  Cholesterol  (23-­‐[dipyrrometheneboron  difluoride]-­‐24-­‐

Page 26: Observations in Lipid Membrane Systems

  18  

norcholesterol)  was  purchased  from  Avanti  polar  lipids.    The  bodipy  fluorophore  is  

dissolved  in  dimethyl  sulfoxide  (DMSO)  to  a  concentration  of  1mM.    1uL/mL  of  

media  is  added  and  left  for  10  minutes.      

2.1.2.4 Alexa  647  Cholera  toxin  recombinant:  The  Alexa  647  fluorophore,  conjugated  with  the  cholera  toxin  β  (CT-­‐B)  via  an  

anti  CT-­‐B  antibody,  was  purchased  from  Life  Technologies.    The  CT-­‐B  can  be  used  as  

a  marker  for  lipid  rafts  as  it  binds  preferentially  to  the  GM1  ganglioside,  associated  

with  lipid  rafts.  The  Alexa  647  CT-­‐B  recombinant  was  prepared  to  a  concentration  of  

1.0mg/mL  of  phosphate  buffered  saline  (PBS)  as  per  the  manufactures  

specifications.    The  1uL  of  Alexa  647  CT-­‐B  recombinant  was  added  per  1mL  of  cell  

media  and  left  for  10  minutes.    

2.1.2.5 C-­‐laurdan:  C-­‐laurdan  was  a  gift  from  the  Chang-­‐Chun  Ling  lab  at  the  University  of  Calgary.    

The  C-­‐laurdan  was  diluted  to  a  2.5mg/mL  concentration  in  DMSO.    DC  2.4  cells  were  

dyed  with  1ul/mL  of  media  of  C-­‐laurdan  30  mins  prior  to  GPMV  collection.  

2.1.2.6 Rhodamine  B  PE:  Rhodamine  B  PE  is  a  fluorescently  labeled  head  group  of  the  POPE  lipid  (an  

unsaturated  fatty  acid  tail  lipid  which  occupies  the  Ld  phase).    Egg  Liss  Rhod  PE  (L-­‐

α-­‐phosphatidylethanolamine-­‐N-­‐[lissamine  rhodamine  B  sulfonly])  diluted  in  

chloroform  (1mg/mL)  was  purchased  from  Avanti  polar  lipids.  Rhodamine  B  PE  was  

added  to  cell  culture  at  1uL/mL  of  cell  media  and  left  on  for  10  minutes.    

2.1.3 Collection  of  GPMVs:  GPMV  buffer  was  prepared  using  10mM  4-­‐(2-­‐hydroxyethyl)-­‐1-­‐

piperazineethanesulfonic  acid  (HEPES),  150mM  NaCl,  and  2mM  CaCl.    A  solution  of  

Page 27: Observations in Lipid Membrane Systems

  19  

25mM  Paraformaldehyde  (PFA)/  2mM  Dithiotheritol  (DTT)  was  prepared  in  1mL  of  

GPMV  buffer.    GPMVs  were  first  washed  in  GPMV  buffer,  and  then  collected  using  

the  DTT/PFA  in  GPMV  buffer  was  then  added  to  plated  cells  and  collected  after  1  

hour  (Sezgin,  Hermann-­‐Josef,  Baumgrat,  Schwille,  Simons,  &  Levental,  2012).      

2.1.4 Imaging    

2.1.5 Light  Microscopes  Over  the  course  of  the  experiments,  a  variety  of  microscopes  were  used.    The  

three  microscopes  that  aided  in  our  experimentation  were  the  Olympus  confocal  

FV1000,  Zeiss  Elyra,  and  the  Quorum  Diskovery  flex  in  spinning  disk  mode.      

The  FV1000  LSM  (light  scanning  microscope)  Confocal  was  useful  in  

establishing  parameters  and  doing  preliminary  experimentation.    A  confocal  light  

microscope  is  a  basic  fluorescence  light  microscope  with  a  pinhole,  allowing  the  

system  to  extricate  the  excess  light  and  produce  a  crisper  image  in  comparison  to  

wide  field  light  microscopy.    The  drawback  in  confocal  light  microscopes  is  that  

scanning  the  entirety  of  the  image  is  timely  and  requires  a  fairly  static  specimen.    

The  FV1000  was  the  initial  go  to  microscope  in  establishing  fluorophore  

concentrations,  GPMV  collection  parameters  and  fine  tuning  microscopy  set  up.      

The  Zeiss  Elyra  was  used  for  its  ability  to  perform  super  resolution  

microscopy.    Super  resolution  is  a  method,  which  uses  a  confocal  light  microscope  in  

an  advanced  way  in  order  to  resolve  structures  at  higher  resolution.    The  

disadvantage  of  this  is  that  this  requires  slower  movement  of  the  particle  in  

question.    Initially  we  planned  to  do  single  particle  tracking  using  the  total  internal  

reflection  fluoroscopy  (TIRF)  mode  on  the  Elyra,  and  did  several  pilot  experiments  

Page 28: Observations in Lipid Membrane Systems

  20  

in  an  effort  to  do  so.    The  movement  of  the  lipid  domains  that  we  intended  to  track  

ended  up  being  too  fast  for  use  to  accurately  track.    This  was  due  to  our  inability  to  

resolve  between  the  lipid  domains.  In  TIRF,  fluorescence  is  excited  only  in  close  

proximity  of  the  coverslip  (approximately  200  nm).    It  is  therefore  distinct  by  an  

absence  of  out  of  focus  light  and  shows  high  signal-­‐to-­‐noise  ratio.  The  disadvantage  

of  this  was  that  we  were  only  able  to  observe  a  small  portion  of  membrane  that  was  

in  direct  contact  with  the  glass,  and  the  highly  motile  domains  easily  moved  past  the  

plane  of  focus  and  become  invisible.    

Finally,  the  spinning  disk  was  also  used,  as  it  is  a  best  for  highly  dynamic  

imaging.    The  system  is  able  to  scan  the  entirety  of  the  specimen  at  once,  rather  than  

slowly  scanning  overtime  like  the  LSM  confocal.  Because  of  the  excellent  temporal  

resolution,  it  proved  our  best  choice  for  the  very  fast  movement  of  the  lipid  raft  

domains.    

GPMVs  were  imaged  using  glass  bottom  dishes  purchased  from  World  Precision  

Instruments.    Poly-­‐L-­‐lysine,  purchased  from  Sigma-­‐Aldrich,  was  used  to  aid  in  the  

attachment  of  the  GPMVs  to  the  glass  bottom  dish  while  imaging.    Poly-­‐L-­‐Lysine  was  

used  to  coat  the  cover  glass  prior  to  imaging  for  several  minutes  before  being  

pipetted  off  and  the  GPMV  sample  was  added.    

In  all  cases  the  sample  was  illuminated  with  the  required  laser  wavelength  (405-­‐  

C-­‐laurdan,  495-­‐  Bodipy  Cholesterol,  and,  647-­‐  Alexa  647  CTB  and  Rhodamine  B).    

Images  and  Videos  of  GPMVs  were  saved.    The  images  were  then  later  used  in  the  

creation  of  the  Chart  of  Observations  were  the  type  of  preparation,  fluorophore,  

number  of  GPMVs  and  phenomena  was  recorded.  

Page 29: Observations in Lipid Membrane Systems

  21  

 

2.1.6 Spectrofluorometer  In  addition  to  the  microscopy,  we  also  used  spectrofluorometry.    This  

method  allowed  measuring  changes  in  the  C-­‐laurdan  fluorescence  emission  

spectrum  as  a  function  of  temperature,  though  not  spatially  resolved.  C-­‐laurdan  is  a  

lipid  dye  that  emits  at  different  wavelengths  of  light  depending  on  the  polarity  of  the  

surrounding  lipids.    In  our  case,  C-­‐laurdan  inserts  itself  into  both  the  Lo  and  the  Ld  

domains  and  the  overall  emission  spectrum  shows  two  peaks.  The  relative  heights  

of  these  peaks  indicate  the  relative  amount  of  Lo  and  Ld  phase,  respectively.  This  

relationship  may  change  as  a  function  of  temperature.  We  speculated  that  the  

introduction  of  a  signaling  trigger,  such  as  the  MSU  crystals  would  lead  to  such  

change  too.    

GPMVs  were  dyed  with  C-­‐laurdan  and  collected  in  the  same  manner  as  the  

preparation  for  imaging.    GPMVs  in  buffer  were  then  transferred  into  a  cuvette  

from  stramacells.    The  cuvette  was  then  placed  in  a  Cary  Eclipse  

spectrofluorometer.    The  spectrofluorometer  was  first  calibrated,  and  then  the  

sample  was  excited  with  a  405nm  wavelength.  Two  control  samples  were  also  

used,  C-­‐laurdan  in  GPMV  buffer  as  a  positive  control,  and  GPMV  buffer  on  its  own  

as  a  negative  control.    The  emission  spectrums  was  collected  and  graphed  by  the  

Cary  Eclipse  system.    The  emission  spectrum  was  first  measured  at  25°C,  then  at  

55°C,  two  temperatures  that  were  believed  to  be  well  below  and  well  above  the  

transition  temperatures  of  the  GPMVs.    The  GPMV  samples  were  cycled  between  

25°C  and  55°C  3-­‐4  times  in  an  effort  to  ensure  the  data  were  reproducible  within  

the  same  sample  as  well  as  between  samples.    The  graphed  data  was  then  

Page 30: Observations in Lipid Membrane Systems

  22  

normalized  and  line  smoothed  using  a  7-­‐point  triangular  smooth  method.    The  

wavelength  at  the  maximum  point  for  each  curve  was  determined  and  recorded.    

The  average  wavelength  for  the  C-­‐laurdan  in  buffer  at  25°C  and  55°C,  and  GPMVs  

at  25°C  and  55°C  was  calculated  and  graphed.    

3 Results    

3.1 GPMV  Production  After  extensive  observation  and  experimentation,  it  became  clear  that  the  

domain  formation  as  described  by  Veatch  was  not  occurring  in  the  GPMVs  the  

majority  of  the  time.    Instead,  a  heterogeneous  population  of  GPMVs  was  obtained.  

We  began  to  question  if  the  type  of  vesicles  shown  by  Veatch  and  Keller  in  their  

publications  were  representative  to  the  plasma  membrane  (Veatch,  Cicuta,  

Sengupta,  Honerkamp-­‐Smith,  Holowka,  &  Baird,  2008).    After  our  observations,  we  

could  not  conclude  with  certainty  that  critical  behavior  is  indeed  playing  the  

significant  functional  role;  however  we  cannot  exclude  a  crucial  role  for  critical  

behavior  either.    Our  observations  gave  us  insight  into  many  different  phenomena  

occurring  on  the  plasma  membrane.      

As  it  become  obvious  that  the  critical  GPMVs  published  by  Veatch  and  Keller  

were  not  the  norm,  we  began  collecting  observations  on  what  we  did  observe  in  

GPMVs.    Observations  were  amassed  and  divided  them  into  sections  of  phenomena  

viewed.    Due  to  a  lack  of  description  in  the  literature,  we  named  these  categories  of  

Page 31: Observations in Lipid Membrane Systems

  23  

phenomena.    These  phenomena  were;  phase  separation,  dynamic  phase  separation,  

critical  phase  separation,  blebbing,  and  vibrations.      

The  data  was  collected  and  organized  into  sections  from  our  initial  

standardization  experiments  to  create  a  body  of  observations  that  could  be  

analyzed.    As  the  data  was  from  our  initial  standardizations,  it  stands  to  reason  that  

the  data  is  not  completely  random  in  its  collection  however;  the  majority  of  the  data  

would  have  been  collected  from  the  center  of  the  glass  bottom  dish  where  it  was  

easiest  to  image  and  the  sample  of  GPMVs  in  each  dish  would  be  in  solution  and  

settle  randomly  on  the  bottom  of  the  glass  bottom  dish  over  time.      

3.2 Phase  Separation  Domain  formation  due  to  phase  separation  was  the  primary  focus  of  our  

experiment.    Phase  Separation  was  by  far  the  largest  consortium  of  observations  

made  of  the  GPMVs  (See  Graph  2.1.)    It  is  a  conserved  occurrence  in  

multicomponent  lipid/protein  systems  and  present  in  all  cells  (Sackmann,  1994).  

We  found  that  there  was  a  great  amount  of  variability  in  the  vesicles  that  we  viewed.    

For  example,  the  domains  varied  greatly  in  size,  from  sub  micrometer  domains  that  

were  barley  resolvable,  to  very  large  domains  that  were  very  obvious.        We  

observed  three  different  categories  of  lipid  phase  domain  separation,  firstly  where  

the  first  domains  were  static  in  shape  and  not  moving,  secondly  where  the  domains  

where  static  in  shape  but  otherwise  moving  on  the  GPMV,  and  thirdly  where  the  

domains  were  both  motile  on  the  GPMV,  and  constantly  evolving  their  shape.  Only  

this  latter  incidence  is  consistent  with  critical  behavior.    We  therefore  termed  it  

critical  phase  separation.  However,  we  did  not  calculate  the  line  tension  for  this  

Page 32: Observations in Lipid Membrane Systems

  24  

data,  as  it  was  unclear  whether  the  domains  were  fusing  into  domains,  or  if  they  

were  small  highly  motile  domains  of  static  shape  that  collided  with  each  other.    

Domains  were  still  much  smaller  than  published  and  the  overall  domain  pattern  

evolved  much  faster.    

3.2.1 Static  Phase  Separation    

3.2.1.1 Static  Phase  Separation  –  Results    The  observations  from  this  section  show  a  range  in  the  domain  separation  

visible  on  the  GPMV  membrane,  from  the  small  patchy  appearance  of  the  phases,  to  

the  large  and  extremely  obvious  phases  that  take  up  almost  half  the  GPMV  

membrane  surface.      

The  vast  majority  of  GPMVs  that  were  observed  over  the  course  of  the  project  

displayed  the  phase  separation  phenomena.  Figure  2.1  shows  a  variety  of  GPMVs  

that  we  observed  in  a  single  preparation,  all  displaying  phase  separation.  However,  

the  vesicles  are  all  at  different  levels  with  respect  to  the  microscopes  plane  of  focus,  

and  therefore  show  the  phase  separation  phenomena  under  various  different  views.      

The  hallmark  of  this  section  of  observations  was  that  domains  do  not  move  

or  change  shape  overtime  (see  Figure  2.2,  2.3,  supplementary  Video’s  1/2).    In  this  

section  we  aimed  to  collect  visuals  from  both  the  equatorial  and  top  membrane  

view.    In  Figure  2.2,  we  see  the  phase  separation  displayed  in  an  equatorial  view,  

and  in  Figure  2.3,  we  see  a  top  membrane  view.    When  collating  data  for  this  section,  

it  was  noted  that  phase  separation  may  not  be  entirely  obvious  in  the  equatorial  

view  unless  the  phase  separation  was  around  the  mid-­‐section  of  the  GPMV-­‐  See  

Figure  2.4  for  further  explanation.    

Page 33: Observations in Lipid Membrane Systems

  25  

3.2.1.2 Static  Phase  Separation  -­‐  Discussion    The  fact  that  the  domains  do  not  move  or  change  shape  could  be  explained  by  a  

constant  and  high  line  tension  and  no  intermixing  between  phases,  indicating  that  

these  vesicles  are  not  a  critical  system.      

3.2.2 Dynamic  Phase  Separation  

3.2.2.1 Dynamic  Phase  Separation  -­‐  Results  Dynamic  phase  separation  was  viewed  in  the  Elyra  in  the  TIRF  mode  and  

spinning  disk  microscopes.  Regular  confocal  FV1000  did  not  resolve  these  fast-­‐

evolving  structures.    The  dynamic  phase  separation  phenomenon  was  observed  

with  a  range  of  lipid  dyes.    The  very  fast  dynamics  of  the  moving  domains  also  

showed  the  limitations  of  our  microscopy  systems.      

We  have  categorized  the  dynamic  phase  separation  as  any  incidence  where  

we  observed  a  highly  dynamic  movement  of  the  lipid  rafts  on  the  membrane  surface  

(see  Figure  2.5,  supplementary  Video  3).    The  lipid  domains  are  static  in  size  and  

shape,  but  are  highly  mobile.    This  movement  is  very  fast,  and  hard  to  pick  up  on  the  

microscope  camera.    

3.2.2.2 Dynamic  Phase  Separation  -­‐  Discussion  Simons’  have  described  small  and  highly  mobile  Lo  domains  as  being  highly  

dynamic  lipid  assemblies  that  are  floating  freely  on  the  Ld  phase  (Rajendran  &  

Simons,  2005).    The  highly  dynamic  nature  of  the  lipid  domains  in  this  subset  of  

observations  is  particularly  interesting  in  a  cell  singling  sense.  As  mentioned,  certain  

proteins  preferentially  are  sorted  into  the  Lo  domains  (Rajendran  &  Simons,  2005).    

It  is  attractive  to  imagine  signaling  as  a  clustering  of  these  domains  and  their  rapid  

movement  indicates  a  highly  dynamic  system  (Rajendran  &  Simons,  2005).    The  

Page 34: Observations in Lipid Membrane Systems

  26  

question  of  energetics  for  this  process  however  remains  unanswered.    The  Veatch  

theory  suggests  that  lipid  dynamic  fluctuations  are  due  to  the  result  of  critical  

fluctuations  near  the  Tc  (Honerkamp-­‐Smith,  et  al.,  2008),  meaning  that  the  highly  

dynamic  Lo  domains  that  were  observed  in  our  results  could  be  due  to  lipid  

fluctuations  where  the  GPMV  is  near  the  Tc.    Although  the  GPMVs  display  highly  

dynamic  movement  of  the  Lo  domains,  we  have  not  proven  that  this  is  the  definitive  

behavior  of  the  critical  system.    The  Lo  domains  are  still  fairly  static  in  size  and  

shape,  which  is  not  emblematic  of  would  be  critical  behavior.      

3.2.3  Critical  Phase  Separation    

3.2.3.1 Critical  Phase  Separation  -­‐  Results  Dynamic  critical  behavior  represented  a  small  subset  of  GPMV  observations  

(See  Graph  2.1).    This  phenomenon  was  only  observable  under  specific  condition.    

For  this  phenomenon  to  take  place,  the  D.C.  2.4  cells  where  the  GPMVs  to  be  

collected  from  had  to  be  plated  at  a  low  density.    The  only  fluorophore  that  was  

successful  was  Fast  Dio  (which  dyed  the  Ld  domain  rather  than  the  Lo  domain).    As  

with  the  previous  section,  these  phenomena  could  only  be  viewed  on  a  microscope  

that  has  both  high  resolving  power  and  is  fast  enough  to  pick  up  the  dynamic  

movement,  meaning  that  the  spinning  disk  was  the  only  microscope  in  which  we  

viewed  this  phenomenon.    

3.2.3.2 Critical  Phase  Separation  –  Discussion    In  this  section,  we  will  describe  what  our  best  guess  at  critical  behavior.    It  is  

hard  to  distinguish  between  the  critical  behavior  versus  dynamic  behavior  without  

doing  an  in-­‐depth  analysis  on  line  tension  and  the  critical  exponent  as  originally  

Page 35: Observations in Lipid Membrane Systems

  27  

suggested  in  the  Veatch  paper  on  critical  behavior  (Honerkamp-­‐Smith,  et  al.,  2008).    

However,  such  analysis  was  not  attempted,  as  domains  were  too  small,  much  

smaller  than  published  by  Veatch  and  Keller,  to  allow  for  use  of  their  algorithms  

(Veatch,  Cicuta,  Sengupta,  Honerkamp-­‐Smith,  Holowka,  &  Baird,  2008).      

These  GPMVs  therefore  represent  our  best  estimation  of  critical  behavior,  

where  the  lipid  rafts  not  only  change  position  on  the  membrane,  but  also  are  also  

rapidly  changing  and  fusing  shapes  over  time.    This  behavior  was  best  captured  with  

videos  (See  supplementary  Video  4,  5,  Figure  2.6).    We  found  that  to  observe  the  

Dynamic  critical  phase  separation  in  the  GPMVs,  the  GPMVs  must  be  harvested  from  

a  lower  density  plate  of  cells,  and  that  only  one  fluorophore  could  be  used  (See  

supplementary  chart  of  observations).      After  extensive  trials  to  obtain  critical  

behavior,  a  communication  with  Sara  Veatch  revealed  that  this  was  how  her  team  

had  visualized  critical  behavior  from  GPMVs  in  their  paper  (Veatch,  Cicuta,  

Sengupta,  Honerkamp-­‐Smith,  Holowka,  &  Baird,  2008).      

The  hallmarks  of  critical  behavior  are  the  ability  of  lipid  domains  to  change  

size  and  shape  and  lateral  position  on  the  membrane  where  the  composition  of  

lipids  and  cholesterol  are  of  a  critical  composition.  As  the  Tc  is  approached,  there  is  a  

decrease  in  interfacial  energy  between  phases  (due  to  decreasing  line  tension),  the  

size  and  lifetime  of  the  Lo  and  Ld  decreases  (Veatch,  Cicuta,  Sengupta,  Honerkamp-­‐

Smith,  Holowka,  &  Baird,  2008)  (Honerkamp-­‐Smith,  et  al.,  2008).    Critical  

fluctuations  of  GPMV  membranes  according  to  Veatch  follows  2D  Ising  (Ising,  1925)  

model  scaling  laws  meaning  that  critical  behavior  is  universal  for  all  critical  

Page 36: Observations in Lipid Membrane Systems

  28  

compositions  (Veatch,  Cicuta,  Sengupta,  Honerkamp-­‐Smith,  Holowka,  &  Baird,  

2008).      

The  GPMVs  displaying  critical  behavior  shall  have  dynamic  phases  where  the  

lipid  domains  have  an  ever-­‐changing  morphology,  shape  and  size,  and  whereby  the  

lipid  raft  domains  have  extremely  fast  dynamic  movement  on  the  GPMV  membrane.        

The  GPMVs  in  observed  displaying  this  behavior  must  be  at  the  Tc  due  to  the  fluidity  

of  the  domains,  and  the  low  energy  cost  of  lipid  movement  between  the  domains.    

3.3 Observations  of  Blebbing    

3.3.1 Observations  of  Blebbing  –  Results    The  blebbing  off  plasma  membrane  from  a  vesicle  would  give  rise  to  a  

smaller  vesicle  (<  5  μm)  from  larger  (10  μm)  parent  vesicle.    The  blebbing  begins  as  

an  extrusion  of  plasma  membrane  off  of  the  GPMV,  and  as  the  extrusion  grows,  there  

is  a  neck  formation  and  the  bleb  is  pinched  off.      We  viewed  both  blebs  forming  on  

the  plasma  membrane,  the  products  of  blebbing,  as  well  as  the  full  process  itself.    

In  our  results,  we  observed  blebs  that  were  either  in  the  process  of  detaching  

from  the  GPMV  membrane,  or  had  already  detached  and  were  in  close  proximity  to  

the  parent  vesicle.  Blebbling  was  observed  with  all  dyes  and  in  all  microscopes.    

Blebbing  appeared  to  be  a  universal  phenomenon  and  occurred  randomly  within  

our  samples(See  Graph  2.1).  The  blebbing  phenomenon  was  present  throughout  out  

experiments  and  was  present  in  both  phase  separated  and  phase  mixing  samples,  

meaning  that  the  blebbing  phenomenon  was  not  restricted  to  one  specific  phase.    

The  blebbing  phenomenon  was  not  observed  to  occur  with  all  types  of  

fluorophores  or  microscope  setups  (see  supplementary  Chart  of  Observations).  We  

Page 37: Observations in Lipid Membrane Systems

  29  

originally  observed  blebbing  present  in  only  the  Lo  phases  (See  Figure  2.7,  2.8)  of  

the  GPMV  however,  after  further  experimentation  we  also  observed  blebbing  in  the  

Rhodamine-­‐PE  dyed  Ld  phases  as  well  (Figure  2.9).  Interestingly,  we  observed  the  

blebbing  to  not  only  occur  outwards  from  the  GPMV,  but  also  inwards  in  the  inner  

GPMV  space  (Figure  2.9).  It  was  observed  that  blebbing  of  the  membrane  was  not  

restricted  to  a  certain  phase.    Indeed,  the  blebbing  was  observed  in  both  the  Lo  and  

the  Ld  phases,  as  well  as  in  GPMVs,  which  displayed  even  mixing  of  both  domains.      

It  was  also  observed  that  bleb  formation  could  be  in  the  form  of  small  

extrusions  beginning  to  come  off  of  the  vesicle,  or  after  completely  blebbing  of  in  the  

form  of  smaller  vesicles  within  the  surrounding  area,  occasionally  within  the  GPMV  

itself.      

3.3.2 Observations  of  Blebbing  –  Discussion    There  are  many  factors  that  account  for  this  phenomenon  including  

membrane  tension,  lipid  composition,  and  membrane  curvature  (Mellander,  Kurczy,  

Najafinobar,  Dunevall,  Ewing,  &  Cans,  2013).    Domain  formation  within  GPMVs  is  a  

result  of  stabilization  of  heterogeneously  organized  membranes,  and  each  lipid  

domain  has  its  own  local  curvature  (Sackmann,  1994).    Bleb  formation  can  be  boiled  

down  to  two  main  factors:  phase  separation  and  membrane  curvature  (Sackmann,  

1994).    Phase  separation  depends  on  the  decrease  of  entropy  for  lipid  mixing,  and  

membrane  curvature  depends  on  the  bending  stiffness  of  the  vesicle  shell  

(Sackmann,  1994).    A  vesicle  of  a  given  size  has  a  given  curvature,  a  curvature  that  is  

a  fixed  parameter.    Membrane  that  is  under  increased  tension  becomes  bent  out  of  

its  natural  state  –  the  variable  would  be  the  stiffness  of  the  lipid  composition  of  the  

Page 38: Observations in Lipid Membrane Systems

  30  

entire  vesicle.  We  will  further  investigate  all  the  factors  that  would  influence  the  

presence  of  this  phenomenon.    

Membrane  tension  as  defined  by  (Diz-­‐Muñoz,  Fletcher,  &  Weiner,  2013)  

plays  a  vital  role  in  the  formation  of  membrane  blebs  (Mellander,  Kurczy,  

Najafinobar,  Dunevall,  Ewing,  &  Cans,  2013).    The  surface  area  of  a  GPMV  is  finite,  

and  any  small  changes  in  the  environment  can  lead  to  changes  in  the  surface  

tension.    Mellander  and  colleagues  proposed  in  their  research  on  the  release  of  

daughter  vesicles  (blebs)  from  giant  unilamellar  vesicles,  that  membrane  tension  

played  a  role  in  regulating  the  release  of  the  blebs  (Mellander,  Kurczy,  Najafinobar,  

Dunevall,  Ewing,  &  Cans,  2013).    The  size  of  the  bleb  created  can  affect  the  

membrane  tension  and  it  has  been  suggested  that  the  GPMV  has  a  limited  amount  of  

excess  membrane  available  to  provide  for  formation  of  a  bleb.    Bleb  formation  and  

the  growth  of  a  bleb  thereby  increase  the  GPMV  membrane  tension  (Mellander,  

Kurczy,  Najafinobar,  Dunevall,  Ewing,  &  Cans,  2013).    

The  overall  stiffness  of  the  vesicle  is  highly  variable,  and  assuming  that  the  

blebbing  of  the  vesicle  from  the  original  cell  is  random  and  contains  a  random  

composition  of  membrane,  it  is  highly  likely  that  the  GPMVs  are  highly  variable  and  

possess  variable  membrane  tension  which,  in  turn  can  allow  for  certain  GPMVs  to  

have  conditions  ripe  for  bleb  formation  while  others  do  not.    

Lipid  shape  and  composition  in  the  membrane  plays  an  intimate  role  in  

ability  of  a  lipid  membrane  to  attain  a  degree  of  curvature  (Veatch,  Cicuta,  Sengupta,  

Honerkamp-­‐Smith,  Holowka,  &  Baird,  2008).    The  volume  occupied  by  the  tails  

region  and  the  ability  to  pack  the  lipids  gives  the  characteristics  of  membrane  shape  

Page 39: Observations in Lipid Membrane Systems

  31  

(Frolov,  Shynyrova,  &  Zimmerberg,  2011).  Specific  packing  parameter  [P]=V/al,  

where  V  is  the  specific  volume  of  lipid  tails,  l  is  the  length  of  the  lipid  tail,  and  a,  is  

the  area/lipid  molecule  (Israelachvili,  2011).    A  P  of  approximately  1  describes  the  

shape  of  a  cylindrical  lipid  for  example,  dioleoylphosphocholine/DOPC,  a  P>1  

describes  a  cone  shaped  lipid,  for  example,  

dioleoylphosphotidylethanolamine/DOPE  and  a  P<1  describes  the  shape  of  an  

inverse  cone  lipid,  for  example  lysophosphocholine  (LPC)  (Frolov,  Shynyrova,  &  

Zimmerberg,  2011).    The  curvature  of  a  membrane  system  where  the  curvature  is  

based  wholly  on  the  intrinsic  nature  of  the  lipids  is  known  as  the  spontaneous  

curvature  (Mellander,  Kurczy,  Najafinobar,  Dunevall,  Ewing,  &  Cans,  2013).    For  

example,  monolayers  that  are  composed  of  cylindrical  lipids  will  have  a  

spontaneous  curvature  of  0  (Frolov,  Shynyrova,  &  Zimmerberg,  2011).    

Lipids  are  able  to  generate  cylindrical  shape  without  energy  input,  meaning  

that  GPMVs  in  a  spherical  shape  requires  no  energy  input  and  the  generation  of  

membrane  blebs  by  GPMVs  is  a  passive  process,  which  requires  no  energy  input  

(Veatch,  Cicuta,  Sengupta,  Honerkamp-­‐Smith,  Holowka,  &  Baird,  2008).      

Membrane  curvature  is  achieved  by  a  force  imbalance  between  the  two  

monolayers  of  lipids  due  to  spatial  requirements  of  the  lipids  (Frolov,  Shynyrova,  &  

Zimmerberg,  2011).    Membrane  asymmetry  where  more  cone  shaped  lipids  occupy  

the  outer  monolayer  and  more  reverse  cone  lipids  occupy  the  inner  monolayer  

resulting  in  a  difference  in  pressure.    This  leads  to  monolayer  torque,  and  the  

monolayer  with  the  biggest  torque  wins,  bending  to  balance  the  force  (Frolov,  

Shynyrova,  &  Zimmerberg,  2011).    

Page 40: Observations in Lipid Membrane Systems

  32  

A  change  away  from  the  spontaneous  curvature  is  caused  by  forces  applied  

to  the  membrane  by  factors  in  the  environment  leading  to  domain  driven  budding,  

where  the  domain  boundary  provides  the  driving  force  for  membrane  blebbing  

(Frolov,  Shynyrova,  &  Zimmerberg,  2011).    Lipid  polymorphism  and  the  

spontaneous  curvature  of  the  membrane  play  a  role  in  the  regulation  of  domain  

driven  blebbing  (Frolov,  Shynyrova,  &  Zimmerberg,  2011).      

It  has  been  suggested  the  domain  driven  blebbing  is  due  to  membrane  height  

mismatch  between  the  Lo  and  Ld  phases,  due  to  Lo  having  increased  thickness  due  to  

the  presence  of  cholesterol  (Frolov,  Shynyrova,  &  Zimmerberg,  2011)  and  thus  leads  

to  an  increase  in  line  tension.    In  an  effort  to  lower  the  mismatch  energy,  non-­‐bilayer  

lipids  accumulate  and  bleb  off  (Frolov,  Shynyrova,  &  Zimmerberg,  2011).    The  

presence  of  line  tension  due  to  phase  separation  in  heterogeneous  GPMVs  gives  rise  

to  blebbing  of  the  GPMV  membrane.    It  is  clear  that  in  our  data,  all  of  the  vesicles  

displaying  the  blebbing  phenomenon  were  also  displaying  phase  separation.      As  a  

result,  the  increasing  phase  separation  resulted  in  blebbing  of  the  membrane  from  

the  GPMV  and  occasionally  resulted  in  smaller  daughter  vesicles.    As  this  

phenomenon  is  associated  with  phase  separation,  it  is  possible  that  blebbing  could  

occur  with  decreased  temperatures  where  phase  separation  has  increased  and  

creates  conditions  that  are  favorable  for  blebbing.    As  the  GPMVs  themselves  are  

formed  from  random  blebbing  from  cellular  membranes,  the  lipid  composition  can  

vary  greatly,  and  thus  blebbing  may  be  an  occurrence  based  on  a  random  lipid  

composition  of  the  GPMVs,  which  possess  a  potential  to  increase  membrane  tension  

and  lead  to  blebbing.    

Page 41: Observations in Lipid Membrane Systems

  33  

It  can  be  concluded  that  a  buildup  of  lipids  creating  excessive  curvature  in  

the  membrane  would  thus  lead  to  conditions  that  would  favor  membrane  blebbing  

formation.    Membrane  bleb  formation  would  also  affect  the  composition  of  lipids  

within  the  GPMVs,  and  thus  render  the  GPMVs  as  non-­‐critical  systems.    It  is  possible  

that  the  blebbing  we  observed  in  our  systems  was  detrimental  in  our  attempt  to  

observe  critical  behavior  due  to  the  disruption  of  the  critical  composition  of  lipids  in  

the  original  GPMVs.    

3.4 Vibrations    

3.4.1 Vibrations  -­‐  Results  Vesicle  vibration,  wherein  the  membrane  of  the  vesicle  vibrates  such  that  

there  are  nodes  created  on  the  vesicle.    This  was  akin  to  the  vibration  of  a  taught  

string  where  there  are  nodes  present  where  the  wavelength  of  the  string  vibrates  

about  the  nodes.    Vibration  category  was  a  surprising  observation  for  us.    The  

membrane  of  the  GPMVs  had  to  be  under  low  tension  and  pliable  to  be  able  to  

display  such  a  phenomenon.      

We  observed  GPMVs  to  be  fairly  stationary  within  the  sample,  yet  the  

membrane  of  the  GPMV  would  display  vibrational  behavior,  with  clear  nodes  (areas  

without  vibration)  visible  on  the  GPMV  membrane.    Even  more  remarkably,  not  all  

of  the  GPMVs  in  the  sample  would  display  this  behavior,  suggesting  that  only  a  

subset  of  GPMVs  possessed  a  combination  of  lipids  that  would  allow  for  this  

phenomenon.  It  is  clear  that  this  phenomenon  is  rooted  in  the  composition  of  the  

membrane.    We  aimed  to  find  the  biological  explanation  for  such  a  phenomenon  and  

describe  it  in  the  context  of  our  findings.      

Page 42: Observations in Lipid Membrane Systems

  34  

Vibrations  in  GPMVs  were  observed  in  our  later  preparations  of  GPMVs  

where  we  began  to  see  the  Dynamic  critical  behavior.    In  these  preparations,  we  

were  viewing  the  GPMVs  exclusively  on  the  spinning  disk  microscope,  and  therefore  

this  was  the  only  method  we  used  to  view  the  vibrations.    The  only  fluorophore  that  

we  viewed  this  phenomenon  was  the  Fast  Dio  fluorophore.  

While  imaging  GPMV  vesicles,  we  observed  vibrations  of  the  membrane  and  

distinct  nodes  present.  Within  the  same  field  of  view,  we  observed  vesicles  that  

vibrated  and  others  that  did  not.  Hence,  we  could  exclude  that  this  observation  was  

based  on  a  shaking  microscope.    The  GPMVs  vibrating  also  had  visible  nodes  that  the  

membrane  would  vibrate  about.    This  observation  was  curious;  as  only  a  small  

proportion  of  the  GPMVs  displayed  this  behavior  while  the  other  GPMVs  within  the  

same  sample  did  not.    We  will  attempt  to  provide  a  theory  for  this  phenomena  based  

on  current  research.      

Vibrations  were  observed  in  a  fairly  low  percentage  of  GPMVs  (See  Graph  

2.1).  The  plasma  membrane  of  the  GPMVs  was  vibrating  while  there  were  nodes  

present  where  the  rest  of  the  membrane  vibrated  about.    It  was  observed  that  the  

GPMVs  contained  two  nodes  at  the  equatorial  view  (See  Supplementary  Video  6,  

Figure  2.10).  The  membrane  was  viewed  to  be  highly  mobile  and  vibrating  with  a  

frequency.    Not  all  GPMVs  observed  in  the  same  sample  vibrated,  within  the  same  

video  frame  it  was  possible  to  view  both  vibrational  and  non-­‐vibrational  GPMVs  

(See  Supplementary  Video  7).    

Page 43: Observations in Lipid Membrane Systems

  35  

3.4.2 Vibrations  –  Discussion    Fluctuations  of  vesicles  are  possible  due  to  the  excess  surface  area  available  

to  the  GPMVs  as  well  as  the  stiffness  of  the  membrane  (Milner  &  Safran,  1987).    Any  

deviation  from  the  sphere  shape  is  the  characterization  of  the  

fluctuations/vibrations  that  were  observed.    If  the  GPMV  membranes  were  stiff,  

there  would  be  little  to  no  fluctuations  present  (Milner  &  Safran,  1987).    For  GPMV  

vibrations,  not  only  must  the  GPMVs  have  sufficient  membrane  bending  elasticity  

and  spontaneous  membrane  curvature  to  vibrate,  but  also  posses  a  sufficient  

amount  of  excess  membrane  available  (Milner  &  Safran,  1987).      According  to  Milner  

and  Safran,  calculations  of  fluctuations  of  the  vesicle  systems  can  predict  for  

fluctuations  that  are  consistent  with  the  excess  area  of  the  vesicle  (In  this  case  

excess  area  is  surface  area  beyond  the  needed  volume  for  the  sphere)  (1987).    

The  elastic  properties  of  the  plasma  membrane  are  well  known,  it  has  been  

shown  that  biological  plasma  membranes  are  very  soft  in  regards  to  membrane  

bending  and  shearing  yet  the  membrane  is  relatively  incompressible  (Sackmann,  

1994).    This  means  that  GPMVs  will  have  excess  membrane  available  to  be  

deformed,  yet  will  maintain  a  rather  constant  shape,  which  is  what  we  observed.    

The  lateral  packing  density  determines  the  bilayer  elasticity  of  the  plasma  

membrane  and  the  condensing  effect  of  cholesterol  present  in  the  membrane  leads  

to  an  increase  in  the  bending  and  compression  of  the  membrane  shape  (Sackmann,  

1994).      

The  energy  requirement  for  bending  or  displacement  of  the  membrane  is  the  

bending  energy  (Mellander,  Kurczy,  Najafinobar,  Dunevall,  Ewing,  &  Cans,  2013)  

(Milner  &  Safran,  1987)  (Sackmann,  1994).    Shape  changes  in  the  GPMVs  can  be  

Page 44: Observations in Lipid Membrane Systems

  36  

thought  to  be  due  to  the  membrane  bending  energy  hypothesis,  where  the  minimum  

bending  energy  determines  the  global  shape  of  the  membrane  but  can  also  be  

subjected  to  external  forces  affecting  the  shape  (Sackmann,  1994).    It  is  known  that  

the  membrane  softness  plays  a  role  in  the  membranes  ability  to  be  manipulated  

(Mellander,  Kurczy,  Najafinobar,  Dunevall,  Ewing,  &  Cans,  2013)  (Milner  &  Safran,  

1987;  Sackmann,  1994)  and  thus  allows  for  easier  undulations  and  a  low  membrane  

bending  energy.    The  vibrational  phenomena  that  we  observed  is  a  result  of  

pronounced  bending  undulations  (flickering)  of  the  membrane  and  are  similar  to  

Brownian  motion  (Sackmann,  1994).        

The  question  of  biological  significance  of  the  vibrational  phenomena  is  

interesting.  So  far  we  have  established  that  to  vibrate,  the  membrane  must  possess  

spontaneous  membrane  curvature,  membrane  softness,  a  capacity  for  excess  

membrane,  and  membrane  elasticity.  Interestingly,  it  has  been  suggested  that  the  

plasma  membrane  vibrations  is  a  pacemaker  of  sorts,  and  is  important  biologically  

for  cell  synchronization  (Ehsani,  2012).      

Ehsani  suggested  that  the  vibrational  properties  of  the  plasma  membrane  

play  a  vital  role  for  the  convergence  and  synchronization  of  cell-­‐wide  systems  

(2012).    Cell  vibrations  are  like  the  circadian  rhythm  of  cell,  allowing  the  cell  to  

complete  important  biological  functions  with  accuracy,  allowing  for  synchronization  

between  cells  (Ehsani,  2012).    

In  an  effort  to  quantify  our  vibrational  data,  we  attempted  to  obtain  the  

frequency  of  vibration  of  the  plasma  membrane  from  the  captured  videos.    There  

are  well-­‐established  protocols  for  frequency  measurement  for  small-­‐amplitude  

Page 45: Observations in Lipid Membrane Systems

  37  

vibration  movements  (Ferrer,  Espinosa,  Roig,  Perez,  &  Mas,  2013).    However,  we  

found  that  the  frame  rate  of  our  data  was  not  sufficient  enough  for  the  rate  of  

vibration  of  the  plasma  membrane.      Without  a  sufficient  enough  frame  rate,  it  is  

possible  to  get  an  accurate  idea  of  where  the  nodes  and  the  antinodes  of  the  

vibration  of  the  membrane  occur,  but  we  are  unable  to  obtain  the  frequency  or  

oscillation  as  there  is  not  enough  distinction  between  the  areas  of  the  membrane  in  

order  to  accurately  analyze  the  frequency  (Figure  2.11).    We  also  concluded  that,  as  

our  data  is  only  2D,  where  3D  data  would  be  best  for  an  accurate  method  of  analysis.    

This  is  because  it  may  be  important  to  ascertain  if  there  are  more  than  2  nodes  

present  on  the  membrane.    For  example,  there  could  be  two  more  nodes  at  both  the  

apex  and  the  bottom  of  the  GPMV  of  which  we  are  not  aware.      

3.5  Spectrofluorometer  Spectrofluorometry  was  done  to  see,  whether  a  global  change  in  the  

proportional  amount  of  Lo  vs  Ld  domains  in  lipids  could  be  observed.  We  used  the  

spectrofluorometer  and  a  lipid  sensor  dye  (C-­‐laurdan),  which  acts  as  a  sensor  for  the  

polarity  of  its  environment  by  changing  its  emission  spectra.    The  

spectrofluorometer  was  used  to  take  advantage  of  the  C-­‐laurdan  fluorophore,  which  

changes  its  emission  based  on  the  polarity  of  the  solvent  in  which  it  is  dissolved  

(Kim,  et  al.,  2007).    This  aspect  of  C-­‐laurdan  in  addition  to  the  spectrofluorometer,  

allowed  use  to  track  changes  in  the  phase  distribution  of  the  GPMVs  due  to  changing  

temperature.  C-­‐laurdan  is  unique  in  that  it  has  the  ability  to  change  its  emission  

wavelength  in  response  to  changes  in  the  polarity  of  the  solvent  (Kim,  et  al.,  2007).    

Page 46: Observations in Lipid Membrane Systems

  38  

Our  aim  in  this  experiment  was  to  show  a  shift  in  the  fluorescence  emission  from  the  

GPMVs  in  buffer  due  to  changing  temperature.      

The  spectrofluorometer  takes  a  spectral  reading  of  the  emission  of  a  sample  

after  being  excited  with  405nm  wavelength.    We  aimed  to  quantitatively  show  a  

change  in  wavelength  of  the  C-­‐laurdan  fluorophore  dying  the  GPMV  samples.    A  

change  of  temperature  of  the  sample  well  below  and  well  above  the  critical  point,  

should  affect  the  emission  of  the  C-­‐laurdan  based  on  the  increase  of  Lo  phase  and  

decrease  of  Lo  phase  respectively.    It  was  found  that  our  data  did  show  a  change  

emission  based  on  temperature  however,  this  was  negated  by  the  fact  that  our  

control  (C-­‐laurdan  alone  in  buffer)  also  showed  the  same  changes  in  emission,  

meaning  that  the  C-­‐laurdan  itself  was  sensitive  to  temperature.    

After  viewing  the  great  variety  of  GPMVs  and  their  phenomenon,  we  

endeavored  to  create  an  experiment  where  we  could  track  the  behavior  of  the  

GPMVs  over  a  large  population,  and  determine  if  we  could  determine  an  overall  

pattern  of  behavior  for  the  GPMVs.      

We  supposed  that  if  the  GPMVs  are  behaving  as  critical  systems,  there  should  

be  an  increase  in  phase  separation  well  below  the  Tc  ,  where  two  separate  phases  

exist  and  the  C-­‐laurdan  should  display  show  a  blue  shift  with  decreasing  polarity  of  

the  phases.    After  exciting  the  samples  at  405nm,  we  found  that  at  lower  

temperatures  (25°C)  that  there  was  an  overall  blue  shift  in  the  samples,  and  a  lower  

wavelength  was  observed  (~482nm).    When  the  temperature  was  increased  (55°C)  

to  the  same  samples,  there  was  an  overall  red  shift    (~492nm)  indicating  a  more  

polar  GPMV  (See  Graph  2.2).        

Page 47: Observations in Lipid Membrane Systems

  39  

  It  was  interesting  to  see  such  a  different  between  the  two  different  

temperatures.    It  should  be  noted  that  all  samples  were  cycled  several  times  

between  25  and  55°C  and  the  results  were  recorded  for  all  cycles  (See  Graph  2.3,  2.4  

for  examples).      

It  is  clear  from  our  control  results  that  temperature  plays  some  role  in  the  

emission  spectra  of  C-­‐laurdan  (See  Graph  2.2),  we  suspected  that  the  change  in  

emission  in  the  GPMVs  is  due  to  temperature  as  the  change  in  wavelength  emission  

remains  constant  between  both  the  control  and  the  experimental.    Because  both  the  

control  and  the  experimental  results  are  fairly  similar,  we  wanted  to  attempt  to  

better  understand  this  phenomenon.      

While  it  was  not  possible  to  find  further  information  on  C-­‐laurdan,  we  were  

able  to  find  temperature  data  on  laurdan,  and  very  similar  fluorophore  with  the  

same  emission  properties.    Early  research  states  that  emission  spectra  of  laurdan  in  

dipalmitoylphosphatidylcholine  (DPPC)  shifted  towards  longer  wavelength  as  the  

temperature  increased  (Parasassi,  Conti,  &  Gratton,  1986),  which  was  consistent  

with  our  data.      

4 Discussion  

Our  original  aim  of  this  project  was  to  provide  a  framework  for  a  robust  and  

elegant  mechanism  of  cell  signaling.    We  attempted  to  build  on  the  work  of  Veatch  

(Veatch,  Cucuta,  Honerkamp-­‐Smith,  D.,  &  Baird,  2008)  in  an  effort  to  connect  the  

critical  behavior  theory  to  cell  signaling  theory  as  a  method  for  understanding  lipid  

domain  evolution  in  regards  to  cell  signaling.    As  this  project  advanced,  it  became  

Page 48: Observations in Lipid Membrane Systems

  40  

clear  that  the  cell  systems  did  not  behave  as  expected.    GPMVs  displayed  all  different  

sorts  of  phenomenon  and  critical  behavior  was  not  readily  observable  and  we  were  

unable  to  determine  if  the  plasma  membrane  was  behaving  critically.  

The  result  obtained  presented  us  with  multiple  different  phenomenon’s’  

present  on  the  GPMVs.    Although  critical  behavior  presented  an  elegant  framework  

for  a  signaling  mechanism,  the  real  life  data  showed  that  critical  behavior  was  not  

present  in  a  reliable  fashion  within  the  GPMV  samples.    This  proved  to  be  

problematic  as  to  present  this  as  a  mechanism,  there  would  have  to  be  some  

regularity  to  critical  behavior  present  in  GPMVs.    In  an  effort  to  quantify  the  critical  

movement  of  the  lipid  raft  domains,  we  attempted  to  do  a  single  particle  tracking  

analysis  of  our  data.    We  hoped  that  this  would  prove  that  the  movement  of  the  lipid  

rafts  is  highly  dynamic  and  can  be  influenced  by  certain  environmental  factors.    The  

limiting  factor  in  this  analysis  however,  is  the  resolution.    Without  sufficient  

resolution  of  the  lipid  raft  domains,  it  is  impossible  to  do  any  accurate  analysis  on  

domain  movement  due  to  the  lack  of  clear  distinction  between  domains.    As  there  is  

much  evolution  and  movement  of  the  domains,  it  is  crucial  to  have  ample  resolution  

in  order  to  be  able  to  make  distinctions  between  domains.    The  limits  on  our  ability  

to  quantify  our  data  lies  in  the  technology  that  we  have  available  to  us  today.    As  

these  lipid  domains  are  very  small,  it  is  very  hard  for  us  to  do  any  real  analysis  with  

our  current  limits  in  resolution.    

We  were  not  successful  in  showing  critical  behavior  as  a  general  theme  

however;  we  were  able  to  collect  an  impressive  array  of  phenomenon  present  in  the  

GPMVs.    We  believe  that  we  were  able  to  present  a  realistic  overview  of  the  behavior  

Page 49: Observations in Lipid Membrane Systems

  41  

of  the  plasma  membrane  within  GPMVs,  as  well  as  a  broad  understanding  for  the  

overall  occurrence  of  these  phenomena.      

We  hope  that  this  data  can  illustrate  the  vast  complexity  of  the  lipid  

membrane,  and  light  the  way  for  further  research  into  the  complex  and  dynamic  

working  of  the  membrane  system.        

Page 50: Observations in Lipid Membrane Systems

  42  

Bibliography    

Ahmed,  S.,  Wenyu,  B.,  Tze  Cheun  Less,  R.,  Maurer-­‐Stroh,  S.,  &  Goh,  W.  (2010).  F-­‐BAR  domain  

proteins.  Commun  Integr  Biol.  ,  3  (2),  116-­‐121.  

Albon,  N.,  &  Srurtevent,  J.  (1978).  Nature  of  the  gel  to  liquid  crystal  transition  of  synthetic  

phosphatidylcholines.  Proc.  Natl.  Acad.  Sci  ,  75,  2258-­‐2260.  

Brown,  D.,  &  London,  E.  (1997).  Structure  of  Detergent-­‐Resistant  membrane  domains:  does  

phase  separation  occur  in  biological  membranes?  J.  Biochem  Bioph  Meth  ,  240,  1-­‐7.  

Brown,  D.,  &  Rose,  J.  (1992).  Sorting  of  GPI-­‐anchored  proteins  to  glycolipid  enriched  

membrane  subdomains  during  transport  to  the  apical  cell  surface.  Cell  ,  7  (68),  533-­‐

44.  

Brockman,  H.  (1994).  Dipole  potential  of  lipid  membranes.  Chem  Phys  Lipids  ,  73,  57-­‐79.  

Cooper,  G.  (2000).  The  Cell:  A  Molecular  Approach  (2nd  Edition  ed.).  Boston:  Sinauer  

Associates.  

Danielli,  J.,  &  Davson,  H.  (1935).  A  contribution  to  the  theory  of  permability  of  thin  films.  J.  

Cell  Phys  ,  5,  495-­‐508.  

Diz-­‐Muñoz,  A.,  Fletcher,  D.,  &  Weiner,  O.  (2013).  Use  the  force:  Membrane  tension  as  an  

organizer  of  cell  shape  and  motility.  Trends  Cell  Biol  ,  23  (2),  47-­‐53.  

Dietrich,  C.,  Yang,  B.,  Fujuwara,  T.,  Kusumi,  A.,  &  Jacobson,  K.  (2002).  Relationship  of  lipid  

rafts  to  transiet  confienment  zones  detected  by  single  particle  tracking.  Bio  Phys  J.  ,  

82,  274-­‐284.  

Page 51: Observations in Lipid Membrane Systems

  43  

Dolmetsch,  R.,  Pajvani,  U.,  Fife,  K.,  Spotts,  J.,  &  Greenberg,  M.  (2001).  Signaling  to  the  

nucleaus  by  an  L-­‐type  calcium  channel-­‐calmodium  complex  through  the  MAP  kinase  

pathway.  Science  ,  294,  333-­‐339.  

Ehsani,  S.  (2012).  Time  in  the  cell:  a  plausible  role  for  the  plasma  membrane  .  arXiv  ,  

arXiv:1210.0168.  

Ferrer,  B.,  Espinosa,  J.,  Roig,  A.  B.,  Perez,  J.,  &  Mas,  D.  (2013).  Vibration  frequency  

measurement  using  a  local  multithreshold  technique.  Opt  Express  ,  21  (22),  26198-­‐

208.  

Frolov,  V.,  Shynyrova,  A.,  &  Zimmerberg,  J.  (2011).  Lipid  Polymorphisms  and  Membrane  

Shape.  Cold  Spring  Harb  Prespect  Biol.  ,  3  (11),  a004747.  

Gupta,  N.,  &  DeFranco,  A.  (2007).  Lipid  rafts  and  B  cell  signaling  .  J  Semcdb  ,  18,  616-­‐626.  

Gorter,  E.,  &  Grendal,  F.  (1925).  On  biomolecular  layers  of  lipids  on  the  chromocytes  of  the  

blood.  J  Exp  Med  ,  41,  439-­‐443.  

Ising,  E.  (1925).  Beitrag  zur  Theorie  des  Ferromagnetismus.  Zeitschrift  für  Physik  ,  31  (1),  

253-­‐285.  

Israelachvili,  J.  (2011).  Intermolecular  and  Surface  Forces  (3rd  Edition  ed.).  Santa  Barbara:  

Academic  Press.  

Israelachvili,  J.,  Marčelja,  S.,  &  Horn,  R.  (1980).  Physical  rincipals  of  membrane  organizaion.  

Cambridge  University  Press  ,  13  (2),  121-­‐200.  

Harder,  T.,  &  Kuhn,  M.  (2000).  Selective  accumulation  of  raft-­‐associated  membrane  protein  

LAT  in  T  cell  receptor  signaling  assemblies.  J  Cell  BIol  ,  151,  199-­‐207.  

Heberle,  F.,  &  Feigenson,  G.  (2011).  Phase  Separationg  in  Lipid  Membranes.  Cold  Spring  

Harb  Prespect  Biol  ,  3  (4),  1-­‐13.  

Page 52: Observations in Lipid Membrane Systems

  44  

Honerkamp-­‐Smith,  A.,  Cicuta,  P.,  Collins,  M.,  Veatch,  S.,  den  Niks,  M.,  Schick,  M.,  et  al.  (2008).  

Line  Tensions,  Correlation  Lengths,  and  Critical  Exponents  in  Lipid  Membranes  Near  

Critical  Points.  Biophysical  Journal  ,  1,  236-­‐246.  

Kim,  H.,  Choo,  H.,  Jung,  S.,  Ko,  Y.,  Park,  W.,  Jeon,  S.,  et  al.  (2007).  A  two-­‐photon  fluorescent  

probs  for  lipid  raft  imaging;  C-­‐laurden  .  Chembiochem  ,  8  (5),  553-­‐9.  

Kornberg,  L.,  Earp,  H.,  Turner,  C.  ,.,  &  Juliano,  R.  (1991).  Siganl  transduction  by  intergrins:  

increased  protein  tyrosine  phosphorylation  caused  by  clutering  of  Beta  1  intergrins.  

Proc.  Natl.  Acad.  Sci.  ,  88,  8329-­‐8396.  

Lodish,  H.,  Berk,  A.,  &  Zipurksky,  S.  (2000).  Molecular  Cell  Biology  (4th  Edition  ed.).  New  

York  City:  W.  H.  Freeman.  

Munro,  S.  (2003).  Lipid  rafts:  elusive  or  illusive?  Cell  ,  115,  337-­‐338.  

Mellander,  L.,  Kurczy,  M.,  Najafinobar,  N.,  Dunevall,  J.,  Ewing,  A.,  &  Cans,  A.  (2013).  Two  

modes  of  exocytosis  in  an  artifical  cell.  Scientific  reports  ,  4,  3847.  

Milner,  S.,  &  Safran,  S.  (1987).  Dynamical  fluctuations  of  droplet  microemulsions  and  

vesicles.  Phys.  Rev  A  ,  36,  4371.  

Ng,  G.,  Sharma,  K.,  S.,  W.,  Desrosiers,  M.,  Stephens,  L.,  Schoel,  W.,  et  al.  (2008).  Receptor-­‐

independant  direct  membrane  binding  leads  to  cell-­‐surface  lipid  sorting  and  SYK  

kinase  activation  in  dendritic  cells.  J  Immunol  ,  29,  807-­‐818.  

Ohtani,  Y.,  Irie,  T.,  Uekama,  K.,  Fukunaga,  K.,  &  Pitha,  J.  (1989).  Differential  effects  of  Alpha-­‐,  

Beta,  and  Gamma-­‐cyclodextrins  on  Human  Erythrocytes.  Eur  J  Biochem  ,  186,  17-­‐22.  

Onsager,  L.  (1994).  Crystal  statistics.  I.  A  two-­‐dimensional  model  with  an  order-­‐disorder  

transition.  Phys  Rev  ,  65,  117-­‐149.  

Page 53: Observations in Lipid Membrane Systems

  45  

Parasassi,  T.,  Conti,  F.,  &  Gratton,  E.  (1986).  Time-­‐Resolved  fluorescence  emission  spectra  

of  laurden  in  phospholipi  vesicles  by  multifrequence  phase  and  mkodulation  

fluorometry.  Cellular  and  Molecular  Biology  ,  32  (1),  103-­‐108.  

Pike,  L.  (2003).  Lipid  rafts:  bringing  order  to  chaos.  J.  Lipid  Res  ,  44,  655-­‐667.  

Pralle,  A.,  Keller,  P.,  Simons,  K.,  &  Horber,  J.  (2000).  Sphingolipid-­‐cholesterol  rafts  diffuse  as  

samll  entities  in  the  plasma  membrane  of  mammalian  cells.  J.  Cell  Biol  ,  148  (997-­‐

1007).  

Rajendran,  L.,  &  Simons,  K.  (2005).  Lipid  rafts  and  membrane  dynamics.  J  Cell  Sci  ,  118,  

1099-­‐1102.  

Robertson,  J.  (1960).  The  molecular  structure  and  contact  relationships  of  cell  membranes.  

Prog  Biophys  Mol  Biol  ,  10,  343-­‐418.  

Sackmann,  E.  (1994).  Membrane  bending  energy  concept  of  vesicle  and  cell  shapes  and  

shape  transitions  .  346,  3-­‐16.  

Sezgin,  E.,  Hermann-­‐Josef,  K.,  Baumgrat,  T.,  Schwille,  P.,  Simons,  K.,  &  Levental,  I.  (2012).  

Elucidating  membrane  structure  and  protein  behaviour  using  giant  plasma  

membrane  vesicles.  Natura  Protocols  ,  7,  1042-­‐1051.  

Shets,  E.,  Holowka,  D.,  &  Baird,  B.  (1999).  Critical  role  for  cholesterol  in  Lyn-­‐mediated  

tyrosine  phosphorlyation  of  FcεRI  and  their  assocation  with  detergent-­‐resistant  

membranes.  J  Cell  Biol  ,  145,  877-­‐887.  

Simons,  K.,  &  Sampaio,  J.  (2000).  Membrane  organization  and  lipid  rafts.  Cold  Spring  Harb  

prespec  biol  ,  3,  1-­‐27.  

Simons,  K.,  &  Toomre,  D.  (2000).  Lipid  rafts  and  signal  transduction.  Nat  Rev  Mol  Cell  Biol  ,  

1,  31-­‐39.  

Page 54: Observations in Lipid Membrane Systems

  46  

Springett,  G.,  Kawasaki,  H.,  &  Springgs,  D.  (2004).  Non-­‐kinase  second-­‐messenger  signaling:  

new  pathways  with  new  promise.  Bio  Essays  ,  26,  730-­‐738.  

Stier,  A.,  &  Sackmann,  E.  (1973).  Spin  labels  as  enzyme  substrates  heterogenous  lipid  

distribution  in  liver  microsomal  membranes.  Biochem  Biophys  Acta.  ,  311,  400-­‐408.  

Veatch,  S.,  &  Keller,  S.  (2005).  Seeing  spots:  complex  phase  behaviour  in  simple  membranes.  

Biochem  Biophys  Acta  ,  1746,  172-­‐185.  

Veatch,  S.,  Cucuta,  P.,  Honerkamp-­‐Smith,  A.,  D.,  H.,  &  Baird,  B.  (2008).  Critical  fluctuations  in  

plasma  membrane  vesicles.  ACD  Chem  Biol  ,  3,  287-­‐293.  

Yu,  J.,  Fischman,  D.,  &  Steck,  T.  (1973).  Slective  solubilization  of  proteins  and  phospholipids  

from  red  blood  cell  membranes  by  nonionic  detergents.  J.  Supramol  Str  Cell  ,  1,  233-­‐

248.  

Page 55: Observations in Lipid Membrane Systems

  47  

Appendices  

Tables  Table  1.1:  Select  signaling  events  requiring  recruitment  of  proteins    

Signaling  event  

Lipid  raft  

mediated  

Proteins  involved   Reference  

T  Cell  Signaling  

Yes   TCR,  ITAMs,  Src  Kinases  Lck,  Fyn  and  linker  protein  LAT,  TCR/CD3,  CD4/CD8  

Harder  and  Kuhn,  2000  

MSU  signaling  

Yes   no  known  proteins   Ng  et  al,  2008  

Tyrosine  Kinase  signaling  

Yes   EGF  receptor,  PDGF  receptor,  insulin  receptor,  MAPK  

Pike,  2003  

G  Protein-­‐coupled  Receptors  

Yes   β1  and  β2  -­‐adrenergic  receptors,  adenosine  A1  receptors,  m2  muscrainic  cholinergic  receptors,  rhodopsin  and  bradykinin  

B1  and  B2  receptors,  G  proteins  Gi  and  Gs  

Pike,  2003  

IgE  siganling  

Yes   FceR,  ITAMs,  Syk  family  tyrosine  kinsases,  LAT   Sheets,  Holowka  and  Baird,  

1999  BCR  

signaling  Yes   BCR,  CD40   Gupta  and  

DeFranco,  2007  

Calcium  Chanel  Signaling  

No   L  Type  voltage  activated  channels  (LTC)  ,  MAPK   Dolmetsch  et.  al.,  2001  

Page 56: Observations in Lipid Membrane Systems

  48  

   Graph  2.1:  Depicting  the  frequency  of  each  phenomenon  viewed  on  GPMVs.    Data  

was  pooled  from  528  GPMVs.    Taken  with  63X  spinning  disk  with  Fast  Dio  fluorophore.  

   Graph  2.2:  Comparison  of  wavelength  emission  of  C-­‐laurdan  in  buffer  or  with  

GPMVs  at  25°C  and  55°C.  

Vibrations   Blebbing  

Static  Phase  Separation   Dynamic    Phase  Separation  

Phase  Separation   Critical  

0  

1  

2  

3  

4  

5  

6  

7  

8  

Average  number  of  vesicles  displaying  phenomena  for  each  observation  

460  

470  

480  

490  

500  

510  

520  

530  

Control  C-­‐Laurdan  in  Buffer   GPMV  samples  

Wavelength  

Wavelength  at  Maximum  Emission  

25C  

55C  

Page 57: Observations in Lipid Membrane Systems

  49  

 Graph  2.3:  Graph  depicting  emission  values  of  C-­‐laurdan  with  GPMVs  or  in  buffer  as  control  at  25°C  when  excited  at  405nm.    The  GPMV  samples  were  cycled  2-­‐3  times  

between  25°C  and  55°C.  

 Graph  2.4:  Graph  depicting  emission  values  of  C-­‐laurdan  with  GPMVs  or  in  buffer  as  control  at  55°C  when  excited  at  405nm.    The  GPMV  samples  were  cycled  2-­‐3  times  

between  25°C  and  55°C.    

 

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

Normalized  Fluorescence  

Wavelength  

GPMVs  at  25C  with  C-­‐laurdan  C-­‐Laurdan  25T  

GPMV  CL  25T  

GPMV  CL  25T1  

GPMV  CL  25T2  

Sample  2  GPMV  CL  25T  Sample  2  GPMV  CL  25T1  

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

Normalized  Fluorescence  

Wavelength  

GPMVs  at  55C  with  C-­‐laurdan  C-­‐Laurdan  55T  

GPMV  CL  55T  

GPMV  CL  55T1  

GPMV  CL  55T2  

Sample  2  GPMV  CL  55T  

Sample  2  GPMV  CL  55T1  

Page 58: Observations in Lipid Membrane Systems

  50  

Figures  

 Figure  2.1:  Cropped  image  displaying  the  diversity  of  the  GPMVs  observed  

displaying  phase  separation.  GPMVs  are  dyed  with  Fast  Dio,  taken  on  a  63X  Spinning  disk.  

Page 59: Observations in Lipid Membrane Systems

  51  

 Figure  2.2:  Image  of  equatorial  view  of  GPMV  from  video  taken  from  63X  spinning  disk.    The  GPMV  displays  static  phase  separation  where  the  phases  do  not  move  or  

change  shape.  GPMV  is  dyed  with  Fast  Dio  fluorophore.  

Page 60: Observations in Lipid Membrane Systems

  52  

 Figure  2.3:  Image  taken  from  a  video  top  view  of  GPMV  on  63X  spinning  disk.  The  video  shows  a  top  view  of  GPMV  displaying  static  phase  separation  where  the  phases  do  not  move  or  change  shape  over  time.    The  GPMV  is  dyed  with  Fast  Dio  

fluorophore.    

Page 61: Observations in Lipid Membrane Systems

  53  

 Figure  2.4:  Explanation  on  making  observations  on  data  collected  for  the  phase  

separation  section.  

Viewing the GPMV’s

Plane of focus

GPMV

The plane of focus is approximately 750nm in height. A lipid is Approximately 5Å, meaning that there are around 1500 lipids in the optical axis within the focal depth at any one time for the equatorial view. In contrast, there is only one lipid in the focal depth for the apical view. This explains the typically better contrast in the equatorial view.

Apical View

Equatorial View

Page 62: Observations in Lipid Membrane Systems

  54  

 Figure  2.5:  Image  from  video  of  top  view  of  GPMV  displaying  dynamic  phase  

separation.    Phases  display  high  motility.  Video  was  taken  from  63X  Elyra  and  GPMV  was  dyed  with  Alexa  647  conjugate  to  Cholera  toxin  β  subunit.  

Page 63: Observations in Lipid Membrane Systems

  55  

 Figure  2.6:  Image  from  videos  of  changing  lipid  dynamics.    The  lipid  rafts  display-­‐evolving  shapes,  which  are  motile  on  the  plasma  membrane.    Video  was  taken  on  63X  spinning  disk  with  the  Fast  Dio  fluorophore  (See  supplementary  Video  5).  

 

Page 64: Observations in Lipid Membrane Systems

  56  

 Figure  2.7:  63X  Elyra  montage  image  of  Z  stack  of  GPMV.    GPMV  is  dyed  with  both  

Rhodamine-­‐PE  (red)  and  Bodipy  cholesterol  (green)  flurophores.    

Page 65: Observations in Lipid Membrane Systems

  57  

 Figure  2.8:  63X  Elyra  image  of  a  GPMV  displaying  blebbing  phenomena.  The  fluorophore  used  is  an  Alexa  647  conjugate  to  Cholera  toxin  β  subunit.  

 Figure  2.9:  GPMV  displaying  the  blebbing  phenomena  from  a  63X  Elyra  image.  The  red  is  the  rhodamine  POPC  and  the  green  is  the  bodipy  cholesterol  fluorophores.  

 

Page 66: Observations in Lipid Membrane Systems

  58  

 Figure  2.10:  Image  from  Video  of  GPMV  displaying  vibration  phenomenon.  Video  

taken  with  63X  spinning  disk  with  Fast  Dio  fluorophore.  

Page 67: Observations in Lipid Membrane Systems

  59  

 

Figure  2.11:  Zoomed  image  of  Figure  2.10.    The  smaller  red  circles  depicts  the  nodes  of  vibration  while  the  larger  red  ovals  displays  the  antinodes.                                                

2 μm

Node

Antinode