27
©2012 Waters Corporation 1 Nuevas Tendencias en el análisis de trazas de contaminantes emergentes : residuos farmacéuticos, POP’s y PFC MS Technology Day Sesión Alimentación y Medio Ambiente Madrid, 20 de marzo de 2012 Miguel Ángel Cortés

Nuevas Tendencias en el análisis de trazas de ... · x10 x 2.5 decrease x ... 4.00. 3.94. CPFOA 3.5413 3.52 ... Nuevas Tendencias en el análisis de trazas de contaminantes emergentes

  • Upload
    buianh

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

©2012 Waters Corporation 1

Nuevas Tendencias en el análisis de trazas de contaminantes emergentes : residuos

farmacéuticos, POP’s y PFC

MS Technology Day

Sesión Alimentación y Medio Ambiente

Madrid, 20 de marzo de 2012

Miguel Ángel Cortés

©2012 Waters Corporation 2

Ultra trace analysis What are the challenges?

Challenging matrix/analyte combinations

Low LOQs • Low target

levels

Amount of sample • Mass/volume

possible to extract

Matrix effects • Complex

matrices

Reproducibility • Trace levels can

affect statistics

©2012 Waters Corporation 3

Waters Holistic Solution

©2009 Waters Corporation | COMPANY CONFIDENTIAL ©2011 Waters Corporation

Ultra trace analysis How can Xevo TQ-S help?

Xevo TQ-S performance enables: Enhanced sensitivity

Reduced volumes during sample prep and analysis

Proactively monitor matrix levels during analysis

Improved reproducibility due to increased signal intensity

Better quality results, minimal user intervention

©2012 Waters Corporation 5

PFCs analysis • Natural water samples • Fire fighting foam run off samples • Biological fluids

• Oasis WAX sample preparation • RADAR to investigate matrix effects

©2012 Waters Corporation 6

PFC’s analysis challenges

Liquid chromatography with tandem mass spectrometer is the method of choice for analyzing perfluorinated compounds. However, it is still a challenge to quantify trace levels of perfluorinated compounds unambiguously.

One of the difficult problems is background PFC contamination.

The major sources of contamination are mobile phases and Teflon components of the instrument. Although methanol and water can be further purified to reduce PFC contaminants by filtering through strong anion-exchange, reversed-phase and active carbon cartridges, the steps involved could be time-consuming and costly.

©2012 Waters Corporation 7

PFC’s analysis chalenges

©2012 Waters Corporation 8

PFC Contaminants Interference with Quantification

©2012 Waters Corporation 9

System PFC isolation

PEEK solvent lines

PFC isolator column

Solvent mixer

From pump

to injector

©2012 Waters Corporation 10

MRM Chromatograms of PFOA: Isolator Column In-line

MRM chromatograms of 463>369 channel

Time2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00

%

0

100

2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00

%

0

100

No peaks

Background PFOA contaminant

Background PFOA contaminant

Analyte PFOA

Blank Injection

300 ppt PFOA standard

0.5 min

©2012 Waters Corporation 11

Waters PFC’s analysis system

Acquity Xevo TQ-S with step wave technology and RADAR

o New source Z-Spray compatible with high flow rate.

o Fast scan speed: enough number of points per peak for quantitative and qualitative analysis, compatible with UPLC with the capability to combine different ionization modes in one run.

o Unparallel software, for complete control of the UPLC/MS(MS) and data management: Quanpedia, TargetLynx, Trendplot, Intellistart, QC Monitor

©2012 Waters Corporation 12

PFBuS

PFHxA

PFHpA PFHxS

THPFOS

PFOA

PFOS

PFNA

PFDA

PFUnDA

PFDoDA

ACQUITY UPLC Separation

©2012 Waters Corporation 13

PFCs – 200fg on column

PFBA

PFPeA

PFHpA

PFHxA

PFOA

PFNA

PFDA

PFDoDA

PFUnDA

PFTrDA

PFBuS

PFHxS

PFOS

PFDS

©2012 Waters Corporation 14

Aqueous Sample Quantitation

413 > 369

413 > 219

413 > 169

Tap Water Lake Mariestadssjön River Svartån

Compound name: PFOACorrelation coefficient: r = 0.999898, r^2 = 0.999796Calibration curve: 0.311728 * x + 0.0612933Response type: Internal Std ( Ref 6 ), Area * ( IS Conc. / IS Area )Curve type: Linear, Origin: Exclude, Weighting: Null, Axis trans: None

Conc0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Re

spo

nse

0.00

1.00

2.00

3.00

4.00

5.00

0.42 ng L-1 1.3 ng L-1 1.1 ng L-1

Compound name: PFOSCorrelation coefficient: r = 0.999705, r^2 = 0.999410Calibration curve: 0.558744 * x + 0.0416708Response type: Internal Std ( Ref 11 ), Area * ( IS Conc. / IS Area )Curve type: Linear, Origin: Exclude, Weighting: Null, Axis trans: None

Conc0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Re

spo

nse

0.0

2.0

4.0

6.0

8.0

10.0

Tap Water Lake Mariestadssjön River Svartån

1.5 ng L-1 1.30 ng L-1 1.4 ng L-1

499 > 99

499 > 80

©2012 Waters Corporation 15

RADAR-MRM Monitoring Surface Water Background (Lake Mariestadssjön)

PFHx

A

0.41 n

g L-1

PFBu

S

0.23

ng

L-1

PFHp

A

0.69 n

g L-1

PFHx

S 0

.42 n

g L-1

PFOA

1.

30 n

g L-1

PFNA

0.4

2 ng

L-1

PFOS

1.3

0 ng

L-1

©2012 Waters Corporation 16

RADAR-MRM : Observing Matrix Interferents

Laboratory contaminants

©2012 Waters Corporation 17

RADAR-MRM Laboratory Contaminants

C10 LAS

C11 LAS

C12 LAS

C13 LAS

Full Scan TIC

XIC 297 m/z

XIC 311 m/z

XIC 325 m/z

XIC 337 m/z

PFC isolator hold-up

©2012 Waters Corporation 18

Fire Fighting Training - Samples

Seepage water samples from fire training activity after cleaning steps (close to source)

Borehole from lake adjacent to fire training activity at an airport (further from source)

©2012 Waters Corporation 19

PFHxA

x100

x10

x 2

.5

decr

ease

x 1

0.2

d

ecr

ease

802268

318971

31270

Peak Area

Fire Fighting Training – Samples Diluting Matrix Effects

Original Sample (FFF run off) x10 dilution x100 dilution

Expected RT

©2012 Waters Corporation 20

Biotic Material – Salmon Liver

Complex sample — Oasis sample prep

Two major analytical problems

— PFOS interference

— Retention time shift

Causative sample matrix components can be observed using RADAR-MRM

IMAG

E: N

OAA

©2012 Waters Corporation 21

Salmon Liver - Analytical Problems

Sal

mon L

iver

Solv

ent

Sta

ndar

d

PFHx

A

PFBu

S

PFOA

PFNA

PFOS

PFHp

A

PFHx

S

PFDA

PFUn

DA

PFDo

DA

MRM Interference

RT Shift

©2012 Waters Corporation 22

Salmon Liver DS-MRM

a b

Solv

ent

Sta

ndar

d

Sal

mon M

RM

Sal

mon F

S T

IC

©2012 Waters Corporation 23

498

499

Salmon Liver RADAR-MRM Spectra

b

498

a

514

PFOS 499>80

XIC 499 m/z

Isotopic interference on Pre-cursor mass

©2012 Waters Corporation 24

Salmon liver - PFOS DS-MRM

499>99

499>80 a b

PFOS 2.75ng/g

©2012 Waters Corporation 25

Product ion experiments

deoxytaurocholate

taurocholate

a

b 79.9 94.9

106.9 123.9

290.1

©2012 Waters Corporation 26

RT Shift – Bile acids

Taur

ocho

late &

deox

ytaur

ocho

late

ND ND 4.80 PFDoDA

ND 4.55 4.55 PFUnDA

4.27 4.26 4.27 PFDA

3.95 3.87 3.96 13CPFOS

3.94 3.87 3.96 PFOS

3.93 3.86 3.94 13CPFNA

3.94 4.00 3.94 PFNA

3.45 3.52 3.54 13CPFOA

3.44 ND 3.54 PFOA

ND ND 3.52 THPFOS

3.13 3.06 3.13 PFHxS

3.04 3.00 3.04 PFHpA

2.36 2.35 2.36 PFHxA

1.67 1.67 1.67 PFBuS

Salmon Liver dilution Salmon Liver Standard

Retention Time (min)

©2012 Waters Corporation 27

Possible “Clean-up” Strategy

Target amide group for hydrolysis (ideally prior to extraction)

— PFC resistance possible

Could avoid RT shift and interference problem