7
INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 2, 2011 © Copyright 2010 All rights reserved Integrated Publishing Association REVIEW ARTICLE ISSN 09764259 343 Enhancement of Impact resistance property of Nylon6 by the addition of Casio 3 as a filler material Mithun V Kulkarni 1 , Elangovan. K 2 , Hemachandra Reddy. K 3 , Prakash J N 4 1 Research scholar, JNTU College of Engineering, Anantapur515002, AP, India 2 Assistant Professor, Cambridge Institute of Technology, Bangalore560036, Karnataka, India 3 Professor, Department of Mechanical Engineering, JNTU College of Engineering, Anantapur515002, Andhra Pradesh, India 4 Professor, Department of Mechanical Engineering, East West Institute of technology, Bangalore560091, Karnataka, India [email protected] ABSTRACT Impact resistance is one of the most important properties for component designers to consider, as well as the most difficult to quantify. Impact resistance is a critical measure of service life and more importantly these days, it involves the perplexing problem of product safety and liability. The aim of this paper is to understand the influence of Casio 3 (Calcium Silicate) on the impact properties of Polyamides (Nylon6) and its composites. The Nylon6 is reinforced with varying percentages (1%, 3% and 5%) of Casio 3 . The drop weight impact tests were conducted on the samples at different drop heights of 320 mm, 620 mm, 1000 mm and different drop weights of 0.89 kg, 1.395 kg and 2.33 kg. Impact measurement under the above said conditions for the materials A, B, C and D indicated that the addition of Casio 3 led to a significant improvement in the impact strength of the polyamides. Keywords: Drop test, Polyamides, Nylon6, Impact, Calcium silicate, Fillers 1. Introduction The impact energy of a material is the amount of energy required to fracture a given volume of the material (Bows, J.R. 1999). Therefore, the impact strength of a material is the energy required to initiate and propagate a crack through the material. The crack propagation energy is related to the toughness of the material and the length of that crack tip that must travel in order to fracture a component. This means the lower the value of the impact energy; the more brittle the material behaves (Askeland, D.R. 1998). Impact tests are frequently used in studying dynamic behavior of materials as well as structures, e.g. crashworthiness of vehicles, dynamic constitutive behavior of structural materials and impact performance of vehicle components. Impact performance can be one of the most important properties for a component designer to consider and also the most difficult to quantify, Impact tests allow designers to compare the relative impact resistance under controlled laboratory conditions and, consequently, are often used for material selection or quality control. Traditional impact tests evaluate the energy required to cause failure, however they do not provide good information about mechanism or nature of failure, such as brittle or ductile failure, because these tests are generally not instrumented to measure stress and strain in the specimen during the test, moreover, finished components can have very different impact performance characteristics than raw material specimens. Lowvelocity impact has been an important

nylon 6

Embed Size (px)

DESCRIPTION

nylon comarison

Citation preview

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    343

    EnhancementofImpactresistancepropertyofNylon6bytheadditionofCasio3asafillermaterial

    MithunVKulkarni1,Elangovan.K2,HemachandraReddy.K3,PrakashJN4

    1Researchscholar,JNTUCollegeofEngineering,Anantapur515002,AP,India2AssistantProfessor,CambridgeInstituteofTechnology,Bangalore560036,Karnataka,

    India3Professor,DepartmentofMechanicalEngineering,JNTUCollegeofEngineering,

    Anantapur515002,AndhraPradesh,India4Professor,DepartmentofMechanicalEngineering,EastWestInstituteoftechnology,

    Bangalore560091,Karnataka,[email protected]

    ABSTRACT

    Impactresistanceisoneofthemostimportantpropertiesforcomponentdesignerstoconsider,aswellasthemostdifficulttoquantify.Impactresistanceisacriticalmeasureofservicelifeandmore importantly these days, it involves the perplexing problemof product safety andliability.TheaimofthispaperistounderstandtheinfluenceofCasio3 (CalciumSilicate)onthe impactpropertiesofPolyamides(Nylon6)and itscomposites.TheNylon6 isreinforcedwith varying percentages (1%, 3% and 5%) of Casio3. The dropweight impact testswereconducted on the samples at different drop heights of 320 mm, 620 mm, 1000 mm anddifferent drop weights of 0.89 kg, 1.395 kg and 2.33 kg. Impact measurement under theabovesaidconditionsforthematerialsA,B,CandDindicatedthattheadditionof Casio3ledtoasignificantimprovementintheimpactstrengthofthepolyamides.

    Keywords: Droptest,Polyamides,Nylon6,Impact,Calciumsilicate,Fillers

    1.Introduction

    Theimpactenergyofamaterialistheamountofenergyrequiredtofractureagivenvolumeofthematerial(Bows,J.R.1999).Therefore,theimpactstrengthofamaterial istheenergyrequiredtoinitiateandpropagateacrackthroughthematerial.Thecrackpropagationenergyisrelatedtothetoughnessofthematerialandthelengthofthatcracktipthatmusttravel inordertofractureacomponent.Thismeansthelowerthevalueoftheimpactenergythemorebrittle the material behaves (Askeland, D.R. 1998). Impact tests are frequently used instudyingdynamicbehaviorofmaterialsaswellasstructures,e.g.crashworthinessofvehicles,dynamic constitutive behavior of structural materials and impact performance of vehiclecomponents. Impact performance can be one of the most important properties for acomponentdesigner toconsiderandalsothemostdifficult toquantify,Impacttestsallowdesigners to compare the relative impact resistance under controlled laboratory conditionsand,consequently,areoftenusedformaterialselectionorqualitycontrol.Traditionalimpacttests evaluate the energy required to cause failure, however they do not provide goodinformationaboutmechanismornatureof failure, suchasbrittleorductile failure,becausethesetestsaregenerallynotinstrumentedtomeasurestressandstraininthespecimenduringthe test, moreover, finished components can have very different impact performancecharacteristics than raw material specimens. Lowvelocity impact has been an important

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    344

    study inmaterialcharacterization (HandbookofPolymerTestingShortTermMechanicalTests),duetoitscommonoccurrenceintherealworld.Asanefficientwaytoperformlowvelocity impact tests, dropweight impact testing machines have been commonly used.However,becauseofthelimitofthedropheight,theimpactvelocityproducedbythedropweightimpacttestingmachinesisusuallylessthan10m/s(GuojingLiandDahsinLiu.,2008).Inrecentyears,avarietyoffillershavebeeninvestigatedforreinforcementofthermoplasticpolymers (Ulrich A.Handge , KatrinHedickeHchsttter , VolkerAltstdt. ., 2010).Theimpact properties of polyamide blends have been influenced by the addition of fibers andcalciumsilicate,asignificantinfluenceinthechangeofmechanicalpropertieshasalsobeenobserved(Gnatowski,JandKoszkul.,2005).Polyamideshavebeenphysicallymodifiedbyfilling themwithpowdermineralfillers like talc,graphite,molybdenumdisulphide,bariumsulphate (VI) and titanium white. In the present work, a vertical drop weight impact testmachine has been used to study the influence of Casio3 (Calcium Silicate) on the impactpropertiesofPolyamides(Nylon6)anditscomposites.TheNylon6isreinforcedwithvaryingpercentages(1%,3%and5%)ofCasio3 (CalciumSilicate).Thetestswereconductedonthesamplesatdifferentdropheightsof320mm,620mm,1000mmanddifferentdropweightsof0.89kg,1.395kgand2.33kg.

    2.Experimental

    2.1MaterialsandSamplePreparation

    Thematerials/samplesandthesamplepreparationmethodshavebeendescribedinTable1.The materials under study were classified into four types viz., Material A, Material B,MaterialCandMaterialD.Atotalof36specimenswereusedfortesting.

    Table1:Thematerials/samplesandthesamplepreparationmethods

    SampleCode MaterialsunderStudy MethodofSamplePreparationMaterialA Nylon6 InjectionMoldingMaterialB Nylon6+1%Casio3 InjectionMoldingMaterialC Nylon6+3%Casio3 InjectionMoldingMaterialD Nylon6+5%Casio3 InjectionMolding

    Nylon 6 pellets procured from M/s Sarvodaya polymers, Bangalore, India were used topreparetheMaterialAspecimensandNylon6alongwith1%,3%and5%Casio3wereusedto prepareMaterial B, C, andD specimens. The Specimenswere prepared by heating thepellets in the barrel of an injection molding machine. The temperature was set at 1000 Cinitiallyfor30minutesandassoonastheflowofthematerialstartedfromthenozzleoftheinjectionmoldingmachine,thetemperatureofthebarrelwasreducedto600C.Inthemeantimethemoldwasalsocleanedandpreheated.Theliquefiedmaterialwastheninjectedintothemold and thus the samples were prepared . The prepared specimens were of 50mm x50mmx4mmdimensions.

    2.2ImpactTest

    Impact test was conducted as per ASTM D5628 on four different types of specimens assummarizedinTable1,usingaverticaldropweighttestingmachine.Parameterslikemassof

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    345

    hammer, impactenergy (dropheightofhammer)werevaried,but theshapeof hammer tipwaskeptconstant.TheDropheightusedinthetestwere320mm,620mmand1000mmanddropweightsusedwereof0.89kg, 1.395kgand2.33kg.

    3.ResultsandDiscussions

    All the samples were tested for different drop weights and drop heights. The data wasrecordedforeachsamplethesamplesunderstudywereclassifiedintoA,B,CandD(Table1).ThedartortheImpactorwasdroppedfromtheheightof320mm,620mm,1000mmandthedropweightsusedwereof0.89kg,1.395kg,and2.33kg.ForDifferentDropweightsandheightstheEnergyduetofallingdrop,E1,wascalculatedaccordingtothekineticenergyrelation(KE=0.5mv2).AsafirststepinthisresearchworktheimpacttestwasconductedonNylon6andthetestresultswererecordedinTable2.Next,theNylon6wasreinforcedwith1%,3%and5%ofCasio3asafillermaterial.ThedropweightimpacttestwasconductedonthesespecimensanditwasobservedthattheE3(Energyabsorbedbythematerial)valueofmaterialB,CandDhadincreasedincomparisonwithmaterialA(Figures4,5,6).Theusageof Casio3 as a filler material to improve the toughness of Nylon6 had served thepurpose.%E3 for the materials A, B, C, D were found to be 59.39%, 64.37%, 68.42%,72.44%fromthetables2,3,4,5respectively.i.e.,anincreaseof8.38%,15.24%and21.97%wereobservedinmaterialB,CandDrespectivelyincomparisonwithmaterialA.Similarly,Energy due to impact load, E2, of materials A, B, C, D were 105.46, 107.42, 118.7 and145.18Joulesrespectively.NosubstantialincreaseinE2wasfoundinmaterialBincontrasttomaterialA,butanincreaseof37.6%E2wasfoundinmaterialDincontrasttomaterialA.Increase in E2 and E3 indicated that the impact property of Nylon6 improved with theadditionofCasio3.

    Table2:ImpactTestresultforMaterialA(Nylon6)

    DropHeight,mm Mass,Kg ImpactSpeed,m/s E1,J

    ImpactLoad,Kg E2,J E3,J %E3

    320 0.89 2.51 2.8 1.55 4.87 2.07 42.45320 1.395 2.51 4.4 2.25 7.06 2.66 37.70320 2.33 2.51 7.3 4.5 14.13 6.83 48.32620 0.89 3.49 5.4 2.3 13.99 8.59 61.40620 1.395 3.49 8.5 3.4 20.68 12.18 58.90620 2.33 3.49 14.2 5.4 32.84 18.64 56.761000 0.89 4.43 8.7 3.2 31.39 22.69 72.291000 1.395 4.43 13.7 6.45 63.27 49.57 78.351000 2.33 4.43 22.8 10.75 105.46 82.66 78.38

    Table3:ImpactTestDataforMaterialB(Nylon6+1%Casio3)

    DropHeight,mm Mass,Kg ImpactSpeed,m/s E1,J

    ImpactLoad,Kg E2,J E3,J %E3

    320 0.89 2.51 2.8 1.99 6.25 3.45 55.18320 1.395 2.51 4.4 2.95 9.26 4.86 52.49320 2.33 2.51 7.3 4.9 15.38 8.08 52.54620 0.89 3.49 5.4 2.05 12.47 7.07 56.69620 1.395 3.49 8.5 3.35 20.37 11.87 58.28620 2.33 3.49 14.2 6.25 38.01 23.81 62.64

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    346

    1000 0.89 4.43 8.7 4.5 44.14 35.44 80.291000 1.395 4.43 13.7 7.95 77.99 64.29 82.431000 2.33 4.43 22.8 10.95 107.42 84.62 78.77

    Table4:ImpactTestDataforMaterialC(Nylon6+3%Casio3)

    DropHeight,mm Mass,Kg ImpactSpeed,m/s E1,J

    ImpactLoad,Kg E2,J E3,J %E3

    320 0.89 2.51 2.8 2.1 6.59 3.79 57.53320 1.395 2.51 4.4 3.05 9.57 5.17 54.04320 2.33 2.51 7.3 5.25 16.48 9.18 55.70620 0.89 3.49 5.4 2.4 14.60 9.20 63.01620 1.395 3.49 8.5 6.95 42.27 33.77 79.89620 2.33 3.49 14.2 8.6 52.31 38.11 72.851000 0.89 4.43 8.7 2.8 27.47 18.77 68.331000 1.395 4.43 13.7 8.55 83.87 70.17 83.671000 2.33 4.43 22.8 12.1 118.70 95.90 80.79

    Table5:ImpactTestDataformaterialD(Nylon6+5%Casio3)

    DropHeight,mm Mass,Kg ImpactSpeed,m/s E1,J

    ImpactLoad,Kg E2,J E3,J %E3

    320 0.89 2.51 2.8 2.35 7.38 4.58 62.04320 1.395 2.51 4.4 3.4 10.67 6.27 58.77320 2.33 2.51 7.3 9.3 29.19 21.89 74.99620 0.89 3.49 5.4 3.5 21.29 15.89 74.63620 1.395 3.49 8.5 4.35 26.46 17.96 67.87620 2.33 3.49 14.2 13.05 79.37 65.17 82.111000 0.89 4.43 8.7 3.9 38.26 29.56 77.261000 1.395 4.43 13.7 4.65 45.62 31.92 69.97

    1000 2.33 4.4322.8

    14.8 145.18122.38 84.30

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    347

    Figure4:ImpactLoadonMaterialsA,B,C,andDfor320mmdropheightandvaryingdropweights

    Figure5:ImpactLoadonMaterialsA,B,C,andDfor620mmdropheightandvaryingdropweights

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    348

    Figure6:ImpactLoadonMaterialsA,B,C,andDfor1000mmdropheightandvaryingdropweights

    4.Conclusions

    LowvelocityImpacttestwasconductedsuccessfullyonfourdifferentmaterialsviz.,Nylon6,Nylon6+1%Casio3,Nylon6+3%Casio3andNylon6+5%Casio3.Acomparisonofimpactvalueswasmade in between thesematerials. The tests showed that under the dropweightimpact, the Casio3 reinforced materials exhibited a good improved Impact resistance. ThehighaspectratioofCasio3wasakeyfactorinimprovingthemechanicalperformanceofthecompositesofNylon6andCasio3,thishighaspectratioreducesthemobilityofthepolymerchainstherebyincreasingtheimpactresistance.Also,withtheincreaseinCasio3percentage,the adhesion of the matrix onto the mineral particles increases thus reducing the air gapswhichrepresentthepointof zerostrength.

    5.References

    1. A. Gnatowski, J. Koszkul (2005), investigations of the influence of filler on thepropertiesofchosenpolymerblendswithcompatibilizeraddition,13th InternationalScientific Conference on Achievements in Mechanical and Materials Engineering.,Gliwice,Poland.

    2. Askeland,D.R (1998), theScienceandEngineeringofMaterials,3rdedn,pp.163164,StanleyThornes,USA.

  • INTERNATIONALJOURNALOFAPPLIEDENGINEERINGRESEARCH,DINDIGULVolume2,No 2,2011

    Copyright2010AllrightsreservedIntegratedPublishingAssociation

    REVIEWARTICLE ISSN 09764259

    349

    3. Bows, J.R (1999), variable Frequency Microwave Heating of Food, Journal ofMicrowavePowerandElectromagneticEnergy,34(4),pp227238.

    4. GuojingLiandDahsinLiu(2008),anInstrumentedFreeProjectileforLowvelocityImpactTesting,Proceedingsof theXIthInternationalCongressandExpositionJune25,Orlando,FloridaUSA

    5. Roger Brown (2002), handbook of Polymer Testing ShortTermMechanical Tests,RapraTechnologyLimited,

    6. UlrichA.Handge,KatrinHedickeHchsttter ,VolkerAltstdt (2010), compositesof polyamide 6 and silicate nanotubes of the mineral halloysite: Influence ofmolecularweightonthermal,mechanicalandrheologicalproperties.Polymer,51,pp26902699