54
1

Non-helical MHD at 1024 3

  • Upload
    abram

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Non-helical MHD at 1024 3. Haugen, Brandenburg, & Dobler (2003, ApJ). Inverse cascade of magnetic helicity. argument due to Frisch et al. (197 5 ). and. Initial components fully helical:. and.  k is forced to the left. Magnetic helicity. Maxwell eqns. Vector potential. - PowerPoint PPT Presentation

Citation preview

Page 1: Non-helical MHD at 1024 3

1

Page 2: Non-helical MHD at 1024 3

2

Page 3: Non-helical MHD at 1024 3

3

Page 4: Non-helical MHD at 1024 3

4

Page 5: Non-helical MHD at 1024 3

5

Page 6: Non-helical MHD at 1024 3

6

Non-helical MHD at 1024Non-helical MHD at 102433 H

auge

n, B

rand

enbu

rg, &

Dob

ler

(200

3, A

pJ)

Page 7: Non-helical MHD at 1024 3

7

Page 8: Non-helical MHD at 1024 3

8

Page 9: Non-helical MHD at 1024 3

9

Page 10: Non-helical MHD at 1024 3

10

Page 11: Non-helical MHD at 1024 3

11

Page 12: Non-helical MHD at 1024 3

12

Inverse cascade of magnetic helicityInverse cascade of magnetic helicity

kqp EEE |||||| kqp HHH and

||2 pp HpE ||2 qq HqE Initial components fully helical: and

||||||2|||| qpkkqp HHkHkEHqHp

),max(||||

||||qp

HH

HqHpk

qp

qp

argument due to Frisch et al. (1975)

k is forcedto the left

Page 13: Non-helical MHD at 1024 3

13

Magnetic helicityMagnetic helicity

0 ,

BEB

t

Maxwell eqns Vector potential

AB

Uncurled induction eqn

EA

t

AEBBEBA 2t

EABEBB

AA

BBA

ttt

flux terms/2 BJBAt

Page 14: Non-helical MHD at 1024 3

14

Magnetic helicityMagnetic helicity V

VH d BA

1

2

212 H

11

d d1

SL

H SBA

2 d2

S

SA

1S

1

AB

Page 15: Non-helical MHD at 1024 3

15

Slow saturationSlow saturationB

rand

enbu

rg (

2001

, ApJ

550

, 824

)

Page 16: Non-helical MHD at 1024 3

16

Periodic boxPeriodic box, no shear, no shear: resistively limited saturation: resistively limited saturation

Significant fieldalready after

kinematicgrowth phase

followed byslow resistive

adjustment

0 bjBJ

0 baBA

0221 f

bB kk

021211 f

bB kkBlackman & Brandenburg (2002, ApJ 579, 397)

Brandenburg & SubramanianPhys. Rep. (2005, 417, 1-209)

BJBA 2dt

d

Page 17: Non-helical MHD at 1024 3

17

Magnetic helicity conservation

termssurface2 BJBA dt

d

0BJSteady state,closed box

0 bjBJ

Early times

2f

21 bB kk

0BA 0 baBA

2f1

2 / bB kk

Page 18: Non-helical MHD at 1024 3

18

Slow-down explained by Slow-down explained by magnetic helicity conservationmagnetic helicity conservation

2f

21

211 22 bBB kk

dt

dk

)(2

1

22 s211 ttkf e

k

k bB

molecular value!!

BJBA 2dt

d

Page 19: Non-helical MHD at 1024 3

19

Slow-down explained by Slow-down explained by magnetic helicity conservationmagnetic helicity conservation

Page 20: Non-helical MHD at 1024 3

20

With hyperdiffusivity

23231 f

bB kk for ordinaryhyperdiffusion

42k

Brandenburg & Sarson (2002, PRL)

Page 21: Non-helical MHD at 1024 3

21

Page 22: Non-helical MHD at 1024 3

22

Page 23: Non-helical MHD at 1024 3

23

Page 24: Non-helical MHD at 1024 3

24

Page 25: Non-helical MHD at 1024 3

25

Page 26: Non-helical MHD at 1024 3

26

Page 27: Non-helical MHD at 1024 3

27

Evidence from different simulations:Evidence from different simulations:strong fields only with helicity fluxstrong fields only with helicity flux

Convective dynamo in a boxwith shear and rotation

Käpylä, Korpi, Brandenburg(2008, A&A 491, 353)

Only weak field if box is closed

Forced turbulence in domain with solar-like shear

Brandenburg (2005, ApJ 625, 539)

3-D simulations, no mean-field modeling

Page 28: Non-helical MHD at 1024 3

28

Nonlinear stage: consistent with …Nonlinear stage: consistent with …

SSCF need

22

2ft

2SSC

2f2

1t

/1

2/

/

eqm

eqmK

BR

kt

BkR

B

FBJ

Brandenburg (2005, A

pJ)

ijjiVC UUC ,,21

ijSS

C S , BBSF

Page 29: Non-helical MHD at 1024 3

29

Best if Best if contours contours to surface to surfaceExample: convection with shear

Käpylä et al. (2008, A&A) Tobias et al. (2008, ApJ)

need small-scale helicalexhaust out of the domain,not back in on the other side

MagneticBuoyancy?

Page 30: Non-helical MHD at 1024 3

30

To prove the point: convection with To prove the point: convection with vertical shear and open b.c.svertical shear and open b.c.s

Käpylä, Korpi, & myself(2008, A&A 491, 353)

Magnetic helicity flux

Effects of b.c.s only in nonlinear regime

Käp

ylä,

Kor

pi, B

rand

enbu

rg (

2008

, A&

A)

Page 31: Non-helical MHD at 1024 3

31

Implications of tau approximationImplications of tau approximation

1. MTA does not a priori break down at large Rm.

(Strong fluctuations of b are possible!)

2. Extra time derivative of emf

33 hyperbolic eqn, oscillatory behavior possible!

4. is not correlation time, but relaxation time

εε

JB

~

~t

3new

t

εε JB

231

31

31

~ ,

~

~ ,~

u

bjuω

with

Page 32: Non-helical MHD at 1024 3

32

Kinetic and magnetic contributionsKinetic and magnetic contributions

lKillkljijkii BuBu ~

, uBubu

lkjijkKil uu ,

~ uω ikjijkKii uu ,

~

Kij

Kij ~~

31

lMilklilijkii BbbB ~

, bbBbu

likijkMil bb ,

~ bj ijkijkMii bb ,

~

Mij

Mij ~~

31

bj

Page 33: Non-helical MHD at 1024 3

33

Connection with Connection with effect: effect: writhe with writhe with internalinternal twist as by-product twist as by-product

clockwise tilt(right handed)

left handedinternal twist

031 / bjuω both for thermal/magnetic

buoyancy

JBB

T dt

d2

T

BBJ

effect produces

helical field

Page 34: Non-helical MHD at 1024 3

34

… … the same thing mathematicallythe same thing mathematically

terms)(surface 2d

d BJBA

t

BJBBA ε 22d

d

t

bjBba ε 22d

d

t

Two-scale assumption JBε t

Production of large scale helicity comes at the priceof producing also small scale magnetic helicity

031 / bjuω

Page 35: Non-helical MHD at 1024 3

35

Revised nonlinear dynamo theoryRevised nonlinear dynamo theory(originally due to Kleeorin & Ruzmaikin 1982)(originally due to Kleeorin & Ruzmaikin 1982)

BJBA 2d

d

t

Two-scale assumption

031 / bjuω

Dynamical quenching

M

eqmfM B

Rkt

2

22d

d Bε

Kleeorin & Ruzmaikin (1982)

22

20

/1

/

eqm

eqmt

BR

BR

B

BJ

Steady limit algebraic quenching:

( selectivedecay)

BJBBA ε 22d

d

t

bjBba ε 22d

d

t

JBε t

Page 36: Non-helical MHD at 1024 3

36

General formula with magnetic helicity fluxGeneral formula with magnetic helicity flux

22

2ft

2SSC

2f2

1

/1

2/

/

eqm

eqmK

BR

kt

BkR

B

FBJ

Rm also in thenumerator

Page 37: Non-helical MHD at 1024 3

37

Mean field theory is predictiveMean field theory is predictive

• Open domain with shear– Helicity is driven out of domain (Vishniac & Cho)

– Mean flow contours perpendicular to surface!

• Excitation conditions– Dependence on angular velocity

– Dependence on b.c.: symmetric vs antisymmetric

Page 38: Non-helical MHD at 1024 3

38

Calculate full Calculate full ijij and and ijij tensors tensors

JBUA

t

JbuBUA

t

jbubuBubUa

t

pqpqpqpqpqpq

tjbubuBubU

a

Original equation (uncurled)

Mean-field equation

fluctuations

Response to arbitrary mean fields

Page 39: Non-helical MHD at 1024 3

39

Test fieldsTest fields

0

sin

0

,

0

cos

0

0

0

sin

,

0

0

cos

2212

2111

kzkz

kzkz

BB

BBpqkjijk

pqjij

pqj BB ,

kzkkz

kzkkz

cossin

sincos

1131121

1

1131111

1

21

1

111

113

11

cossin

sincos

kzkz

kzkz

k

213223

113123

*22

*21

*12

*11

Example:

Page 40: Non-helical MHD at 1024 3

40

Validation: Roberts flowValidation: Roberts flowpqpqpqpqpq

pq

tjbubuBubU

a

1frmsm3

1t

rmsm31

-kuR

uR

SOCA

ykxk

ykxk

ykxk

uU

yx

yx

yx

rms

coscos2

cossin

sincos

2/fkkk yx

1frms3

1t0

rms31

0

-ku

u

normalize

SOCA result

Brandenburg, R

ädler, Schrinner (2009, A&

A)

Page 41: Non-helical MHD at 1024 3

41

Kinematic Kinematic and and tt

independent of Rm (2…200)independent of Rm (2…200)

1frms3

10

rms31

0

ku

u

Sur et al. (2008, MNRAS)

1frms

231

0

31

0

ku

u

Page 42: Non-helical MHD at 1024 3

42

Scale-dependence: nonlocalityScale-dependence: nonlocality

fexp)(ˆ k

'd )'()'(ˆ zzzz BB

2die )(~)(ˆ kkzkz

cf talk by Alexander Nepomnyashchy

Page 43: Non-helical MHD at 1024 3

43

Time-dependent caseTime-dependent case

2

die)(~)(ˆ tt

tet t

0/

220

2 cos)( i1

i1)(

'd )'()'(ˆ tttt BB

Hubbard &

Brandenburg (2009, A

pJ)

Page 44: Non-helical MHD at 1024 3

44

Importance of time-dependenceImportance of time-dependence

21t1 )()()( kskss

0d )(ˆ)( ttes st

'd )'()'(ˆ tttt BB

Page 45: Non-helical MHD at 1024 3

45

From linear to nonlinearFrom linear to nonlinear

pqpq ab

AB

uUU

Mean and fluctuating U enter separately

Use vector potential

Brandenburg et al. (2008, A

pJ)

Page 46: Non-helical MHD at 1024 3

46

Nonlinear Nonlinear ijij and and ijij tensors tensors

jiijij

jiijij

BB

BB

ˆˆ

ˆˆ

21

21

Consistency check: consider steady state to avoid d3/dt terms

0

2121121

21t1

kk

kk

Expect:

3=0 (within error bars) consistency check!

Page 47: Non-helical MHD at 1024 3

47

33tt((RRmm) dependence for B~B) dependence for B~Beqeq

(i) 3 is small consistency(ii) 31 and 32 tend to cancel(iii) to decrease 3(iv) 32 is small

021t1 kk

Page 48: Non-helical MHD at 1024 3

48

Application to passive vector eqnApplication to passive vector eqn

ijij

ijij

jiijij

BB

BB

BB

~~

ˆˆ

1

21

21

0

cos

sin~

,

0

sin

cos

kz

kz

kz

kz

BB

BBuB ~~~

2

t

Verified by test-field method

000

0sinsincos

0sincoscosˆˆ 2

2

kzkzkz

kzkzkz

BB ji

Tilgner & Brandenburg (2008)

cf. Cattaneo & Tobias (2009)

Page 49: Non-helical MHD at 1024 3

49

Is the field in the Sun fibril?Is the field in the Sun fibril?

Käpylä et al (2008)

with rotation without rotation

Page 50: Non-helical MHD at 1024 3

50

Takes many turnover timesTakes many turnover times

1

f

rms1t

1

ff

12

31

31

1t

k

k

u

U

k

UC

k

k

kkC

CCD

u

Rm

=121, B

y, 512^3

LS dynamo not always excited

Page 51: Non-helical MHD at 1024 3

51

Deeply rooted sunspots?Deeply rooted sunspots?

• Solar activity may not be so deeply rooted• The dynamo may be a distributed one• Near-surface shear important

Hindm

an et al. (2009, ApJ)

Page 52: Non-helical MHD at 1024 3

52

Near-surface shear layerNear-surface shear layer

Benevolenskaya, Hoeksema, Kosovichev, Scherrer (1999)

Page 53: Non-helical MHD at 1024 3

53

Origin of sunspotOrigin of sunspot

Theories for shallow spots:Theories for shallow spots:(i) Collapse by suppression(i) Collapse by suppression

of turbulent heat fluxof turbulent heat flux(ii) Negative pressure effects(ii) Negative pressure effects

from <from <bbiibbjj>-<>-<uuiiuujj> vs > vs BBiiBBjj

Page 54: Non-helical MHD at 1024 3

54

Formation of flux concentrations

...... 221 Bijpjisji qBBquu

Recent work with Kleeorin &Recent work with Kleeorin &Rogachevskii (arXiv:0910.1835)Rogachevskii (arXiv:0910.1835)