Noble and Vidal-1990

Embed Size (px)

Citation preview

  • 8/12/2019 Noble and Vidal-1990

    1/6

    EconomicGeologyVol. 85, 1990, pp. 1645-1650

    SCIENTIFIC COMMUNICATIONS

    ASSOCIATION OF SILVER WITH MERCURY, ARSENIC, ANTIMONY, AND CARBONACEOUSMATERIAL AT THE HUANCAVELICA DISTRICT, PERUDONALD C. NOBLE

    Mackay Schoolof Mines, Universityof Nevada-Reno,Reno,Nevada 89557AND CSAR E. VIDAL

    PerubarS. A., Juande Arona 830, San sidro, Lima 18, PeruIntroductionand GeologicSetting

    The Huancavelica istrict n centralPeru (Fig. 1)is the largest producer of mercury in the westernhemisphere nd one of the more mportantmercurydistricts n the world. The geologyand ore depositsof the district have been describedby Yates et al.(1951), Fernandez-Concha t al. (1952), and McKeeet al. (1986), who togetherprovidea comprehensivebibliography.Mostof the ore, ncluding hat of the SantaBrbaramine, the most mportant n the district (Fig. 1), ishostedby steeply dipping quartz sandstone f theEarly CretaceousGran Faral16nMember of the Goyl-larisquizgaFormation.A number of smallerdepositsin the districtare hostedby limestoneof the Pucarand MachayFormations f Jurassic ndEarly Creta-ceousages, espectively; he replacementdeposits fthe Botija Puncomine are the best exampleof thisore type. Minor fracture illings n late Miocenedacitelavasand volcaniclastic andstone f early Mioceneage (McKee and Noble, 1982; McKee et al., 1986)are alsopresent;sucha cinnabarvein is exposed nthe Espafiolamine.The lavaspresumably re volcanicequivalents f high-level ntrusivebodies hat drovethe several hydrothermal systems rom which themercuryand associatedmetalsof the deposits f thedistrictwere deposited McKeeet al., 1986).The minesof the Huancavelica istrict,and par-ticularly he SantaBrbaramine, were worked nten-sivelyfor hundredsof years, ypicallyby very lowcost abor.For this reason ndbecausen manycasesthe distribution of mercury is irregular, in manyformerworkings t is difficult o find megascopicallyvisiblecinnabarn outcrop. ntensehandminingdur-ing Spanish olonial imesexplains oth the generallylow Hg valuesobtained on samplingof the Chacla-tacanaopen pit and the lack of success f recent at-temptsof bulk mining.

    Mineral AssociationsAs described y Yateset al. (1951) andFernandez-Conchaet al. (1952), cinnabarand esseramountsof

    native mercury are closely associatedwith pyrite,realgar, orpiment, arsenopyrite, nd stibniteand, lo-cally, with hydrocarbonand/or bituminousmaterialclearly transportedby hydrothermalsolutions. hismineral assemblage ccursmainly as impregnationsin the quartzite of the Gran Faral16nMember.In addition o the mercury occurrences, olyme-tallic veins and bodiesof hydrothermalbrecciaareknown n the Huancavelica istrict (Fig. 1), and anumberof narrowPb-Zn-Agveinsare present n sur-roundingareas.Pyrite and tetrahedriteare the mostimportant minerals n the veinsat Ccollccemina,Far-al16n,and Yanamina Fig. 1; see also McKee et al.,1986). Galena,sphalerite, rsenopyrite,halcopyrite,jamesonitc, tibnite,quartz,barite, andhydrocarbonand/or bituminousmaterialare associated ith theseminerals.Semiquantitative ptical emission pectro-graphicanalysis asshown he presenceof 10 to 100ppm Hg in severalspecimensrom theseveins;Bi andSn were detected at the same level of concentrationin a sample rom Yanamina.Wall-rock materialcon-sists f argillicallyaltered dacite ava of late Mioceneage at Ccollccemina; t Yanamina he veinsare hostedby sandstone.Bodiesof hydrothermal recciawere recognizedby Yateset al. (1951) and Fernandez-Concha t al.(1952). The bodiesat Cabramachay,Modelohuayco,and Nifiabamba Chircoromojo)Fig. 1) have beenstudied n more detail by Vidal and Cabos 1984).The breccia bodies at Cabramachay nd Modelo-huaycoare polymictic,with variably ounded rag-ments f Cenozoic olcanic ndMesozoic edimentaryrock ndicating ertical ransport.Wall-rockcontactsare irregular and gradational,with fractured but in-terlockingblocksof limestone r volcanic ock grad-ing inward to polymictic breccia. The matrix is com-posedof comminuted ock fragments ementedbyquartz, chalcedonic ilica,and clay. Tracesof barite,marcasite,galena, and sphaleritewere observed nplaces,and large bodiesof iron-manganeseossanwith associated zones of carbonaceous material arepresent n the Cabramachay recciabody. Between

    1645

  • 8/12/2019 Noble and Vidal-1990

    2/6

    1646 SCIENTIFIC COMM UNICA TIONS

    MOELOHUACO

    NORTH

    \ x'

    SANTABARBARAMINE

    ChaclatoconoOpen Pi

    D

    pErU/y'

    FIG.1. Mapof a partof theHuancavelicaistrict,argely eneralizedromYates t al. (1951)andFernandez-Conchat al. (1952) showinghe location f the SantaBtrbaramine, he Chaclatacanaopenpit, andothermines nd eatureseferred o in the text.

    10 and 1,000 ppm of Cu, Pb, Zn, Ag, Hg, Sb, andAswere spectrographicallyetected at Cabramachay;tracesof Au were detected n onespecimenrom hisbody.Geochemical Data

    The presence f As,Sb,Hg, andcarbonaceousa-terial suggestedhe possible resence f gold, andseveral hases f geochemicalampling ndgeologicstudywerecarried ut o evaluatehedistrict. esultsof generalnterestwereobtainedroma program fhorizontalchannelsamplingof benches n the Chac-latacana penpit (Fig. 1), whichaccesseshe upperpart of the underground orkings f the old SantaBrbara mine. Sampleswere also aken from a 180-m sectionof the accessible uter part of the Be16ntunnel,an old tunneldrivenmainly o accesshe lowerworkings f the SantaBrbaramine, and from the

    Cabramachayrecciabody.The part of the Be16ntunnel sampled s locatedabout 100 to 300 m westof and 100 m below the SanRoque mine, in whichore occuredn relatively iat-lying hoots arallel obeddingn the hostMachay imestoneFig. 1).A total of 128 horizontal channel samplesweretaken from the central part, which exhibited hegreatestoncentrationf Hg,As,andSbminerals,fthe Chaclatacanapenpit. Thesesamples, hich nmostcaseswere taken over lengthsof five meters,were analyzed y AlfredKnight Lima) or Au, Ag,andHg. Determinable mounts f Ag andHg werereportedn allsamplesFig.2). Median aluesor heChaclatacananalyses ere 0.35 oz/tonAg and 156ppmHg. Goldwasdetectedn only12 samples,ndin only ivewas>0.1 g/metric onAu reported. heAg/Auweightatiosangedromabout 02 o 104.The geochemicalesultsobtained or the samples

  • 8/12/2019 Noble and Vidal-1990

    3/6

  • 8/12/2019 Noble and Vidal-1990

    4/6

    1648 SCIENTIFIC COMMUNICATIONS

    TABLE 1. Analyses or Silver, Gold, and Mercury in ChannelSamples rom the HuancavelicaMercury District, PeruLaboratory HM HM HM AK HM HM HM AKMethod FA CN CN 10 FA CN CN 10Sampleno. Ag (oz/ton) Au (oz/ton)

    AK

    Hg(ppm)Modelohuaycobreccia body

    1053 2.31 0.47 0.88 0.13 0.023 0.018 0.023 n.d.1054 0.27 0.06 0.09 0.29 0.001

  • 8/12/2019 Noble and Vidal-1990

    5/6

    SCIENTIFIC COMMUNICATIONS 1649

    erencescited therein) indicating hat mostsedimen-tary rock-hosted reciousmetal deposits re formedat depthsof a kilometer or more.An importantdifferencebetween he Huancavelicadistrict'and the depositsdiscussed bove s the oc-currenceof silver with mercury nsteadof the asso-ciationof goldwith mercuryor mercurywithoutpre-ciousmetals.This appears o be in part empiricallyexplainablen termsof geologic etting nd he natureof spatially nd emporally ssociated,ndpresumablygenetically elated, gneous ocks,but wouldalsoap-pear o require avorable onditions f metal ransportand deposition.Althoughsomenotablegolddiscoveries avebeenmadeduring he pastdecade, t hasbeen recognizedfor a long time that silverpredominates ver gold nthe myriad polymetallicand preciousmetal depositsof the highlands f Peru (e.g., Petersen,1965). Oneexample, as pointed out by Noble and Silberman(1984), is providedby the enargite-and etrahedrite-bearing veinsof Julcani,Cerro de Pasco,and othersimilardeposits, hichare the silveranalogues f en-argite-gold- or acid-sulfate-type epositssuch asGoldfield, Nevada, and Summitville, Colorado. Minoroccurrencesf mercury,moreover, re found n var-iousof the polymetallicdistrictsof central Peru, forexample, at the HuachocolpaPb-Zn-Ag district 25km south of Huancavelica, where mineralization tookplace at nearly the same time as at Huancavelica(McKee et al., 1975; Birnie andPetersen,1977; Bruhaet al., 1982).As with the manysilver-dominantolymetallic e-positsof central Peru, the presenceof silver in theChaclatacana pen pit appears o reflect its spatial,temporal, and probably genetic associationwith amajorpulseof strongly alc-alkalic ubduction-relatedvolcanicand plutonicactivityof middle o late Mio-cene age (Noble and Bowman, 1976; McKee et al.,1986; McKee and Noble, 1989; Noble et al., 1989).The McLaughlin,McDermitt, andAlmadendeposits,in contrast, re closely ssociated ith basaltor basalt-derived ntermediate ockserupted n extensional rtransform ectonic settings McLaughlin and Don-nelly-Nolan,1981; Noble et al., 1988; Rytubaet al.,1989). Basaltic, rather than intermediate to siliciccalc-alkalic,magmas ppear o havebeen the sourceof the mercury,andpreciousmetals,wheredeposited(e.g.,McLaughlin), adrelatively ow, albeitvariable,Ag/Au ratios.Nevertheless,he Ag/Au ratiosof the Chaclatacanaores appear oo high to explainsimplyby geologicsetting.Low base metal adularia-sericite-typepi-thermalandhot springs ystemsuch sBorealis, ondGold Bullfrog,Bodie, Delamar, Oatman,and RoundMountain have relatively low Ag/Au (Heald et al.,1977) ratiosandsome, or example,McLaughlinandthe Gooseberry ystemn westernNevada Sprecher,

    1985), zonestrongly pward o very owAg/Au atios.In contrast, dularia-sericite-typepithermal ystemscontainingignificantmounts f basemetalsypicallyhavemuchhigherAg/Auratiosandmayzoneupwardandoutward o higherAg/Au ratios e.g., ClarkeandTitley, 1988). The mercurydeposits f the Huancav-elicadistrictmaybe anextreme istal xample f thiscommonhigh basemetal zoningpattern. More com-plexpreciousmetalzoningpatterns,n partprobablyreflectinghost-rock hemistry,have been observed(e.g., Alvarezand Noble, 1988).Such dif[rences in relative metal abundance andzoning equireselectiveransportationnddepositionof silverandgold.The very owAg/Auratiosof certainCarlin-type edimentaryock-hostedolddeposits asbeen explainedby Hofstraet al. (1990) by transportin relatively HS--rich and chlorite-poor solutions,with gold precipitationbeing caused n part by re-moval of reduced sulfur from solutionby sulfidationof iron present n the host ock. Possiblyhe high Ag/Au ratiosof the Chaclatacanapecimensn part reflecthigh ratiosof C1- to noncomplexededucedsulfur nthe distal,mercury-rich ydrothermal olutions.

    AcknowledgmentsWe thank Buenaventurangenieros,S. A. and So-ciedad Minera E1 Brocal for permission o publish,GaryFetchko or adviceon analytical rocedures ndcomments on the resultant data, Ulrich Petersen forhelpful commentson the manuscript,and AlbertoBenavidesQ. for hiswholehearted upportof our on-goingstudiesof mineral deposits n Peru.

    REFERENCESAlvarez A., A., and Noble, D.C., 1988, Sedimentary ock-hosteddisseminatedprecious metal mineralization at Purisima Con-cepci0n,Yauricochadistrict, central Peru: ECON.GEOL.,v. 83,p. 1368-1378.Bagby,W. C., and Berger, B. R., 1985, Geologiccharacteristicsof sediment-hosted,isseminatedrecious-metal epositsn thewestern United States:Rev. Econ. Geology, v. 2, p. 169-202.Bagby,W. C., and Cline, J. S., 1990, Constraintson the pressureof formationof the Getcheil gold deposit,Humboldt County,Nevada, as interpreted from secondary-fluid-inclusion atalabs.l:Geol. Soc.Nevada-U.S. Geol. Survey,Geologyand OreDepositsof the Great BasinSymposium,Reno-Sparks,Nevada,1990, Program with Abstracts,p. 70.Birak,D. J., andHawkins,R. B., 1985, The geology f the Enfield

    Bell mineand he JerrittCanyon istrict,ElkoCounty,Nevada:U.S. Geol. SurveyBull. 1646, p. 95-105.Birnie,R. W., andPetersen,U., 1977, The paragenetic ssociationand compositionaloningof lead sulfosalts t Huachocolpa,Peru: ECON. GEOL., v. 72, p. 983-992.Bruha,D. J., McKee,E. H., andNoble,D.C., 1982, Paragenetic,fluid-inclusion nd geochronologicaltudyof the Teresitaveinsystem,Huachocolpadistrict, Peru labs.l:Geol. Soc.AmericaAbstractswith Programs, . 14, p. 152-153.Clarke, M., and Titley, S. R., 1988, Hydrothermalevolution nthe formationof silver-gold eins n the Tayolita mine, SanDi-masdistrict,Mexico:ECON.GEOL.,v. 83, p. 1830-1840.Cox,D. P., andSinger,D. A., 1990, Descriptive ndgrade-tonnagemodels or distal disseminated g-Au deposits:A supplement

  • 8/12/2019 Noble and Vidal-1990

    6/6

    1650 SCIENTIFIC COMMUNICATIONSto U.S. Geological Survey Bulletin 1693: U.S. Geol. SurveyOpen-File Rept. 90-282, 8 p.Fernandez-Concha,J., Yates, R. G., and Kent, D. F., 1952, Geo-logladel distritomercurffero e Huancavelica, er6:Peru, nst.Nac. Inv. Fomento Mineros Bol. 5, 56 p.Fisk, E. L., 1968, Cordero mine, Opalite miningdistrict, n Ridge,J. D., ed., Ore depositsof the United States, 1933-1967 (Gra-ton-Sales ol.): New York, Am. Inst. Mining Metall. PetroleumEngineers, p. 1573-1591.Havenstrite, S. R., 1983, Geology and ore depositsof the Taylorminingdistrict,White Pine County, Nevada:NevadaBur. MinesGeology Rept. 36, p. 14-26.Heald, P., Foley, N. K., and Hayba, D. O., 1977, Comparativeanatomy of volcanic-hosted pithermal deposits:Acid-sulfateand adularia-sericite ypes:ECON. GEOL.,v. 82, p. 1-26.Hetherington,M. J., and Cheney,E. S., 1985, Origin of the opalitebrecciaat the McDermitt mercurymine, Nevada:ECON.GEOL.,v. 80, p. 1981-1987.Hofstra, A. H., Landis, G. P., Leventhal, J. S., Northrop, H. R.,Rye, R. O., Doe, T. C., and Dahl, A. R., 1990, Genesisof sed-iment-hosteddisseminated old depositsby fluid mixing andsulfidationof iron in the host rocks: Chemical reaction pathmodeling f ore depositional rocessest JerrittCanyon,Nevadalabs.: Geol. Soc.Nevada-U.S. Geol. Survey,Geologyand OreDepositsof the Great BasinSymposium,Reno-Sparks,Nevada,1990, Programwith Abstracts,p. 55.Lehrman, N.J., 1986, The McLaughlin mine, Napa and YoloCounties,California: Nevada Bur. Mines GeologyRept. 41, p.85-89.

    -- 1988, Geologyand geochemistry f the McLaughlinHot-Spring precious-metaldeposit, California Coast Ranges abs.,in Schafer, R. W., Cooper, J. J., and Vikre, P. G., eds., Bulkmineablepreciousmetal depositsof the western United States.Symposiumproceedings:Reno, Nevada, Geol. Soc. Nevada, p.732.McCormack, J. K., 1986, Paragenesis nd origin of sediment-hosted mercury ore at the McDermitt mine, McDermitt, Ne-vada:Unpub. M.S. thesis,Univ. Nevada-Reno, 7 p.McKee, E. H., and Noble, D.C., 1982, Miocene volcanism anddeformation n the Western Cordillera and high plateausofsouth-centralPeru: Geol. Soc. America Bull., v. 93, p. 657-662.-- 1989, Tectonic events,magmaticpulses,and base-and pre-cious-metal mineralization in the central Andes, in Ericksen,G. E., CarlasPinochet,M. T., and Reinemund,J. A., eds., Geol-ogy of the Andes and its relation to hydrocarbonand mineralresources:Houston, Texas, Circum-Pacific Council EnergyMineral ResourcesEarth Sci. Ser., v. 11, p. 189-194.McKee, E. H., Noble, D.C., Petersen, U., Arenas F., M., andBenavidesQ., A., 1975, Geochronologyof late Tertiary vol-canismand mineralization,Huachocolpadistrict, central Peru:ECON. GEOL., v. 70, p. 388-390.McKee, E. H., Noble, D.C., andVidal C., 1986, Timing of volcanicand hydrothermalactivity,Huancavelicamercurydistrict,Peru:ECON. GEOL., v. 81, p. 489-492.McLaughlin, R. J., and Donnelly-Nolan, J. M., 1981, Research nthe Geysers-ClearLake geothermalarea, northern California:U.S. Geol. Survey Prof. Paper 1141,259 p.Mining Magazine, 1982, The McDermitt mine--the U.S.A.'slargest producer of mercury: v. 4, p. 261.Noble, D.C., 1984, Resultsof cyanide-extractionestsof samplesfrom the Huancavelica district, Peru: Lima, Peru, BuenaventuraIngenieros, S. A., private rept., 6 p.Noble, D.C., and Bowman, H. R., 1976, Geochemical and fieldconstraints n the depth of differentiation nd eruptive historyof siliciccalc-alkalicmagmas elated o baseandpreciousmetalmineralization,Andesof centralPeru labs.: Geol. Soc.AmericaAbstractswith Programs,v. 8, p. 615.Noble, D.C., and Silberman,M. L., 1984, Evolucibnvolcfnicahidrotermaly cronologla e K/Ar del distritominero de Julcani:Soc.Geol. Per6, Vol. Jubilar 60 Anniv., pt. 5, 35 p.

    Noble, D.C., McCormack, J. K., McKee, E. H., Silberman,M. L., and Wallace, A. B., 1988, Time of mineralization in theevolution of the McDermitt caldera complex, Nevada-Oregon,and the relation of middle Miocene mineralization in the north-ern Great Basin o coeval regional basalticmagmaticactivity:ECON. GEOL., v. 83, p. 859-863.Noble, D.C., Eyzaguirre,V. R., andMcKee, E. H., 1989, Precious-metal mineralization in the Andes of Per6, in Ericksen, G. E.,CariasPinochet, M. T., and Reinemund,J. A., eds., Geologyofthe Andesand ts elation o hydrocarbon ndmineral esources:Houston, Texas, Circum-Pacific Council Energy Mineral Re-sourcesEarth Sci. Ser., v. 11, p. 207-212.Nutt, C. I., Thorman, C. H., Zimbelman, D. R., and Gloyn, R. W.,1990, Geologicsettingand reconnaissancerace-elementgeo-chemistryof the Detroit mining district and Drum gold mine,Drum Mountains,west-centralUtah labs.: Geol. Soc. Nevada-U.S. Geol. Survey, Geology and Ore Depositsof the GreatBasinSymposium, eno-Sparks, evada,1990, Programs ithAbstracts,p. 63-64.Petersen,Ulrich, 1965, Regionalgeologyand major ore depositsof central Peru: ECON. GEOL.,v. 60, p. 407-476.Percival, T. J., Bagby, W. C., and Radtke, A. S., 1988, Physicaland chemical features of precious-metaldepositshosted bysedimentary rocks in the western United States, n Schafer,R. W., Cooper, J. J., and Vikre, P. G., eds.,Bulk mineablepre-ciousmetal depositsof the western United States.Symposiumproceedings:Reno, Geol. Soc. Nevada, p. 11-34.Radtke, A. S., Rye, R. O., and Dickson,F. W., 1980, Geologyandstable sotope tudies f the Carlin golddeposit,Nevada:ECON.GEOL., v. 75, p. 641-672.Rytuba,J. J., and Glanzman,R. K., 1979, Relationof mercury,uranium, and lithium deposits o the McDermitt caldera com-plex, Nevada-Oregon:Nevada Bur. Mines Geology Rept. 33,p. 109-117.Rytuba,J. J., and McKee, E. H., 1984, Peralkalineash-flow uffsand calderasof the McDermitt volcanic ield, southeastOregonand north-central Nevada: Jour. Geophys.Research,v. 89, p.8616-8628.Rytuba, J. J., Hernandez, A.M., Rye, R. O., Dean, J. A., andArribas, A., Sr., 1989, Genesisof Almaden type mercury de-posits, Almaden, Spain labs.: Internat. Geol. Cong., 28thWashington, 1989, Abstracts,v. 2, p. 2-741.Saup, Francis,1973, La gologie du gisementde mercure d'Al-madn: Sci. Terre, Nancy, Mm. 29, 342 p.Sillitoe, R. H., and Bonham, H. F., Jr., 1990, Sediment-hostedgold deposits: istal productsof magmatichydrothermal ys-tems: Geology, v. 18, p. 157-161.Sprecher, T. A., 1985, Wallrock alteration, vein structure, andpreliminary luid inclusion tudies,Gooseberrymine, StoreyCounty, Nevada:Unpub. M.S. thesis,Univ. Nevada-Reno,92p.Tingley, J. V., and Bonham, H. F., Jr. , 1986, Sediment-hostedprecious-metal eposits f northernNevada:NevadaBur. MinesGeology Rept. 40, 103 p.Vidal, C., and Cabos,R., 1984, Estudiogeolgicoy camparia ilotode geoqulmica n el distrito minero SantaBfrbara,Huancav-elica: Buenaventura ngenieros,S. A. for SociedadMinera ElBrocal S. A., private rept., 59 p.Wallace, A. B., and Roper, M. W., 1981, Geologyand uraniumdepositsalong the northeasternmargin, McDermitt calderacomplex,Oregon: Am. Assoc.Petroleum GeologistsStudies nGeology, v. 13, p. 73-88.Wallace, A. R., 1989, The Relief Canyon gold deposit, Nevada:A mineralized solution breccia: ECON. GEOL., v. 84, p. 279-290.

    Yates, R. G., 1942, Quicksilver depositsof the Opalite district,Malheur County, Oregon, and Humboldt County, Nevada:U.S. Geol. Survey Bull. 931-N, p. 319-348.Yates,R. G., Kent, D. F., and Fernandez-Concha,J., 1951, Geol-ogy of the Huancavelicaquicksilverdistrict, Peru: U.S. Geol.Survey Bull. 975-A, 45 p.